1
|
Harashima T, Otomo A, Iino R. Rational engineering of DNA-nanoparticle motor with high speed and processivity comparable to motor proteins. Nat Commun 2025; 16:729. [PMID: 39820287 PMCID: PMC11739693 DOI: 10.1038/s41467-025-56036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
DNA-nanoparticle motor is a burnt-bridge Brownian ratchet moving on RNA-modified surface driven by Ribonuclease H (RNase H), and one of the fastest nanoscale artificial motors. However, its speed is still much lower than those of motor proteins. Here we resolve elementary processes of motion and reveal long pauses caused by slow RNase H binding are the bottleneck. As RNase H concentration ([RNase H]) increases, pause lengths shorten from ~70 s to ~0.2 s, while step sizes (displacements between two consecutive pauses) are constant ( ~ 20 nm). At high [RNase H], speed reaches ~100 nm s-1, however, processivity (total number of steps before detachment), run-length, and unidirectionality largely decrease. A geometry-based kinetic simulation reveals switching of bottleneck from RNase H binding to DNA/RNA hybridization at high [RNase H], and trade-off mechanism between speed and other performances. An engineered motor with 3.8-times larger DNA/RNA hybridization rate simultaneously achieves 30 nm s-1 speed, 200 processivity, and 3 μm run-length comparable to motor proteins.
Collapse
Affiliation(s)
- Takanori Harashima
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan.
| | - Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan.
| |
Collapse
|
2
|
Fan S, Wang S, Ding L, Speck T, Yan H, Nussberger S, Liu N. Morphology remodelling and membrane channel formation in synthetic cells via reconfigurable DNA nanorafts. NATURE MATERIALS 2025:10.1038/s41563-024-02075-9. [PMID: 39805958 DOI: 10.1038/s41563-024-02075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
The shape of biological matter is central to cell function at different length scales and determines how cellular components recognize, interact and respond to one another. However, their shapes are often transient and hard to reprogramme. Here we construct a synthetic cell model composed of signal-responsive DNA nanorafts, biogenic pores and giant unilamellar vesicles (GUVs). We demonstrate that reshaping of DNA rafts at the nanoscale can be coupled to reshaping of GUVs at the microscale. The nanorafts collectively undergo reversible transitions between isotropic and short-range local order on the lipid membrane, programmably remodelling the GUV shape. Assisted by the biogenic pores, during GUV shape recovery the locally ordered DNA rafts perforate the membrane, forming sealable synthetic channels for large cargo transport. Our work outlines a versatile platform for interfacing reconfigurable DNA nanostructures with synthetic cells, expanding the potential of DNA nanotechnology in synthetic biology.
Collapse
Affiliation(s)
- Sisi Fan
- 2nd Physics Institute, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Shuo Wang
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Longjiang Ding
- 2nd Physics Institute, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Thomas Speck
- Institute for Theoretical Physics IV, University of Stuttgart, Stuttgart, Germany
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, USA.
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Stuttgart, Germany.
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
| |
Collapse
|
3
|
Ishibashi K, Ibusuki R, Furuta K. Engineering Dynein Motors to Move on DNA Nanotube Tracks. Methods Mol Biol 2025; 2881:145-156. [PMID: 39704942 DOI: 10.1007/978-1-0716-4280-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The recent development of the DNA-binding domain (DBD)-dynein chimera motors with a dynein motor core and a DNA-binding domain has made it possible to move on DNA nanostructure tracks. In contrast to naturally occurring cytoskeletal filaments such as microtubules and actin filaments, DNA tracks can be programmed with structural properties such as length, stiffness, and circumference. There might be many advantages to using DNA as a track, for example, for applications in nanotechnology. However, care must be taken in design and motility assay conditions to ensure the successful operation of such novel motors; the novel motor system functions under conditions different from those commonly used in the field of natural biomolecular motors. Here, we describe the methods for designing DNA nanostructures and the conditions for motility assays in which the DBD-dynein motors translocate DNA nanotube tracks or move on them.
Collapse
Affiliation(s)
- Kenta Ishibashi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, Japan
| | - Ryota Ibusuki
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, Japan
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, Japan.
| |
Collapse
|
4
|
Song J, Jancik-Prochazkova A, Kawakami K, Ariga K. Lateral nanoarchitectonics from nano to life: ongoing challenges in interfacial chemical science. Chem Sci 2024; 15:18715-18750. [PMID: 39568623 PMCID: PMC11575615 DOI: 10.1039/d4sc05575f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Lateral nanoarchitectonics is a method of precisely designing functional materials from atoms, molecules, and nanomaterials (so-called nanounits) in two-dimensional (2D) space using knowledge of nanotechnology. Similar strategies can be seen in biological systems; in particular, biological membranes ingeniously arrange and organise functional units within a single layer of units to create powerful systems for photosynthesis or signal transduction and others. When our major lateral nanoarchitectural approaches such as layer-by-layer (LbL) assembly and Langmuir-Blodgett (LB) films are compared with biological membranes, one finds that lateral nanoarchitectonics has potential to become a powerful tool for designing advanced functional nanoscale systems; however, it is still rather not well-developed with a great deal of unexplored possibilities. Based on such a discussion, this review article examines the current status of lateral nanoarchitectonics from the perspective of in-plane functional structure organisation at different scales. These include the extension of functions at the molecular level by on-surface synthesis, monolayers at the air-water interface, 2D molecular patterning, supramolecular polymers, macroscopic manipulation and functionality of molecular machines, among others. In many systems, we have found that while the targets are very attractive, the research is still in its infancy, and many challenges remain. Therefore, it is important to look at the big picture from different perspectives in such a comprehensive review. This review article will provide such an opportunity and help us set a direction for lateral nanotechnology toward more advanced functional organization.
