1
|
McAllister TA, Thomas KD, Gruninger RJ, Elshahed M, Li Y, Cheng Y. INTERNATIONAL SYMPOSIUM ON RUMINANT PHYSIOLOGY: Rumen fungi, archaea and their interactions. J Dairy Sci 2025:S0022-0302(25)00009-8. [PMID: 39824485 DOI: 10.3168/jds.2024-25713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Anaerobic gut fungi (AGF) were the last phylum to be identified within the rumen microbiome and account for 7-9% of microbial biomass. They produce potent lignocellulases that degrade recalcitrant plant cell walls, and rhizoids that can penetrate the cuticle of plant cells, exposing internal components to other microbiota. Interspecies H2 transfer between AGF and rumen methanogenic archaea is an essential metabolic process in the rumen that occurs during the reduction of CO2 to CH4 by methanogens. This symbiotic relationship is bolstered by hydrogensomes, fungal organelles that generate H2 and formate. Interspecies H2 transfer prevents the accumulation of reducing equivalents that would otherwise impede fermentation. The extent to which hydrogenosomes serve as a conduit for H2 flow to methanogens is unknown, but it is likely greater with low quality forages. Strategies that alter the production of CH4 could also have implications for H2 transfer by anaerobic fungi. Understanding the factors that drive these interactions and H2 flow could provide insight into the effect of reducing CH4 production on the activity of ruminal fungi and the digestion of low-quality feeds.
Collapse
Affiliation(s)
- Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1.
| | - Krysty D Thomas
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1
| | - Mostafa Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74074, USA
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095
| |
Collapse
|
2
|
Gao S, Zhao X, Zhang Q, Guo L, Li Z, Wang H, Zhang S, Wang J. Mimic metalloenzymes with atomically dispersed Fe sites in covalent organic framework membranes for enhanced CO 2 photoreduction. Chem Sci 2025; 16:1222-1232. [PMID: 39677933 PMCID: PMC11635630 DOI: 10.1039/d4sc05999a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The massive CO2 emissions from continuous increases in fossil fuel consumption have caused disastrous environmental and ecological crises. Covalent organic frameworks (COFs) hold the potential to convert CO2 and water into value-added chemicals and O2 to mitigate this crisis. However, their activity and selectivity are very low under conditions close to natural photosynthesis. In this work, inspired by the photosynthesis process in natural leaves, we successfully anchored atomically dispersed Fe sites into interlayers of the photoactive triazine-based COF (Fe-COF) membrane to serve as a mimic metalloenzyme for the first time. It is found that under gas-solid conditions and no addition of any photosensitizer and sacrificial reagent, the highly crystalline Fe-COF membrane shows a record high CO2 photoreduction performance with a CO production of 3972 μmol g-1 in a 4 h reaction, ∼100% selectivity of CO, and excellent cycling stability (at least 10 cycles). In such a remarkable photocatalytic CO2 conversion, the atomically dispersed Fe sites with high catalytic activity significantly reduce the formation energy barrier of key *CO2 and *COOH intermediates, the high-density triazine moieties supply more electrons to the iron catalytic center to promote CO2 reduction, and the homogeneous COF membrane greatly improves the electron/mass transport. Thus, this work opens a new window for the design of highly efficient photocatalysts and provides new insights into their structure-activity relationship in CO2 photocatalytic reduction.
Collapse
Affiliation(s)
- Shuaiqi Gao
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiao Zhao
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology Xiangyang 441003 P. R. China
| | - Qian Zhang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Linlin Guo
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Zhiyong Li
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huiyong Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Suojiang Zhang
- College of Chemistry and Molecular Sciences, Longzihu New Energy Laboratory, Henan University Zhengzhou Henan 450000 P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianji Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
3
|
Lemaire ON, Wagner T. All-in-One CO 2 Capture and Transformation: Lessons from Formylmethanofuran Dehydrogenases. Acc Chem Res 2024; 57:3512-3523. [PMID: 39584476 DOI: 10.1021/acs.accounts.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
ConspectusCarbon-one-unit (C1) feedstocks are generally used in the chemical synthesis of organic molecules, such as solvents, drugs, polymers, and fuels. Contrary to the dangerous and polluting carbon monoxide mostly coming from fossil fuels, formate and formamide are attractive alternative feedstocks for chemical synthesis. As these are currently mainly obtained from the oil industry, novel synthetic routes have been developed based on the transformation of the greenhouse gas CO2. Such developments are motivated by the urgent need for carbon chemical recycling, leading to a sustainable future. The inert nature of CO2 represents a challenge for chemists to activate and specifically convert the molecule through an affordable and efficient process. The chemical transformation could be inspired by biological CO2 activation, in which highly specialized enzymes perform atmospheric CO2 fixation through relatively abundant metal catalysts. In this Account, we describe and discuss the potential of one of the most efficient biological CO2-converting systems: the formylmethanofuran dehydrogenase (abbreviated as FMD).FMDs are multienzymatic complexes found in archaea that capture CO2 as a formyl group branched on the amine moiety of the methanofuran (MFR) cofactor. This overall reaction leading to formyl-MFR production does not require ATP hydrolysis as compared to the CO2-fixing microbes relying on the reductive Wood-Ljungdahl pathway, highlighting a different operative mode that saves cellular energy. FMD reaction represents the entry point in hydrogenotrophic methanogenesis (H2 and CO2 dependent or formate dependent) and operates in reverse in other methanogenic pathways and microbial metabolisms. Therefore, FMD is a key enzyme in the planetary carbon cycle. After decades of investigations, recent studies have provided a description of the FMD structure, reaction mechanism, and potential for the electroreduction of CO2, to which our laboratory has been actively contributing.FMD is an "all-in-one" enzyme catalyzing a redox-active transformation coupled to a redox-neutral transformation at two very different metal cofactors where new C-H and C-N bonds are made. First, the principle of the overall reaction consisting of an exergonic CO2 reduction coupled with an endergonic formate condensation on MFR is resumed. Then, this Account exposes the molecular details of the active sites and provides an overview of each catalytic mechanism. It also describes the natural versatility of electron-delivery modules fueling CO2 reduction and extends it to the possibilities of using artificial systems such as electrodes.A perspective concludes on how the mechanistic of FMD could be applied to produce CO2-based chemical intermediates to synthesize organic molecules. Indeed, through its biochemical properties, the enzyme opens opportunities for CO2 electroreduction to generate molecules such as formate and formamide derivatives, which are all intermediates for synthesizing organic compounds. Transferring the chemical knowledge acquired from these biological systems would provide coherent models that can lead to further development in the field of synthetic biology and bio-inspired synthetic chemistry to perform large-scale CO2 conversion into building blocks for chemical synthesis.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Tristan Wagner