Collapse
Affiliation(s)
- Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Ibaraki Japan
| | - Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Ibaraki Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwa-no-ha Kashiwa 277-8561 Japan
| |
Collapse
|
5
|
Yuan A, Sha R, Xie W, Qu G, Zhang H, Wang H, Le XC, Jiang G, Peng H. RNA-Activated CRISPR/Cas12a Nanorobots Operating in Living Cells. J Am Chem Soc 2024; 146:26657-26666. [PMID: 39183441 DOI: 10.1021/jacs.4c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Active clustered regularly interspaced short palindromic repeats (CRISPR/Cas12a) systems possess both cis-cleavage (targeted) and trans-cleavage (collateral) activities, which are useful for genome engineering and diagnostic applications. Both single- and double-stranded DNA can activate crRNA-Cas12a ribonucleoprotein (RNP) to achieve cis- and trans-cleavage enzymatic activities. However, it is not clear whether RNA can activate the CRISPR/Cas12a system and what is critical to the trans-cleavage activity. We report here that RNA can activate the CRISPR/Cas12a system and trigger its trans-cleavage activity. We reveal that the activated crRNA-Cas12a RNP favors the trans-cleavage of longer sequences than commonly used. These new findings of the RNA-activated trans-cleavage capability of Cas12a provided the foundation for the design and construction of CRISPR nanorobots that operate in living cells. We assembled the crRNA-Cas12a RNP and nucleic acid substrates on gold nanoparticles to form CRISPR nanorobots, which dramatically increased the local effective concentration of the substrate in relation to the RNP and the trans-cleavage kinetics. Binding of the target microRNA to the crRNA-Cas12a RNP activated the nanorobots and their trans-cleavage function. The repeated (multiple-turnover) trans-cleavage of the fluorophore-labeled substrates generated amplified fluorescence signals. Sensitive and real-time imaging of specific microRNA in live cells demonstrated the promising potential of the CRISPR nanorobot system for future applications in monitoring and modulating biological functions within living cells.
Collapse
Affiliation(s)
- Aijiao Yuan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| | - Hongquan Zhang
- Division of Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G2G3, Canada
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| | - X Chris Le
- Division of Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G2G3, Canada
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Li G, Chen C, Li Y, Wang B, Wen J, Guo M, Chen M, Zhang XB, Ke G. DNA-Origami-Based Precise Molecule Assembly and Their Biological Applications. NANO LETTERS 2024; 24:11335-11348. [PMID: 39213537 DOI: 10.1021/acs.nanolett.4c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inspired by efficient natural biomolecule assembly with precise control on key parameters such as distance, number, orientation, and pattern, the constructions and applications of artificial precise molecule assembly are highly important in many research areas including chemistry, biology, and medicine. DNA origami, a sophisticated DNA nanotechnology with rational design, can offer a predictable, programmable, and addressable nanoscale scaffold for the precise assembly of various kinds of molecules. Herein, we summarize recent progress, particularly in the last three years, in DNA-origami-based precise molecule assembly and their emerging biological applications. We first introduce DNA origami and the progress on DNA-origami-based precise molecule assembly, including assembly of various kinds of molecules (e.g., nucleic acids, proteins, organic molecules, nanoparticles), and precise control of important parameters (e.g., distance, number, orientation, pattern). Their biological applications in sensing, imaging, therapy, bionics, biophysics, and chemical biology are then summarized, and current challenges and opportunities are finally discussed.
Collapse
Affiliation(s)
- Guize Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chuangyi Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yingying Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Bo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jialin Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mingye Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Lettermann L, Ziebert F, Schwarz US. A geometrical theory of gliding motility based on cell shape and surface flow. Proc Natl Acad Sci U S A 2024; 121:e2410708121. [PMID: 39028692 PMCID: PMC11287263 DOI: 10.1073/pnas.2410708121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024] Open
Abstract
Gliding motility proceeds with little changes in cell shape and often results from actively driven surface flows of adhesins binding to the extracellular environment. It allows for fast movement over surfaces or through tissue, especially for the eukaryotic parasites from the phylum apicomplexa, which includes the causative agents of the widespread diseases malaria and toxoplasmosis. We have developed a fully three-dimensional active particle theory which connects the self-organized, actively driven surface flow over a fixed cell shape to the resulting global motility patterns. Our analytical solutions and numerical simulations show that straight motion without rotation is unstable for simple shapes and that straight cell shapes tend to lead to pure rotations. This suggests that the curved shapes of Plasmodium sporozoites and Toxoplasma tachyzoites are evolutionary adaptations to avoid rotations without translation. Gliding motility is also used by certain myxo- or flavobacteria, which predominantly move on flat external surfaces and with higher control of cell surface flow through internal tracks. We extend our theory for these cases. We again find a competition between rotation and translation and predict the effect of internal track geometry on overall forward speed. While specific mechanisms might vary across species, in general, our geometrical theory predicts and explains the rotational, circular, and helical trajectories which are commonly observed for microgliders. Our theory could also be used to design synthetic microgliders.