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
4
|
Lemaire ON, Wegener G, Wagner T. Ethane-oxidising archaea couple CO 2 generation to F 420 reduction. Nat Commun 2024; 15:9065. [PMID: 39433727 PMCID: PMC11493965 DOI: 10.1038/s41467-024-53338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
The anaerobic oxidation of alkanes is a microbial process that mitigates the flux of hydrocarbon seeps into the oceans. In marine archaea, the process depends on sulphate-reducing bacterial partners to exhaust electrons, and it is generally assumed that the archaeal CO2-forming enzymes (CO dehydrogenase and formylmethanofuran dehydrogenase) are coupled to ferredoxin reduction. Here, we study the molecular basis of the CO2-generating steps of anaerobic ethane oxidation by characterising native enzymes of the thermophile Candidatus Ethanoperedens thermophilum obtained from microbial enrichment. We perform biochemical assays and solve crystal structures of the CO dehydrogenase and formylmethanofuran dehydrogenase complexes, showing that both enzymes deliver electrons to the F420 cofactor. Both multi-metalloenzyme harbour electronic bridges connecting CO and formylmethanofuran oxidation centres to a bound flavin-dependent F420 reductase. Accordingly, both systems exhibit robust coupled F420-reductase activities, which are not detected in the cell extract of related methanogens and anaerobic methane oxidisers. Based on the crystal structures, enzymatic activities, and metagenome mining, we propose a model in which the catabolic oxidising steps would wire electron delivery to F420 in this organism. Via this specific adaptation, the indirect electron transfer from reduced F420 to the sulphate-reducing partner would fuel energy conservation and represent the driving force of ethanotrophy.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Tristan Wagner
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
- Institut de Biologie Structurale, 71 avenue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
5
|
Jiang YY, Li Y, Chen C, Xin YX. Computational Study on Flavin-Catalyzed Aerobic Dioxygenation of Alkenyl Thioesters: Decomposition of Anionic Peroxides. J Org Chem 2024; 89:13993-14005. [PMID: 39276183 DOI: 10.1021/acs.joc.4c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thioesters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O-O bond of anionic flavin-C(4a)-peroxide by β-carbon, while the resulting flavin-C(4a)-oxide accomplishes the oxygenolysis. Furthermore, two other reaction modes, i.e., concerted O-O cleavage/1,2-shift of α-substituents and dyotropic rearrangement were discovered for the decomposition of other anionic peroxides, and preliminary rules were summarized for understanding the chemoselectivity for this process. This study sheds light on the different reaction features of numerous flavin-dioxygen derivatives, providing deeper insights into flavin-catalyzed dioxygenation reactions, and is expected to inspire experimental design based on unconventional anionic peroxides.
Collapse
Affiliation(s)
- Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yu Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Chao Chen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yi-Xuan Xin
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
6
|
Xu F, Thoma CJ, Zhao W, Zhu Y, Men Y, Wackett LP. Dual feedback inhibition of ATP-dependent caffeate activation economizes ATP in caffeate-dependent electron bifurcation. Appl Environ Microbiol 2024; 90:e0060224. [PMID: 39177329 PMCID: PMC11409703 DOI: 10.1128/aem.00602-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
The acetogen Acetobacterium woodii couples caffeate reduction with ferredoxin reduction and NADH oxidation via electron bifurcation, providing additional reduced ferredoxin for energy conservation and cell synthesis. Caffeate is first activated by an acyl-CoA synthetase (CarB), which ligates CoA to caffeate at the expense of ATP. After caffeoyl-CoA is reduced to hydrocaffeoyl-CoA, the CoA moiety in hydrocaffeoyl-CoA could be recycled for caffeoyl-CoA synthesis by an ATP-independent CoA transferase (CarA) to save energy. However, given that CarA and CarB are co-expressed, it was not well understood how ATP could be saved when both two competitive pathways of caffeate activation are present. Here, we reported a dual feedback inhibition of the CarB-mediated caffeate activation by the intermediate hydrocaffeoyl-CoA and the end-product hydrocaffeate. As the product of CarA, hydrocaffeate inhibited CarB-mediated caffeate activation by serving as another substrate of CarB with hydrocaffeoyl-CoA produced. It effectively competed with caffeate even at a concentration much lower than caffeate. Hydrocaffeoyl-CoA formed in this process can also inhibit CarB-mediated caffeate activation. Thus, the dual feedback inhibition of CarB, together with the faster kinetics of CarA, makes the ATP-independent CarA-mediated CoA loop the major route for caffeoyl-CoA synthesis, further saving ATP in the caffeate-dependent electron-bifurcating pathway. A genetic architecture similar to carABC has been found in other anaerobic bacteria, suggesting that the feedback inhibition of acyl-CoA ligases could be a widely employed strategy for ATP conservation in those pathways requiring substrate activation by CoA. IMPORTANCE This study reports a dual feedback inhibition of caffeoyl-CoA synthetase by two downstream products, hydrocaffeate and hydrocaffeoyl-CoA. It elucidates how such dual feedback inhibition suppresses ATP-dependent caffeoyl-CoA synthesis, hence making the ATP-independent route the main pathway of caffeate activation. This newly discovered mechanism contributes to our current understanding of ATP conservation during the caffeate-dependent electron-bifurcating pathway in the ecologically important acetogen Acetobacterium woodii. Bioinformatic mining of microbial genomes revealed contiguous genes homologous to carABC within the genomes of other anaerobes from various environments, suggesting this mechanism may be widely used in other CoA-dependent electron-bifurcating pathways.
Collapse
Affiliation(s)
- Fengjun Xu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Calvin J. Thoma
- Department of Biochemistry, Molecular Biology & Biophysics, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Weiyang Zhao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Yiwen Zhu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology & Biophysics, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
7
|
Protasov E, Reeh H, Liu P, Poehlein A, Platt K, Heimerl T, Hervé V, Daniel R, Brune A. Genome reduction in novel, obligately methyl-reducing Methanosarcinales isolated from arthropod guts (Methanolapillus gen. nov. and Methanimicrococcus). FEMS Microbiol Ecol 2024; 100:fiae111. [PMID: 39108084 PMCID: PMC11362671 DOI: 10.1093/femsec/fiae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Recent metagenomic studies have identified numerous lineages of hydrogen-dependent, obligately methyl-reducing methanogens. Yet, only a few representatives have been isolated in pure culture. Here, we describe six new species with this capability in the family Methanosarcinaceae (order Methanosarcinales), which makes up a substantial fraction of the methanogenic community in arthropod guts. Phylogenomic analysis placed the isolates from cockroach hindguts into the genus Methanimicrococcus (M. hacksteinii, M. hongohii, and M. stummii) and the isolates from millipede hindguts into a new genus, Methanolapillus (M. africanus, M. millepedarum, and M. ohkumae). Members of this intestinal clade, which includes also uncultured representatives from termites and vertebrates, have substantially smaller genomes (1.6-2.2 Mbp) than other Methanosarcinales. Genome reduction was accompanied by the loss of the upper part of the Wood-Ljungdahl pathway, several energy-converting membrane complexes (Fpo, Ech, and Rnf), and various biosynthetic pathways. However, genes involved in the protection against reactive oxygen species (catalase and superoxide reductase) were conserved in all genomes, including cytochrome bd (CydAB), a high-affinity terminal oxidase that may confer the capacity for microaerobic respiration. Since host-associated Methanosarcinales are nested within omnivorous lineages, we conclude that the specialization on methyl groups is an adaptation to the intestinal environment.
Collapse
Affiliation(s)
- Evgenii Protasov
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology and Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Hanna Reeh
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Pengfei Liu
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center for Pan-third Pole Environment, Lanzhou University, 730000 Lanzhou, China
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Université Paris-Saclay, INRAE, AgroParisTech
, UMR SayFood, 91120 Palaiseau, France
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
8
|
Padalko A, Nair G, Sousa FL. Fusion/fission protein family identification in Archaea. mSystems 2024; 9:e0094823. [PMID: 38700364 PMCID: PMC11237513 DOI: 10.1128/msystems.00948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of newly discovered archaeal lineages remain without a cultivated representative, but scarce experimental data from the cultivated organisms show that they harbor distinct functional repertoires. To unveil the ecological as well as evolutionary impact of Archaea from metagenomics, new computational methods need to be developed, followed by in-depth analysis. Among them is the genome-wide protein fusion screening performed here. Natural fusions and fissions of genes not only contribute to microbial evolution but also complicate the correct identification and functional annotation of sequences. The products of these processes can be defined as fusion (or composite) proteins, the ones consisting of two or more domains originally encoded by different genes and split proteins, and the ones originating from the separation of a gene in two (fission). Fusion identifications are required for proper phylogenetic reconstructions and metabolic pathway completeness assessments, while mappings between fused and unfused proteins can fill some of the existing gaps in metabolic models. In the archaeal genome-wide screening, more than 1,900 fusion/fission protein clusters were identified, belonging to both newly sequenced and well-studied lineages. These protein families are mainly associated with different types of metabolism, genetic, and cellular processes. Moreover, 162 of the identified fusion/fission protein families are archaeal specific, having no identified fused homolog within the bacterial domain. Our approach was validated by the identification of experimentally characterized fusion/fission cases. However, around 25% of the identified fusion/fission families lack functional annotations for both composite and split states, showing the need for experimental characterization in Archaea.IMPORTANCEGenome-wide fusion screening has never been performed in Archaea on a broad taxonomic scale. The overlay of multiple computational techniques allows the detection of a fine-grained set of predicted fusion/fission families, instead of rough estimations based on conserved domain annotations only. The exhaustive mapping of fused proteins to bacterial organisms allows us to capture fusion/fission families that are specific to archaeal biology, as well as to identify links between bacterial and archaeal lineages based on cooccurrence of taxonomically restricted proteins and their sequence features. Furthermore, the identification of poorly characterized lineage-specific fusion proteins opens up possibilities for future experimental and computational investigations. This approach enhances our understanding of Archaea in general and provides potential candidates for in-depth studies in the future.
Collapse
Affiliation(s)
- Anastasiia Padalko
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Govind Nair
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Ma Y, Qu Y, Yao X, Xia C, Lv M, Lin X, Zhang L, Zhang M, Hu B. Unveiling the unique role of iron in the metabolism of methanogens: A review. ENVIRONMENTAL RESEARCH 2024; 250:118495. [PMID: 38367837 DOI: 10.1016/j.envres.2024.118495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Methanogens are the main participants in the carbon cycle, catalyzing five methanogenic pathways. Methanogens utilize different iron-containing functional enzymes in different methanogenic processes. Iron is a vital element in methanogens, which can serve as a carrier or reactant in electron transfer. Therefore, iron plays an important role in the growth and metabolism of methanogens. In this paper, we cast light on the types and functions of iron-containing functional enzymes involved in different methanogenic pathways, and the roles iron play in energy/substance metabolism of methanogenesis. Furthermore, this review provides certain guiding significance for lowering CH4 emissions, boosting the carbon sink capacity of ecosystems and promoting green and low-carbon development in the future.