Collapse
Affiliation(s)
- Leon Lettermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg69120, Germany
- Bioquant-Center, Heidelberg University, Heidelberg69120, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Heidelberg69120, Germany
- Bioquant-Center, Heidelberg University, Heidelberg69120, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg69120, Germany
- Bioquant-Center, Heidelberg University, Heidelberg69120, Germany
| |
Collapse
|
8
|
Cui S, Liu X, Zhang X, Shi P, Zheng Y, Wang B, Zhang Q. Engineering Modular DNA Reaction Networks for Signal Processing. Chemistry 2024; 30:e202400740. [PMID: 38623910 DOI: 10.1002/chem.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Diversified molecular information-processing methods have significant implications for nanoscale manipulation and control, monitoring and disease diagnosis of organisms, and direct intervention in biological activities. However, as an effective approach for implementing multifunctional molecular information processing, DNA reaction networks (DRNs) with numerous functionally specialized molecular structures have challenged them on scale design, leading to increased network complexity, further causing problems such as signal leakage, attenuation, and cross-talk in network reactions. Our study developed a strategy for performing various signal-processing tasks through engineering modular DRNs. This strategy is based on a universal core unit with signal selection capability, and a time-adjustable signal self-resetting module is achieved by combing the core unit and self-resetting unit, which improves the time controllability of modular DRNs. In addition, multi-input and -output signal cross-catalytic and continuously adjustable signal delay modules were realized by combining core and threshold units, providing a flexible, precise method for modular DRNs to process the signal. The strategy simplifies the design of DRNs, helps generate design ideas for large-scale integrated DRNs with multiple functions, and provides prospects in biocomputing, gene regulation, and biosensing.
Collapse
Affiliation(s)
- Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bin Wang
- School of Software Engineering, Dalian University, Dalian, 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
9
|
Aqib RM, Umer A, Li J, Liu J, Ding B. Light Responsive DNA Nanomaterials and Their Biomedical Applications. Chem Asian J 2024; 19:e202400226. [PMID: 38514391 DOI: 10.1002/asia.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
DNA nanomaterials have been widely employed for various biomedical applications. With rapid development of chemical modification of nucleic acid, serials of stimuli-responsive elements are included in the multifunctional DNA nanomaterials. In this review, we summarize the recent advances in light responsive DNA nanomaterials based on photocleavage/photodecage, photoisomerization, and photocrosslinking for efficient bioimaging (including imaging of small molecule, microRNA, and protein) and drug delivery (including delivery of small molecule, nucleic acid, and gene editing system). We also discuss the remaining challenges and future perspectives of the light responsive DNA nanomaterials in biomedical applications.
Collapse
Affiliation(s)
- Raja Muhammad Aqib
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Arsalan Umer
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialin Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Aqib RM, Wang Y, Liu J, Ding B. Efficient one-pot assembly of higher-order DNA nanostructures by chemically conjugated branched DNA. Chem Commun (Camb) 2024; 60:4715-4718. [PMID: 38596907 DOI: 10.1039/d4cc01097c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Chemically conjugated branched DNA was successfully synthesized by a copper-free click reaction to construct sophisticated and higher-order polyhedral DNA nanostructures with pre-defined units in one pot, which can be used as an efficient nanoplatform to precisely organize multiple gold nanoparticles in predesigned patterns.
Collapse
Affiliation(s)
- Raja Muhammad Aqib
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Wang B, Lu Y. Collective Molecular Machines: Multidimensionality and Reconfigurability. NANO-MICRO LETTERS 2024; 16:155. [PMID: 38499833 PMCID: PMC10948734 DOI: 10.1007/s40820-024-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work. During the last 60 years, designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research. Effective progress has been made, attributed to advances in various fields such as supramolecular chemistry, biology and nanotechnology, and informatics. However, individual molecular machines are only capable of producing nanometer work and generally have only a single functionality. In order to address these problems, collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm. In this review, we comprehensively discuss recent developments in the collective behaviors of molecular machines. In particular, collective behavior is divided into two paradigms. One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials. The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations. We discuss design strategies for both modes and focus on the modulation of features and properties. Subsequently, in order to address existing challenges, the idea of transferring experience gained in the field of micro/nano robotics is presented, offering prospects for future developments in the collective behavior of molecular machines.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
12
|
Illig M, Jahnke K, Weise LP, Scheffold M, Mersdorf U, Drechsler H, Zhang Y, Diez S, Kierfeld J, Göpfrich K. Triggered contraction of self-assembled micron-scale DNA nanotube rings. Nat Commun 2024; 15:2307. [PMID: 38485920 PMCID: PMC10940629 DOI: 10.1038/s41467-024-46339-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Contractile rings are formed from cytoskeletal filaments during cell division. Ring formation is induced by specific crosslinkers, while contraction is typically associated with motor protein activity. Here, we engineer DNA nanotubes and peptide-functionalized starPEG constructs as synthetic crosslinkers to mimic this process. The crosslinker induces bundling of ten to hundred DNA nanotubes into closed micron-scale rings in a one-pot self-assembly process yielding several thousand rings per microliter. Molecular dynamics simulations reproduce the detailed architectural properties of the DNA rings observed in electron microscopy. Theory and simulations predict DNA ring contraction - without motor proteins - providing mechanistic insights into the parameter space relevant for efficient nanotube sliding. In agreement between simulation and experiment, we obtain ring contraction to less than half of the initial ring diameter. DNA-based contractile rings hold promise for an artificial division machinery or contractile muscle-like materials.
Collapse
Affiliation(s)
- Maja Illig
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Kevin Jahnke
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
- Harvard University, School of Engineering and Applied Sciences (SEAS), 9 Oxford Street, 02138, Cambridge, MA, USA
| | - Lukas P Weise
- TU Dortmund University, Department of Physics, Otto-Hahn-Str. 4, 44221, Dortmund, Germany
| | - Marlene Scheffold
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Ulrike Mersdorf
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Hauke Drechsler
- B CUBE - Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
- Tübingen University, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Yixin Zhang
- B CUBE - Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| | - Jan Kierfeld
- TU Dortmund University, Department of Physics, Otto-Hahn-Str. 4, 44221, Dortmund, Germany.
| | - Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany.