Collapse
Affiliation(s)
- Yuxin Ma
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Qu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangwu Yao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chujun Xia
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengjie Lv
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Lin
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lili Zhang
- Beijing Enterprises Water Group Limited, Beijing, China
| | - Meng Zhang
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Nomura S, Paczia N, Kahnt J, Shima S. Isolation of an H 2-dependent electron-bifurcating CO 2-reducing megacomplex with MvhB polyferredoxin from Methanothermobacter marburgensis. FEBS J 2024; 291:2449-2460. [PMID: 38468562 DOI: 10.1111/febs.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
In the hydrogenotrophic methanogenic pathway, formylmethanofuran dehydrogenase (Fmd) catalyzes the formation of formylmethanofuran through reducing CO2. Heterodisulfide reductase (Hdr) provides two low potential electrons for the Fmd reaction using a flavin-based electron-bifurcating mechanism. [NiFe]-hydrogenase (Mvh) or formate dehydrogenase (Fdh) complexes with Hdr and provides electrons to Hdr from H2 and formate, or the reduced form of F420, respectively. Recently, an Fdh-Hdr complex was purified as a 3-MDa megacomplex that contained Fmd, and its three-dimensional structure was elucidated by cryo-electron microscopy. In contrast, the Mvh-Hdr complex has been characterized only as a complex without Fmd. Here, we report the isolation and characterization of a 1-MDa Mvh-Hdr-Fmd megacomplex from Methanothermobacter marburgensis. After anion-exchange and hydrophobic chromatography was performed, the proteins with Hdr activity eluted in the 1- and 0.5-MDa fractions during size exclusion chromatography. Considering the apparent molecular mass and the protein profile in the fractions, the 1-MDa megacomplex was determined to be a dimeric Mvh-Hdr-Fmd complex. The megacomplex fraction contained a polyferredoxin subunit MvhB, which contains 12 [4Fe-4S]-clusters. MvhB polyferredoxin has never been identified in the previously purified Mvh-Hdr and Fmd preparations, suggesting that MvhB polyferredoxin is stabilized by the binding between Mvh-Hdr and Fmd in the Mvh-Hdr-Fmd complex. The purified Mvh-Hdr-Fmd megacomplex catalyzed electron-bifurcating reduction of [13C]-CO2 to form [13C]-formylmethanofuran in the absence of extrinsic ferredoxin. These results demonstrated that the subunits in the Mvh-Hdr-Fmd megacomplex are electronically connected for the reduction of CO2, which likely involves MvhB polyferredoxin as an electron relay.
Collapse
Affiliation(s)
- Shunsuke Nomura
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
11
|
Feng X, Schut GJ, Adams MWW, Li H. Structures and Electron Transport Paths in the Four Families of Flavin-Based Electron Bifurcation Enzymes. Subcell Biochem 2024; 104:383-408. [PMID: 38963493 DOI: 10.1007/978-3-031-58843-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.
Collapse
Affiliation(s)
- Xiang Feng
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
12
|
Abdul Halim MF, Fonseca DR, Niehaus TD, Costa KC. Functionally redundant formate dehydrogenases enable formate-dependent growth in Methanococcus maripaludis. J Biol Chem 2024; 300:105550. [PMID: 38072055 PMCID: PMC10805699 DOI: 10.1016/j.jbc.2023.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/02/2024] Open
Abstract
Methanogens are essential for the complete remineralization of organic matter in anoxic environments. Most cultured methanogens are hydrogenotrophic, using H2 as an electron donor to reduce CO2 to CH4, but in the absence of H2 many can also use formate. Formate dehydrogenase (Fdh) is essential for formate oxidation, where it transfers electrons for the reduction of coenzyme F420 or to a flavin-based electron bifurcating reaction catalyzed by heterodisulfide reductase (Hdr), the terminal reaction of methanogenesis. Furthermore, methanogens that use formate encode at least two isoforms of Fdh in their genomes, but how these different isoforms participate in methanogenesis is unknown. Using Methanococcus maripaludis, we undertook a biochemical characterization of both Fdh isoforms involved in methanogenesis. Both Fdh1 and Fdh2 interacted with Hdr to catalyze the flavin-based electron bifurcating reaction, and both reduced F420 at similar rates. F420 reduction preceded flavin-based electron bifurcation activity for both enzymes. In a Δfdh1 mutant background, a suppressor mutation was required for Fdh2 activity. Genome sequencing revealed that this mutation resulted in the loss of a specific molybdopterin transferase (moeA), allowing for Fdh2-dependent growth, and the metal content of the proteins suggested that isoforms are dependent on either molybdenum or tungsten for activity. These data suggest that both isoforms of Fdh are functionally redundant, but their activities in vivo may be limited by gene regulation or metal availability under different growth conditions. Together these results expand our understanding of formate oxidation and the role of Fdh in methanogenesis.
Collapse
Affiliation(s)
- Mohd Farid Abdul Halim
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Dallas R Fonseca
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Thomas D Niehaus
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Kyle C Costa
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA.
| |
Collapse
|
13
|
Sahin S, Lemaire ON, Belhamri M, Kurth JM, Welte CU, Wagner T, Milton RD. Bioelectrocatalytic CO 2 Reduction by Mo-Dependent Formylmethanofuran Dehydrogenase. Angew Chem Int Ed Engl 2023; 62:e202311981. [PMID: 37712590 DOI: 10.1002/anie.202311981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
Massive efforts are invested in developing innovative CO2 -sequestration strategies to counter climate change and transform CO2 into higher-value products. CO2 -capture by reduction is a chemical challenge, and attention is turned toward biological systems that selectively and efficiently catalyse this reaction under mild conditions and in aqueous solvents. While a few reports have evaluated the effectiveness of isolated bacterial formate dehydrogenases as catalysts for the reversible electrochemical reduction of CO2 , it is imperative to explore other enzymes among the natural reservoir of potential models that might exhibit higher turnover rates or preferential directionality for the reductive reaction. Here, we present electroenzymatic catalysis of formylmethanofuran dehydrogenase, a CO2 -reducing-and-fixing biomachinery isolated from a thermophilic methanogen, which was deposited on a graphite rod electrode to enable direct electron transfer for electroenzymatic CO2 reduction. The gas is reduced with a high Faradaic efficiency (109±1 %), where a low affinity for formate prevents its electrochemical reoxidation and favours formate accumulation. These properties make the enzyme an excellent tool for electroenzymatic CO2 -fixation and inspiration for protein engineering that would be beneficial for biotechnological purposes to convert the greenhouse gas into stable formate that can subsequently be safely stored, transported, and used for power generation without energy loss.
Collapse
Affiliation(s)
- Selmihan Sahin
- University of Geneva, Department of Inorganic and Analytical Chemistry, Sciences II, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
- Department of Chemistry, Faculty of Arts and Sciences, Suleyman Demirel University, Cunur, 32260, Isparta, Turkiye
| | - Olivier N Lemaire
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Mélissa Belhamri
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Julia M Kurth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands
- Microcosm Earth Center - Philipps-Universität Marburg & Max Planck Institute for Terrestrial Microbiology, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands
| | - Tristan Wagner
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Ross D Milton
- University of Geneva, Department of Inorganic and Analytical Chemistry, Sciences II, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| |
Collapse
|
14
|
Khairunisa BH, Heryakusuma C, Ike K, Mukhopadhyay B, Susanti D. Evolving understanding of rumen methanogen ecophysiology. Front Microbiol 2023; 14:1296008. [PMID: 38029083 PMCID: PMC10658910 DOI: 10.3389/fmicb.2023.1296008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Production of methane by methanogenic archaea, or methanogens, in the rumen of ruminants is a thermodynamic necessity for microbial conversion of feed to volatile fatty acids, which are essential nutrients for the animals. On the other hand, methane is a greenhouse gas and its production causes energy loss for the animal. Accordingly, there are ongoing efforts toward developing effective strategies for mitigating methane emissions from ruminant livestock that require a detailed understanding of the diversity and ecophysiology of rumen methanogens. Rumen methanogens evolved from free-living autotrophic ancestors through genome streamlining involving gene loss and acquisition. The process yielded an oligotrophic lifestyle, and metabolically efficient and ecologically adapted descendants. This specialization poses serious challenges to the efforts of obtaining axenic cultures of rumen methanogens, and consequently, the information on their physiological properties remains in most part inferred from those of their non-rumen representatives. This review presents the current knowledge of rumen methanogens and their metabolic contributions to enteric methane production. It also identifies the respective critical gaps that need to be filled for aiding the efforts to mitigate methane emission from livestock operations and at the same time increasing the productivity in this critical agriculture sector.
Collapse
Affiliation(s)
| | - Christian Heryakusuma
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Kelechi Ike
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Biswarup Mukhopadhyay
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Dwi Susanti
- Microbial Discovery Research, BiomEdit, Greenfield, IN, United States
| |
Collapse
|
15
|
Mrnjavac N, Wimmer JLE, Brabender M, Schwander L, Martin WF. The Moon-Forming Impact and the Autotrophic Origin of Life. Chempluschem 2023; 88:e202300270. [PMID: 37812146 PMCID: PMC7615287 DOI: 10.1002/cplu.202300270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The Moon-forming impact vaporized part of Earth's mantle, and turned the rest into a magma ocean, from which carbon dioxide degassed into the atmosphere, where it stayed until water rained out to form the oceans. The rain dissolved CO2 and made it available to react with transition metal catalysts in the Earth's crust so as to ultimately generate the organic compounds that form the backbone of microbial metabolism. The Moon-forming impact was key in building a planet with the capacity to generate life in that it converted carbon on Earth into a homogeneous and accessible substrate for organic synthesis. Today all ecosystems, without exception, depend upon primary producers, organisms that fix CO2 . According to theories of autotrophic origin, it has always been that way, because autotrophic theories posit that the first forms of life generated all the molecules needed to build a cell from CO2 , forging a direct line of continuity between Earth's initial CO2 -rich atmosphere and the first microorganisms. By modern accounts these were chemolithoautotrophic archaea and bacteria that initially colonized the crust and still inhabit that environment today.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Jessica L. E. Wimmer
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Max Brabender
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Loraine Schwander
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - William F. Martin
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| |
Collapse
|
16
|
Casini I, McCubbin T, Esquivel-Elizondo S, Luque GG, Evseeva D, Fink C, Beblawy S, Youngblut ND, Aristilde L, Huson DH, Dräger A, Ley RE, Marcellin E, Angenent LT, Molitor B. An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter. iScience 2023; 26:108016. [PMID: 37854702 PMCID: PMC10579436 DOI: 10.1016/j.isci.2023.108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas technology with biomethanation, which is a platform to store renewable energy and utilize captured carbon dioxide. Here, we generated curated genome-scale metabolic reconstructions for three Methanothermobacter strains and investigated differences in the growth performance of these same strains in chemostat bioreactor experiments with hydrogen and carbon dioxide or formate as substrates. Using an integrated systems biology approach, we identified differences in formate anabolism between the strains and revealed that formate anabolism influences the diversion of carbon between biomass and methane. This finding, together with the omics datasets and the metabolic models we generated, can be implemented for biotechnological applications of Methanothermobacter in power-to-gas technology, and as a perspective, for value-added chemical production.
Collapse
Affiliation(s)
- Isabella Casini
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sofia Esquivel-Elizondo
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Guillermo G. Luque
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Daria Evseeva
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Christian Fink
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Sebastian Beblawy
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Nicholas D. Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Daniel H. Huson
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Largus T. Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- AG Angenent, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10D, 8000 Aarhus C, Denmark
- The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Arriaza-Gallardo FJ, Zheng YC, Gehl M, Nomura S, Fernandes-Queiroz JP, Shima S. [Fe]-Hydrogenase, Cofactor Biosynthesis and Engineering. Chembiochem 2023; 24:e202300330. [PMID: 37671838 DOI: 10.1002/cbic.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
[Fe]-hydrogenase catalyzes the heterolytic cleavage of H2 and reversible hydride transfer to methenyl-tetrahydromethanopterin. The iron-guanylylpyridinol (FeGP) cofactor is the prosthetic group of this enzyme, in which mononuclear Fe(II) is ligated with a pyridinol and two CO ligands. The pyridinol ligand fixes the iron by an acyl carbon and a pyridinol nitrogen. Biosynthetic proteins for this cofactor are encoded in the hmd co-occurring (hcg) genes. The function of HcgB, HcgC, HcgD, HcgE, and HcgF was studied by using structure-to-function analysis, which is based on the crystal structure of the proteins and subsequent enzyme assays. Recently, we reported the catalytic properties of HcgA and HcgG, novel radical S-adenosyl methionine enzymes, by using an in vitro biosynthesis assay. Here, we review the properties of [Fe]-hydrogenase and the FeGP cofactor, and the biosynthesis of the FeGP cofactor. Finally, we discuss the expected engineering of [Fe]-hydrogenase and the FeGP cofactor.