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Qin Y, Wang G, Chen L, Sun Y, Yang J, Piao Y, Shen Y, Zhou Z. High-Throughput Screening of Surface Engineered Cyanine Nanodots for Active Transport of Therapeutic Antibodies into Solid Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302292. [PMID: 37405862 DOI: 10.1002/adma.202302292] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
The successful delivery of therapeutic biomacromolecules into solid tumor holds great challenge due to their high resistance to penetrate through the complex tumor microenvironments. Here, active-transporting nanoparticles are harnessed to efficiently deliver biomacromolecular drugs into solid tumors through cell transcytosis. A series of molecularly precise cyanine 5-cored polylysine G5 dendrimers (Cy5 nanodots) with different peripheral amino acids (G5-AA) is prepared. The capability of these positively charged nanodots to induce cell endocytosis, exocytosis, and transcytosis is evaluated via fluorescence-based high-throughput screen. The optimized nanodots (G5-R) are conjugated with αPD-L1 (a therapeutic monoclonal antibody binding to programmed-death ligand 1) (αPD-L1-G5-R) to demonstrate the nanoparticle-mediated tumor active transport. The αPD-L1-G5-R can greatly enhance the tumor-penetration capability through adsorption-mediated transcytosis (AMT). The effectiveness of αPD-L1-G5-R is tested in treating mice bearing partially resected CT26 tumors, mimicking the local immunotherapy of residual tumors post-surgery in clinic. The αPD-L1-G5-R embedded in fibrin gel can efficiently mediate tumor cell transcytosis, and deliver αPD-L1 throughout the tumor, thereby enhancing immune checkpoint blockade, reducing tumor recurrence, and significantly prolonging the survival time. The active-transporting nanodots are promising platforms for efficient tumor delivery of therapeutic biomacromolecules.
Collapse
Affiliation(s)
- Yating Qin
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Guowei Wang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Linying Chen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuji Sun
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiajia Yang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
14
|
Yang S, Bögels BWA, Wang F, Xu C, Dou H, Mann S, Fan C, de Greef TFA. DNA as a universal chemical substrate for computing and data storage. Nat Rev Chem 2024; 8:179-194. [PMID: 38337008 DOI: 10.1038/s41570-024-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Korosec CS, Unksov IN, Surendiran P, Lyttleton R, Curmi PMG, Angstmann CN, Eichhorn R, Linke H, Forde NR. Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle. Nat Commun 2024; 15:1511. [PMID: 38396042 PMCID: PMC10891099 DOI: 10.1038/s41467-024-45570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins - the building blocks selected by nature - to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its "burnt-bridge" motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors.
Collapse
Affiliation(s)
- Chapin S Korosec
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.
| | - Ivan N Unksov
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Pradheebha Surendiran
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Roman Lyttleton
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher N Angstmann
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ralf Eichhorn
- Nordita, Royal Institute of Technology and Stockholm University, 106 91, Stockholm, Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
16
|
Wang Y, Wang H, Li Y, Yang C, Tang Y, Lu X, Fan J, Tang W, Shang Y, Yan H, Liu J, Ding B. Chemically Conjugated Branched Staples for Super-DNA Origami. J Am Chem Soc 2024; 146:4178-4186. [PMID: 38301245 DOI: 10.1021/jacs.3c13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
DNA origami, comprising a long folded DNA scaffold and hundreds of linear DNA staple strands, has been developed to construct various sophisticated structures, smart devices, and drug delivery systems. However, the size and diversity of DNA origami are usually constrained by the length of DNA scaffolds themselves. Herein, we report a new paradigm of scaling up DNA origami assembly by introducing a novel branched staple concept. Owing to their covalent characteristics, the chemically conjugated branched DNA staples we describe here can be directly added to a typical DNA origami assembly system to obtain super-DNA origami with a predefined number of origami tiles in one pot. Compared with the traditional two-step coassembly system (yields <10%), a much greater yield (>80%) was achieved using this one-pot strategy. The diverse superhybrid DNA origami with the combination of different origami tiles can be also efficiently obtained by the hybrid branched staples. Furthermore, the branched staples can be successfully employed as the effective molecular glues to stabilize micrometer-scale, super-DNA origami arrays (e.g., 10 × 10 array of square origami) in high yields, paving the way to bridge the nanoscale precision of DNA origami with the micrometer-scale device engineering. This rationally developed assembly strategy for super-DNA origami based on chemically conjugated branched staples presents a new avenue for the development of multifunctional DNA origami-based materials.
Collapse
Affiliation(s)
- Yuang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Hong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Changping Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Tang
- Arizona State University, Tempe, Arizona 85281, United States
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jing Fan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wantao Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hao Yan
- Arizona State University, Tempe, Arizona 85281, United States
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Lee JY, Yang Q, Chang X, Jeziorek M, Perumal D, Olivera TR, Etchegaray JP, Zhang F. Self-assembly of DNA parallel double-crossover motifs. NANOSCALE 2024; 16:1685-1691. [PMID: 38193377 PMCID: PMC10809758 DOI: 10.1039/d3nr05119f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
DNA double-crossover motifs, including parallel and antiparallel crossovers, serve as the structural foundation for the creation of diverse nanostructures and dynamic devices in DNA nanotechnology. Parallel crossover motifs have unique advantages over the widely used antiparallel crossover design but have not developed as substantially due to the difficulties in assembly. Here we created 29 designs of parallel double-crossover motifs varying in hybridization pathways, central domain lengths, and crossover locations to investigate their assembly mechanism. Arrays were successfully formed in four distinct designs, and large tubular structures were obtained in seven designs with predefined pathways and central domains appoximately 16 nucleotides in length. The nanotubes obtained from parallel crossover design showed improved nuclease resistance than the ones from the antiparallel counterpart design. Overall, our study provides a basis for the development of generalized assembly rules of DNA parallel crossover systems and opens new opportunities for their potential use in biological systems.
Collapse
Affiliation(s)
- Jung Yeon Lee
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Qi Yang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Xu Chang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Maciej Jeziorek
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | | | | | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| |
Collapse
|
18
|
Yu N, Shah ZH, Yang M, Gao Y. Morphology-Tailored Dynamic State Transition in Active-Passive Colloidal Assemblies. RESEARCH (WASHINGTON, D.C.) 2024; 7:0304. [PMID: 38269028 PMCID: PMC10807723 DOI: 10.34133/research.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
Mixtures of active self-propelled and passive colloidal particles promise rich assembly and dynamic states that are beyond reach via equilibrium routes. Yet, controllable transition between different dynamic states remains rare. Here, we reveal a plethora of dynamic behaviors emerging in assemblies of chemically propelled snowman-like active colloids and passive spherical particles as the particle shape, size, and composition are tuned. For example, assembles of one or more active colloids with one passive particle exhibit distinct translating or orbiting states while those composed of one active colloid with 2 passive particles display persistent "8"-like cyclic motion or hopping between circling states around one passive particle in the plane and around the waist of 2 passive ones out of the plane, controlled by the shape of the active colloid and the size of the passive particles, respectively. These morphology-tailored dynamic transitions are in excellent agreement with state diagrams predicted by mesoscale dynamics simulations. Our work discloses new dynamic states and corresponding transition strategies, which promise new applications of active systems such as micromachines with functions that are otherwise impossible.
Collapse
Affiliation(s)
- Nan Yu
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering,
Shenzhen University, 518060, Shenzhen, China
| | - Zameer H. Shah
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering,
Shenzhen University, 518060, Shenzhen, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yongxiang Gao
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
19
|
Mo X, Li H, Tang P, Hao Y, Dong B, Marazuela MD, Gomez-Gomez MM, Zhu X, Li Q, Maroto BL, Jiang S, Fan C, Lan X. DNA-Modulated and Mechanoresponsive Excitonic Couplings Reveal Chiroptical Correlation of Conformation, Tension, and Dynamics of DNA Self-Assembly. NANO LETTERS 2023; 23:11734-11741. [PMID: 38079633 DOI: 10.1021/acs.nanolett.3c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Study of the conformational and mechanical behaviors of biomolecular assemblies is vital to the rational design and realization of artificial molecular architectures with biologically relevant functionality. Here, we revealed DNA-modulated and mechanoresponsive excitonic couplings between organic chromophores and verified strong correlations between the excitonic chiroptical responses and the conformational and mechanical states of DNA self-assemblies irrespective of fluorescence background interference. Besides, the excitonic chiroptical effect allowed sensitive monitoring of DNA self-assembled nanostructures due to small molecule bindings or DNA strand displacement reactions. Moreover, we developed a new chiroptical reporter, a DNA-templated dimer of an achiral cyanine5 and an intrinsically chiral BODIPY, that exhibited unique multiple-split spectral line shape of exciton-coupled circular dichroism, largely separated response wavelengths, and enhanced anisotropy dissymmetry factor (g-factor). These results shed light on a promising chiroptical spectroscopic tool for studying biomolecular recognition and binding, conformation dynamics, and soft mechanics in general.
Collapse
Affiliation(s)
- Xiaomei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huacheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pan Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yaya Hao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingqian Dong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - M Dolores Marazuela
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Uni-versitaria s/n, Madrid 28040, Spain
| | - M Milagros Gomez-Gomez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Uni-versitaria s/n, Madrid 28040, Spain
| | - Xianfeng Zhu
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz L Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Uni-versitaria s/n, Madrid 28040, Spain
| | - Shuoxing Jiang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
20
|
Brannetti S, Gentile S, Chamorro-Garcia A, Barbero L, Del Grosso E, Ricci F. Decorated DNA-Based Scaffolds as Lateral Flow Biosensors. Angew Chem Int Ed Engl 2023; 62:e202313243. [PMID: 37804080 DOI: 10.1002/anie.202313243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Here we develop Lateral Flow Assays (LFAs) that employ as functional elements DNA-based structures decorated with reporter tags and recognition elements. We have rationally re-engineered tile-based DNA tubular structures that can act as scaffolds and can be decorated with recognition elements of different nature (i.e. antigens, aptamers or proteins) and with orthogonal fluorescent dyes. As a proof-of-principle we have developed sandwich and competitive multiplex lateral flow platforms for the detection of several targets, ranging from small molecules (digoxigenin, Dig and dinitrophenol, DNP), to antibodies (Anti-Dig, Anti-DNP and Anti-MUC1/EGFR bispecific antibodies) and proteins (thrombin). Coupling the advantages of functional DNA-based scaffolds together with the simplicity of LFAs, our approach offers the opportunity to detect a wide range of targets with nanomolar sensitivity and high specificity.