Collapse
Affiliation(s)
| | - Yu-Cong Zheng
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Manuel Gehl
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Shunsuke Nomura
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - J Pedro Fernandes-Queiroz
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| |
Collapse
|
18
|
Abstract
Methanogenic archaea are the only organisms that produce CH4 as part of their energy-generating metabolism. They are ubiquitous in oxidant-depleted, anoxic environments such as aquatic sediments, anaerobic digesters, inundated agricultural fields, the rumen of cattle, and the hindgut of termites, where they catalyze the terminal reactions in the degradation of organic matter. Methanogenesis is the only metabolism that is restricted to members of the domain Archaea. Here, we discuss the importance of model organisms in the history of methanogen research, including their role in the discovery of the archaea and in the biochemical and genetic characterization of methanogenesis. We also discuss outstanding questions in the field and newly emerging model systems that will expand our understanding of this uniquely archaeal metabolism.
Collapse
Affiliation(s)
- Kyle C. Costa
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | | |
Collapse
|
19
|
Wang D, Hunt KA, Candry P, Tao X, Wofford NQ, Zhou J, McInerney MJ, Stahl DA, Tanner RS, Zhou A, Winkler M, Pan C. Cross-Feedings, Competition, and Positive and Negative Synergies in a Four-Species Synthetic Community for Anaerobic Degradation of Cellulose to Methane. mBio 2023; 14:e0318922. [PMID: 36847519 PMCID: PMC10128006 DOI: 10.1128/mbio.03189-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 03/01/2023] Open
Abstract
Complex interactions exist among microorganisms in a community to carry out ecological processes and adapt to changing environments. Here, we constructed a quad-culture consisting of a cellulolytic bacterium (Ruminiclostridium cellulolyticum), a hydrogenotrophic methanogen (Methanospirillum hungatei), an acetoclastic methanogen (Methanosaeta concilii), and a sulfate-reducing bacterium (Desulfovibrio vulgaris). The four microorganisms in the quad-culture cooperated via cross-feeding to produce methane using cellulose as the only carbon source and electron donor. The community metabolism of the quad-culture was compared with those of the R. cellulolyticum-containing tri-cultures, bi-cultures, and mono-culture. Methane production was higher in the quad-culture than the sum of the increases in the tri-cultures, which was attributed to a positive synergy of four species. In contrast, cellulose degradation by the quad-culture was lower than the additive effects of the tri-cultures which represented a negative synergy. The community metabolism of the quad-culture was compared between a control condition and a treatment condition with sulfate addition using metaproteomics and metabolic profiling. Sulfate addition enhanced sulfate reduction and decreased methane and CO2 productions. The cross-feeding fluxes in the quad-culture in the two conditions were modeled using a community stoichiometric model. Sulfate addition strengthened metabolic handoffs from R. cellulolyticum to M. concilii and D. vulgaris and intensified substrate competition between M. hungatei and D. vulgaris. Overall, this study uncovered emergent properties of higher-order microbial interactions using a four-species synthetic community. IMPORTANCE A synthetic community was designed using four microbial species that together performed distinct key metabolic processes in the anaerobic degradation of cellulose to methane and CO2. The microorganisms exhibited expected interactions, such as cross-feeding of acetate from a cellulolytic bacterium to an acetoclastic methanogen and competition of H2 between a sulfate reducing bacterium and a hydrogenotrophic methanogen. This validated our rational design of the interactions between microorganisms based on their metabolic roles. More interestingly, we also found positive and negative synergies as emergent properties of high-order microbial interactions among three or more microorganisms in cocultures. These microbial interactions can be quantitatively measured by adding and removing specific members. A community stoichiometric model was constructed to represent the fluxes in the community metabolic network. This study paved the way toward a more predictive understanding of the impact of environmental perturbations on microbial interactions sustaining geochemically significant processes in natural systems.
Collapse
Affiliation(s)
- Dongyu Wang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Kristopher A. Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Pieter Candry
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Xuanyu Tao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Neil Q. Wofford
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael J. McInerney
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Ralph S. Tanner
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Aifen Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Mari Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
20
|
Katsyv A, Kumar A, Saura P, Pöverlein MC, Freibert SA, T Stripp S, Jain S, Gamiz-Hernandez AP, Kaila VRI, Müller V, Schuller JM. Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC. J Am Chem Soc 2023; 145:5696-5709. [PMID: 36811855 PMCID: PMC10021017 DOI: 10.1021/jacs.2c11683] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Electron bifurcation is a fundamental energy coupling mechanism widespread in microorganisms that thrive under anoxic conditions. These organisms employ hydrogen to reduce CO2, but the molecular mechanisms have remained enigmatic. The key enzyme responsible for powering these thermodynamically challenging reactions is the electron-bifurcating [FeFe]-hydrogenase HydABC that reduces low-potential ferredoxins (Fd) by oxidizing hydrogen gas (H2). By combining single-particle cryo-electron microscopy (cryoEM) under catalytic turnover conditions with site-directed mutagenesis experiments, functional studies, infrared spectroscopy, and molecular simulations, we show that HydABC from the acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui employ a single flavin mononucleotide (FMN) cofactor to establish electron transfer pathways to the NAD(P)+ and Fd reduction sites by a mechanism that is fundamentally different from classical flavin-based electron bifurcation enzymes. By modulation of the NAD(P)+ binding affinity via reduction of a nearby iron-sulfur cluster, HydABC switches between the exergonic NAD(P)+ reduction and endergonic Fd reduction modes. Our combined findings suggest that the conformational dynamics establish a redox-driven kinetic gate that prevents the backflow of the electrons from the Fd reduction branch toward the FMN site, providing a basis for understanding general mechanistic principles of electron-bifurcating hydrogenases.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Anuj Kumar
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany.,SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg 35032, Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Sven A Freibert
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-University of Marburg, Marburg 35032, Germany.,Core Facility "Protein Biochemistry and Spectroscopy", Marburg 35032, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin 14195, Germany
| | - Surbhi Jain
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Jan M Schuller
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg 35032, Germany
| |
Collapse
|
21
|
Promotion of CO2 reduction in a nanophotocatalyst by hydrogen peroxide. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Carr S, Buan NR. Insights into the biotechnology potential of Methanosarcina. Front Microbiol 2022; 13:1034674. [PMID: 36590411 PMCID: PMC9797515 DOI: 10.3389/fmicb.2022.1034674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Methanogens are anaerobic archaea which conserve energy by producing methane. Found in nearly every anaerobic environment on earth, methanogens serve important roles in ecology as key organisms of the global carbon cycle, and in industry as a source of renewable biofuels. Environmentally, methanogenic archaea play an essential role in the reintroducing unavailable carbon to the carbon cycle by anaerobically converting low-energy, terminal metabolic degradation products such as one and two-carbon molecules into methane which then returns to the aerobic portion of the carbon cycle. In industry, methanogens are commonly used as an inexpensive source of renewable biofuels as well as serving as a vital component in the treatment of wastewater though this is only the tip of the iceberg with respect to their metabolic potential. In this review we will discuss how the efficient central metabolism of methanoarchaea could be harnessed for future biotechnology applications.