Collapse
Affiliation(s)
- Simone Brannetti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alejandro Chamorro-Garcia
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Luca Barbero
- RBM-Merck an affiliate of Merck KGaA, Via Ribes 1, 10010, Turin, Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
21
|
Jahnke K, Göpfrich K. Engineering DNA-based cytoskeletons for synthetic cells. Interface Focus 2023; 13:20230028. [PMID: 37577007 PMCID: PMC10415745 DOI: 10.1098/rsfs.2023.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
The development and bottom-up assembly of synthetic cells with a functional cytoskeleton sets a major milestone to understand cell mechanics and to develop man-made machines on the nano- and microscale. However, natural cytoskeletal components can be difficult to purify, deliberately engineer and reconstitute within synthetic cells which therefore limits the realization of multifaceted functions of modern cytoskeletons in synthetic cells. Here, we review recent progress in the development of synthetic cytoskeletons made from deoxyribonucleic acid (DNA) as a complementary strategy. In particular, we explore the capabilities and limitations of DNA cytoskeletons to mimic functions of natural cystoskeletons like reversible assembly, cargo transport, force generation, mechanical support and guided polymerization. With recent examples, we showcase the power of rationally designed DNA cytoskeletons for bottom-up assembled synthetic cells as fully engineerable entities. Nevertheless, the realization of dynamic instability, self-replication and genetic encoding as well as contractile force generating motors remains a fruitful challenge for the complete integration of multifunctional DNA-based cytoskeletons into synthetic cells.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Farag N, Đorđević M, Del Grosso E, Ricci F. Dynamic and Reversible Decoration of DNA-Based Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211274. [PMID: 36739507 DOI: 10.1002/adma.202211274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Indexed: 05/05/2023]
Abstract
An approach to achieving dynamic and reversible decoration of DNA-based scaffolds is demonstrated here. To do this, rationally engineered DNA tiles containing enzyme-responsive strands covalently conjugated to different molecular labels are employed. These strands are designed to be recognized and degraded by specific enzymes (i.e., Ribonuclease H, RNase H, or Uracil DNA Glycosylase, UDG) inducing their spontaneous de-hybridization from the assembled tile and replacement by a new strand conjugated to a different label. Multiple enzyme-responsive strands that specifically respond to different enzymes allow for dynamic, orthogonal, and reversible decoration of the DNA structures. As a proof-of-principle of the strategy, the possibility to orthogonally control the distribution of different labels (i.e., fluorophores and small molecules) on the same scaffold without crosstalk is demonstrated. By doing so, DNA scaffolds that display different antibody recognition patterns are obtained. The approach offers the possibility to control the decoration of higher-order supramolecular assemblies (including origami) with several functional moieties to achieve functional biomaterials with improved adaptability, precision, and sensing capabilities.
Collapse
Affiliation(s)
- Nada Farag
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Milan Đorđević
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Erica Del Grosso
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| |
Collapse
|
23
|
Sarraf N, Rodriguez KR, Qian L. Modular reconfiguration of DNA origami assemblies using tile displacement. Sci Robot 2023; 8:eadf1511. [PMID: 37099635 DOI: 10.1126/scirobotics.adf1511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The power of natural evolution lies in the adaptability of biological organisms but is constrained by the time scale of genetics and reproduction. Engineeringartificial molecular machines should not only include adaptability as a core feature but also apply it within a larger design space and at a faster time scale. A lesson from engineering electromechanical robots is that modular robots can perform diverse functions through self-reconfiguration, a large-scale form of adaptation. Molecular machines made of modular, reconfigurable components may form the basis for dynamic self-reprogramming in future synthetic cells. To achieve modular reconfiguration in DNA origami assemblies, we previously developed a tile displacement mechanism in which an invader tile replaces another tile in an array with controlled kinetics. Here, we establish design principles for simultaneous reconfigurations in tile assemblies using complex invaders with distinct shapes. We present toehold and branch migration domain configurations that expand the design space of tile displacement reactions by two orders of magnitude. We demonstrate the construction of multitile invaders with fixed and variable sizes and controlled size distributions. We investigate the growth of three-dimensional (3D) barrel structures with variable cross sections and introduce a mechanism for reconfiguring them into 2D structures. Last, we show an example of a sword-shaped assembly transforming into a snake-shaped assembly, illustrating two independent tile displacement reactions occurring concurrently with minimum cross-talk. This work serves as a proof of concept that tile displacement could be a fundamental mechanism for modular reconfiguration robust to temperature and tile concentration.
Collapse
Affiliation(s)
- Namita Sarraf
- Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kellen R Rodriguez
- Business Economics and Management, California Institute of Technology, Pasadena, CA 91125, USA
- Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
- Computer Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lulu Qian
- Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
- Computer Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
24
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
25
|
Furuta K. Making motors work - potential applications in biocomputing and synthetic biology. J Cell Sci 2023; 136:290763. [PMID: 36852673 DOI: 10.1242/jcs.261035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Biomolecular motors exhibit outstanding functions, including efficient motion and force generation, as well as autonomous operation. In this Essay, I discuss how biomolecular motors can be engineered to be used in artificial systems and what future applications such systems might have.
Collapse
Affiliation(s)
- Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| |
Collapse
|
26
|
Peil A, Zhan P, Duan X, Krahne R, Garoli D, M Liz-Marzán L, Liu N. Transformable Plasmonic Helix with Swinging Gold Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202213992. [PMID: 36423337 DOI: 10.1002/anie.202213992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
Control over multiple optical elements that can be dynamically rearranged to yield substantial three-dimensional structural transformations is of great importance to realize reconfigurable plasmonic nanoarchitectures with sensitive and distinct optical feedback. In this work, we demonstrate a transformable plasmonic helix system, in which multiple gold nanoparticles (AuNPs) can be directly transported by DNA swingarms to target positions without undergoing consecutive stepwise movements. The swingarms allow for programmable AuNP translocations in large leaps within plasmonic nanoarchitectures, giving rise to tailored circular dichroism spectra. Our work provides an instructive bottom-up solution to building complex dynamic plasmonic systems, which can exhibit prominent optical responses through cooperative rearrangements of the constituent optical elements with high fidelity and programmability.