Collapse
Affiliation(s)
| | - Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
23
|
Interspecies Formate Exchange Drives Syntrophic Growth of Syntrophotalea carbinolica and Methanococcus maripaludis. Appl Environ Microbiol 2022; 88:e0115922. [PMID: 36374033 PMCID: PMC9746305 DOI: 10.1128/aem.01159-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The complete remineralization of organic matter in anoxic environments relies on communities of microorganisms that ferment organic acids and alcohols to CH4. This is accomplished through syntrophic association of H2 or formate producing bacteria and methanogenic archaea, where exchange of these intermediates enables growth of both organisms. While these communities are essential to Earth's carbon cycle, our understanding of the dynamics of H2 or formate exchanged is limited. Here, we establish a model partnership between Syntrophotalea carbinolica and Methanococcus maripaludis. Through sequencing a transposon mutant library of M. maripaludis grown with ethanol oxidizing S. carbinolica, we found that genes encoding the F420-dependent formate dehydrogenase (Fdh) and F420-dependent methylene-tetrahydromethanopterin dehydrogenase (Mtd) are important for growth. Competitive growth of M. maripaludis mutants defective in either H2 or formate metabolism verified that, across multiple substrates, interspecies formate exchange was dominant in these communities. Agitation of these cultures to facilitate diffusive loss of H2 to the culture headspace resulted in an even greater competitive advantage for M. maripaludis strains capable of oxidizing formate. Finally, we verified that an M. maripaludis Δmtd mutant had a defect during syntrophic growth. Together, these results highlight the importance of formate exchange for the growth of methanogens under syntrophic conditions. IMPORTANCE In the environment, methane is typically generated by fermentative bacteria and methanogenic archaea working together in a process called syntrophy. Efficient exchange of small molecules like H2 or formate is essential for growth of both organisms. However, difficulties in determining the relative contribution of these intermediates to methanogenesis often hamper efforts to understand syntrophic interactions. Here, we establish a model syntrophic coculture composed of S. carbinolica and the genetically tractable methanogen M. maripaludis. Using mutant strains of M. maripaludis that are defective for either H2 or formate metabolism, we determined that interspecies formate exchange drives syntrophic growth of these organisms. Together, these results advance our understanding of the degradation of organic matter in anoxic environments.
Collapse
|
24
|
Kühlbrandt W. Concluding remarks: Challenges and future developments in biological electron cryo-microscopy. Faraday Discuss 2022; 240:323-335. [PMID: 36305740 DOI: 10.1039/d2fd90062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During the past 10 years, biological electron cryo-microscopy (cryoEM) has undergone a process of rapid transformation. Many things we could only dream about a decade ago have now become almost routine. Nevertheless, a number of challenges remain, to do with sample preparation, the correlation between tomographic analysis and light microscopy, data validation, and the growing impact of artificial intelligence and structure prediction. This year's Faraday Discussion examined these challenges in some detail. The concluding remarks present a concise summary of the meeting and a brief outlook to the future.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.
| |
Collapse
|
25
|
Schut GJ, Haja DK, Feng X, Poole FL, Li H, Adams MWW. An Abundant and Diverse New Family of Electron Bifurcating Enzymes With a Non-canonical Catalytic Mechanism. Front Microbiol 2022; 13:946711. [PMID: 35875533 PMCID: PMC9304861 DOI: 10.3389/fmicb.2022.946711] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms utilize electron bifurcating enzymes in metabolic pathways to carry out thermodynamically unfavorable reactions. Bifurcating FeFe-hydrogenases (HydABC) reversibly oxidize NADH (E′∼−280 mV, under physiological conditions) and reduce protons to H2 gas (E°′−414 mV) by coupling this endergonic reaction to the exergonic reduction of protons by reduced ferredoxin (Fd) (E′∼−500 mV). We show here that HydABC homologs are surprisingly ubiquitous in the microbial world and are represented by 57 phylogenetically distinct clades but only about half are FeFe-hydrogenases. The others have replaced the hydrogenase domain with another oxidoreductase domain or they contain additional subunits, both of which enable various third reactions to be reversibly coupled to NAD+ and Fd reduction. We hypothesize that all of these enzymes carry out electron bifurcation and that their third substrates can include hydrogen peroxide, pyruvate, carbon monoxide, aldehydes, aryl-CoA thioesters, NADP+, cofactor F420, formate, and quinones, as well as many yet to be discovered. Some of the enzymes are proposed to be integral membrane-bound proton-translocating complexes. These different functionalities are associated with phylogenetically distinct clades and in many cases with specific microbial phyla. We propose that this new and abundant class of electron bifurcating enzyme be referred to as the Bfu family whose defining feature is a conserved bifurcating BfuBC core. This core contains FMN and six iron sulfur clusters and it interacts directly with ferredoxin (Fd) and NAD(H). Electrons to or from the third substrate are fed into the BfuBC core via BfuA. The other three known families of electron bifurcating enzyme (abbreviated as Nfn, EtfAB, and HdrA) contain a special FAD that bifurcates electrons to high and low potential pathways. The Bfu family are proposed to use a different electron bifurcation mechanism that involves a combination of FMN and three adjacent iron sulfur clusters, including a novel [2Fe-2S] cluster with pentacoordinate and partial non-Cys coordination. The absolute conservation of the redox cofactors of BfuBC in all members of the Bfu enzyme family indicate they have the same non-canonical mechanism to bifurcate electrons. A hypothetical catalytic mechanism is proposed as a basis for future spectroscopic analyses of Bfu family members.