Collapse
Affiliation(s)
- Andreas Peil
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Pengfei Zhan
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Xiaoyang Duan
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Roman Krahne
- Instituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Denis Garoli
- Instituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Luis M Liz-Marzán
- CIC BiomaGUNE, Paseo Miramón 182, 20014, Donostia/San Sebastián, Spain.,Biomedical Networking Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, 20014, Donostia/San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 43009, Bilbao, Spain
| | - Na Liu
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| |
Collapse
|
27
|
Ghellab SE, Zhang X, Yang Y, Wang S, Basharat M, Zhou X, Lei L, Zhou Y, Wang Y, Fang H, Gao Y. Cell-Mimic Directional Cargo Transportation in a Visible-Light-Activated Colloidal Motor/Lipid Tube System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204260. [PMID: 36424173 DOI: 10.1002/smll.202204260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Active tether and transportation of cargoes on cytoskeletal highway enabled by molecular motors is key for accurate delivery of vesicles and organelles in the complex intracellular environment. Here, a hybrid system composed of colloidal motors and self-assembled lipid tubes is designed to mimic the subcellular traffic system in living cells. The colloidal motors, composed of gold-coated hematite, display light-activated self-propulsion tunable by the light intensity and the concentration of hydrogen peroxide fuel. Importantly, the motors show light-switchable binding with lipid cargoes and attachment to the lipid tubes, whereby the latter act as the motor highways. Upon assembly, the colloidal motor/lipid tube system demonstrates directional delivery of lipid vesicles, emulating intracellular transportation. The assembly and function of the hybrid system are rationalized by a cooperative action of light-triggered electrophoretic and hydrodynamic effects, supported by finite element analysis. A synthetic analog of the biological protein motor/cytoskeletal filament system is realized for the manipulation and delivery of different matter at the microscale, which is expected to be a promising platform for various applications in materials science, nanotechnology, microfluidics, and synthetic biology.
Collapse
Affiliation(s)
- Salah Eddine Ghellab
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinyuan Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yicheng Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shuo Wang
- Julong College, Shenzhen Technology University, Shenzhen, 518118, China
| | - Majid Basharat
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Xuemao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Lijie Lei
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Hui Fang
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Nanophotonics Research Center, College of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
28
|
DNA walker for signal amplification in living cells. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Kučera O, Gaillard J, Guérin C, Utzschneider C, Théry M, Blanchoin L. Actin Architecture Steers Microtubules in Active Cytoskeletal Composite. NANO LETTERS 2022; 22:8584-8591. [PMID: 36279243 DOI: 10.1021/acs.nanolett.2c03117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Motility assays use surface-immobilized molecular motors to propel cytoskeletal filaments. They have been widely used to characterize motor properties and their impact on cytoskeletal self-organization. Moreover, the motility assays are a promising class of bioinspired active tools for nanotechnological applications. While these assays involve controlling the filament direction and speed, either as a sensory readout or a functional feature, designing a subtle control embedded in the assay is an ongoing challenge. Here, we investigate the interaction between gliding microtubules and networks of actin filaments. We demonstrate that the microtubule's behavior depends on the actin architecture. Both unbranched and branched actin decelerate microtubule gliding; however, an unbranched actin network provides additional guidance and effectively steers the microtubules. This effect, which resembles the recognition of cortical actin by microtubules, is a conceptually new means of controlling the filament gliding with potential application in the design of active materials and cytoskeletal nanodevices.
Collapse
Affiliation(s)
- Ondřej Kučera
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
| | - Jérémie Gaillard
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
| | - Christophe Guérin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
| | - Clothilde Utzschneider
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
| | - Manuel Théry
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
- CytoMorpho Lab, Unité de Thérapie Cellulaire, Hôpital Saint Louis/CNRS/CEA, 1 Avenue Claude Vellefaux, Paris75 010, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
- CytoMorpho Lab, Unité de Thérapie Cellulaire, Hôpital Saint Louis/CNRS/CEA, 1 Avenue Claude Vellefaux, Paris75 010, France
| |
Collapse
|
30
|
Abstract
Control of self-propelled particles is central to the development of many microrobotic technologies, from dynamically reconfigurable materials to advanced lab-on-a-chip systems. However, there are few physical principles by which particle trajectories can be specified and can be used to generate a wide range of behaviors. Within the field of ray optics, a single principle for controlling the trajectory of light─Snell's law─yields an intuitive framework for engineering a broad range of devices, from microscopes to cameras and telescopes. Here we show that the motion of self-propelled particles gliding across a resistance discontinuity is governed by a variant of Snell's law, and develop a corresponding ray optics for gliders. Just as the ratio of refractive indexes sets the path of a light ray, the ratio of resistance coefficients is shown to determine the trajectories of gliders. The magnitude of refraction depends on the glider's shape, in particular its aspect ratio, which serves as an analogue to the wavelength of light. This enables the demixing of a polymorphic, many-shaped, beam of gliders into distinct monomorphic, single-shaped, beams through a friction prism. In turn, beams of monomorphic gliders can be focused by spherical and gradient friction lenses. Alternatively, the critical angle for total internal reflection can be used to create shape-selective glider traps. Overall our work suggests that furthering the analogy between light and microscopic gliders may be used for sorting, concentrating, and analyzing self-propelled particles.
Collapse
Affiliation(s)
- Tyler D Ross
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California91125, United States
| | - Dino Osmanović
- Center for the Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John F Brady
- Divisions of Chemistry & Chemical Engineering and Engineering & Applied Science, California Institute of Technology, Pasadena, California91125, United States
| | - Paul W K Rothemund
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California91125, United States
| |
Collapse
|
31
|
Fluorochromized tyramide-glucose oxidase as a multiplex fluorescent tyramide signal amplification system for histochemical analysis. Sci Rep 2022; 12:14807. [PMID: 36097273 PMCID: PMC9468149 DOI: 10.1038/s41598-022-19085-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Tyramide signal amplification (TSA) is a highly sensitive method for histochemical analysis. Previously, we reported a TSA system, biotinyl tyramine-glucose oxidase (BT-GO), for bright-filed imaging. Here, we develop fluorochromized tyramide-glucose oxidase (FT-GO) as a multiplex fluorescent TSA system. FT-GO involves peroxidase-catalyzed deposition of fluorochromized tyramide (FT) with hydrogen peroxide produced by enzymatic reaction between glucose and glucose oxidase. We showed that FT-GO enhanced immunofluorescence signals while maintaining low background signals. Compared with indirect immunofluorescence detections, FT-GO demonstrated a more widespread distribution of monoaminergic projection systems in mouse and marmoset brains. For multiplex labeling with FT-GO, we quenched antibody-conjugated peroxidase using sodium azide. We applied FT-GO to multiplex fluorescent in situ hybridization, and succeeded in labeling neocortical interneuron subtypes by coupling with immunofluorescence. FT-GO immunofluorescence further increased the detectability of an adeno-associated virus tracer. Given its simplicity and a staining with a high signal-to-noise ratio, FT-GO would provide a versatile platform for histochemical analysis.
Collapse
|
32
|
Inaba H, Sueki Y, Ichikawa M, Kabir AMR, Iwasaki T, Shigematsu H, Kakugo A, Sada K, Tsukazaki T, Matsuura K. Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside. SCIENCE ADVANCES 2022; 8:eabq3817. [PMID: 36070375 PMCID: PMC9451167 DOI: 10.1126/sciadv.abq3817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/22/2022] [Indexed: 05/24/2023]
Abstract
Microtubules play important roles in biological functions by forming superstructures, such as doublets and branched structures, in vivo. Despite the importance, it is challenging to construct these superstructures in vitro. Here, we designed a tetrameric fluorescent protein Azami-Green (AG) fused with His-tag and Tau-derived peptide (TP), TP-AG, to generate the superstructures. Main binding sites of TP-AG can be controlled to the inside and outside of microtubules by changing the polymerization conditions. The binding of TP-AG to the inside promoted microtubule formation and generated rigid and stable microtubules. The binding of TP-AG to the outside induced various microtubule superstructures, including doublets, multiplets, branched structures, and extremely long microtubules by recruiting tubulins to microtubules. Motile microtubule aster structures were also constructed by TP-AG. The generation of various microtubule superstructures by a single type of exogenous protein is a new concept for understanding the functions of microtubules and constructing microtubule-based nanomaterials.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Yurina Sueki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Muneyoshi Ichikawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | | | - Takashi Iwasaki
- Department of Bioresources Science, Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | | | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoya Tsukazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
33
|
Abstract
The cytoskeleton is an essential component of a cell. It controls the cell shape, establishes the internal organization, and performs vital biological functions. Building synthetic cytoskeletons that mimic key features of their natural counterparts delineates a crucial step towards synthetic cells assembled from the bottom up. To this end, DNA nanotechnology represents one of the most promising routes, given the inherent sequence specificity, addressability and programmability of DNA. Here we demonstrate functional DNA-based cytoskeletons operating in microfluidic cell-sized compartments. The synthetic cytoskeletons consist of DNA tiles self-assembled into filament networks. These filaments can be rationally designed and controlled to imitate features of natural cytoskeletons, including reversible assembly and ATP-triggered polymerization, and we also explore their potential for guided vesicle transport in cell-sized confinement. Also, they possess engineerable characteristics, including assembly and disassembly powered by DNA hybridization or aptamer–target interactions and autonomous transport of gold nanoparticles. This work underpins DNA nanotechnology as a key player in building synthetic cells. ![]()
Cytoskeletons are essential components of cells that perform a variety of tasks, and artificial cytoskeletons that perform these functions are required for the bottom-up assembly of synthetic cells. Now, a multi-functional cytoskeleton mimic has been engineered from DNA, consisting of confined DNA filaments that are capable of reversible self-assembly and transport of gold nanoparticles and vesicular cargo.
Collapse
|
34
|
Thayyil S, Nishigami Y, Islam MJ, Hashim PK, Furuta K, Oiwa K, Yu J, Yao M, Nakagaki T, Tamaoki N. Dynamic Control of Microbial Movement by Photoswitchable ATP Antagonists. Chemistry 2022; 28:e202200807. [DOI: 10.1002/chem.202200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Sampreeth Thayyil
- Research Institute for Electronic Science Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Yukinori Nishigami
- Research Institute for Electronic Science Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Md. Jahirul Islam
- Research Institute for Electronic Science Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Current Address: Institute of Science and Technology Austria 3400 Klosterneuburg Austria
| | - P. K. Hashim
- Research Institute for Electronic Science Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Ken'ya Furuta
- Advanced ICT Research Institute National Institute of Information and Communications Technology Kobe Hyogo 651-2492 Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute National Institute of Information and Communications Technology Kobe Hyogo 651-2492 Japan
| | - Jian Yu
- Faculty of Advanced Life Science Hokkaido University North 10 West 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Min Yao
- Faculty of Advanced Life Science Hokkaido University North 10 West 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Toshiyuki Nakagaki
- Research Institute for Electronic Science Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
35
|
Abstract
Natural dynein protein motors are reengineered to walk on specific artificial DNA tracks.
Collapse
Affiliation(s)
| | - Rizal F Hariadi
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
| |
Collapse
|