Collapse
Affiliation(s)
- Gerrit J. Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Dominik K. Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Farris L. Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Michael W. W. Adams, ; orcid.org/0000-0002-9796-5014
| |
Collapse
|
26
|
Kayastha K, Katsyv A, Himmrich C, Welsch S, Schuller JM, Ermler U, Müller V. Structure-based electron-confurcation mechanism of the Ldh-EtfAB complex. eLife 2022; 11:77095. [PMID: 35748623 PMCID: PMC9232219 DOI: 10.7554/elife.77095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023] Open
Abstract
Lactate oxidation with NAD+ as electron acceptor is a highly endergonic reaction. Some anaerobic bacteria overcome the energetic hurdle by flavin-based electron bifurcation/confurcation (FBEB/FBEC) using a lactate dehydrogenase (Ldh) in concert with the electron-transferring proteins EtfA and EtfB. The electron cryo-microscopically characterized (Ldh-EtfAB)2 complex of Acetobacterium woodii at 2.43 Å resolution consists of a mobile EtfAB shuttle domain located between the rigid central Ldh and the peripheral EtfAB base units. The FADs of Ldh and the EtfAB shuttle domain contact each other thereby forming the D (dehydrogenation-connected) state. The intermediary Glu37 and Glu139 may harmonize the redox potentials between the FADs and the pyruvate/lactate pair crucial for FBEC. By integrating Alphafold2 calculations a plausible novel B (bifurcation-connected) state was obtained allowing electron transfer between the EtfAB base and shuttle FADs. Kinetic analysis of enzyme variants suggests a correlation between NAD+ binding site and D-to-B-state transition implicating a 75° rotation of the EtfAB shuttle domain. The FBEC inactivity when truncating the ferredoxin domain of EtfA substantiates its role as redox relay. Lactate oxidation in Ldh is assisted by the catalytic base His423 and a metal center. On this basis, a comprehensive catalytic mechanism of the FBEC process was proposed.
Collapse
Affiliation(s)
- Kanwal Kayastha
- Departments of Molecular Membrane Biology of the Max-Planck-Institut for Biophysics, Frankfurt am Main, Germany
| | - Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Christina Himmrich
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Jan M Schuller
- SYNMICRO Research Center and Department of Chemistry, Philipps University, Marburg, Germany
| | - Ulrich Ermler
- Departments of Molecular Membrane Biology of the Max-Planck-Institut for Biophysics, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Gropp J, Jin Q, Halevy I. Controls on the isotopic composition of microbial methane. SCIENCE ADVANCES 2022; 8:eabm5713. [PMID: 35385305 PMCID: PMC8985922 DOI: 10.1126/sciadv.abm5713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Microbial methane production (methanogenesis) is responsible for more than half of the annual emissions of this major greenhouse gas to the atmosphere. Although the stable isotopic composition of methane is often used to characterize its sources and sinks, strictly empirical descriptions of the isotopic signature of methanogenesis currently limit these attempts. We developed a metabolic-isotopic model of methanogenesis by carbon dioxide reduction, which predicts carbon and hydrogen isotopic fractionations, and clumped isotopologue distributions, as functions of the cell's environment. We mechanistically explain multiple isotopic patterns in laboratory and natural settings and show that these patterns constrain the in situ energetics of methanogenesis. Combining our model with data from environments in which methanogenic activity is energy-limited, we provide predictions for the biomass-specific methanogenesis rates and the associated isotopic effects.
Collapse
Affiliation(s)
- Jonathan Gropp
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, OR, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Feng X, Schut GJ, Haja DK, Adams MWW, Li H. Structure and electron transfer pathways of an electron-bifurcating NiFe-hydrogenase. SCIENCE ADVANCES 2022; 8:eabm7546. [PMID: 35213221 PMCID: PMC8880783 DOI: 10.1126/sciadv.abm7546] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Electron bifurcation enables thermodynamically unfavorable biochemical reactions. Four groups of bifurcating flavoenzyme are known and three use FAD to bifurcate. FeFe-HydABC hydrogenase represents the fourth group, but its bifurcation site is unknown. We report cryo-EM structures of the related NiFe-HydABCSL hydrogenase that reversibly oxidizes H2 and couples endergonic reduction of ferredoxin with exergonic reduction of NAD. FMN surrounded by a unique arrangement of iron sulfur clusters forms the bifurcating center. NAD binds to FMN in HydB, and electrons from H2 via HydA to a HydB [4Fe-4S] cluster enable the FMN to reduce NAD. Low-potential electron transfer from FMN to the HydC [2Fe-2S] cluster and subsequent reduction of a uniquely penta-coordinated HydB [2Fe-2S] cluster require conformational changes, leading to ferredoxin binding and reduction by a [4Fe-4S] cluster in HydB. This work clarifies the electron transfer pathways for a large group of hydrogenases underlying many essential functions in anaerobic microorganisms.
Collapse
Affiliation(s)
- Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Gerrit J. Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Dominik K. Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
29
|
Yao SJ, Li N, Liu J, Dong LZ, Liu JJ, Xin ZF, Li DS, Li SL, Lan YQ. Ferrocene-Functionalized Crystalline Biomimetic Catalysts for Efficient CO 2 Photoreduction. Inorg Chem 2022; 61:2167-2173. [PMID: 35025501 DOI: 10.1021/acs.inorgchem.1c03368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoreducing carbon dioxide (CO2) into highly valued chemicals or energy products has been recognized as one of the most promising proposals to degrade atmospheric CO2 concentration and achieve carbon neutrality. Adenine with a photosensitive amino group and aromatic nitrogen atom can strongly interact with CO2 and has been authenticated for its catalytic activity for the CO2 photoreduction reaction (CO2RR). Herein, two adenine-constructed crystalline biomimetic photocatalysts (Co2-AW and Co2-AF) were designed and synthesized to achieve CO2RR. Between them, Co2-AF displayed higher photocatalytic activity (225.8 μmol g-1 h-1) for CO2-to-HCOOH conversion than that of Co2-AW. It was found that the superior charge transfer capacity of the functional ferrocene group in Co2-AF is the primary reason to facilitate the photocatalytic performance efficiently. Additionally, this work also demonstrated the great potential of the ferrocene group as an electron donor and mediator in improving the photocatalytic activity of crystalline coordination catalysts.
Collapse
Affiliation(s)
- Su-Juan Yao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Long-Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jing-Jing Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhi-Feng Xin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang 443002, China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|