1
|
Forrest SL, Kovacs GG. Current concepts and molecular pathology of neurodegenerative diseases. Pathology 2025; 57:178-190. [PMID: 39672768 DOI: 10.1016/j.pathol.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 12/15/2024]
Abstract
Neurodegenerative diseases are a pathologically, clinically and genetically diverse group of diseases characterised by selective dysfunction, loss of synaptic connectivity and neurodegeneration, and are associated with the deposition of misfolded proteins in neurons and/or glia. Molecular studies have highlighted the role of conformationally altered proteins in the pathogenesis of neurodegenerative diseases and have paved the way for developing disease-specific biomarkers that capture and differentiate the main type/s of protein abnormality responsible for neurodegenerative diseases, some of which are currently used in clinical practice. These proteins follow sequential patterns of anatomical involvement and disease spread in the brain and may also be detected in peripheral organs. Recent studies suggest that glia are likely to have an important role in pathological spread throughout the brain and even follow distinct progression patterns from neurons. In addition to morphological and molecular approaches to the classification of these disorders, a further new stratification level incorporates the structure of protein filaments detected by cryogenic electron microscopy. Rather than occurring in isolation, combined deposition of tau, amyloid-β, α-synuclein and TDP-43 are frequently observed in neurodegenerative diseases and in the ageing brain. These can be overlooked, and their clinicopathological relevance is difficult to interpret. This review provides an overview of disease pathogenesis and diagnostic implications, recent molecular and ultrastructural classification of neurodegenerative diseases, how to approach ageing-related and mixed pathologies, and the importance of the protein-based classification system for practising neuropathologists and clinicians. This review also informs general pathologists about the relevance of ongoing full body autopsy studies to understand the spectrum and pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia; Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Zhang J, Han J, Li N, Zhou W. Deciphering the Protective Role of HIF-1α Downregulation on HIBD through the MALAT1/miR-140-5p/TGFBR1/NF-κB Signaling Pathway. Mol Neurobiol 2025; 62:3343-3360. [PMID: 39278884 DOI: 10.1007/s12035-024-04451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Hypoxic-ischemic brain damage (HIBD) in neonates is a substantial cause of mortality and neurodevelopmental impairment, with the exact molecular mechanisms still being elucidated. The involvement of HIF-1α, MALAT1, miR-140-5p, TGFBR1, and the NF-κB signaling pathway in such injury cascades is of increasing research interest due to their pivotal roles in cellular and pathological processes. This study aimed to explore how HIF-1α regulates the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis to participate in the molecular mechanisms of HIBD in neonatal rats. Utilizing bioinformatic analyses and a suite of experimental approaches, the study delineated interactions and regulatory relationships among the molecules. Knockdown of HIF-1α was shown to mitigate brain tissue damage in a neonatal HIBD rat model through the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis, revealing a protective effect achieved by inhibiting hippocampal neuron apoptosis and potentially guiding the way toward therapeutic interventions in HIBD. This study implicates the HIF-1α mediated regulation of the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis in the pathological development of HIBD, offering insights into novel potential interventional strategies.
Collapse
MESH Headings
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Signal Transduction
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- NF-kappa B/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Down-Regulation/genetics
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/genetics
- Hypoxia-Ischemia, Brain/pathology
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Animals, Newborn
- Rats, Sprague-Dawley
- Apoptosis
- Rats
Collapse
Affiliation(s)
- Jiantao Zhang
- Colorectal & Anal Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Jun Han
- Department of Neonatology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130000, Jilin Province, People's Republic of China
| | - Nan Li
- Department of Neonatology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130000, Jilin Province, People's Republic of China
| | - Wenli Zhou
- Department of Neonatology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130000, Jilin Province, People's Republic of China.
| |
Collapse
|
3
|
Wu B, Liu Y, Li H, Zhu L, Zeng L, Zhang Z, Peng W. Liver as a new target organ in Alzheimer's disease: insight from cholesterol metabolism and its role in amyloid-beta clearance. Neural Regen Res 2025; 20:695-714. [PMID: 38886936 PMCID: PMC11433892 DOI: 10.4103/1673-5374.391305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease, the primary cause of dementia, is characterized by neuropathologies, such as amyloid plaques, synaptic and neuronal degeneration, and neurofibrillary tangles. Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs, targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment. Metabolic abnormalities are commonly observed in patients with Alzheimer's disease. The liver is the primary peripheral organ involved in amyloid-beta metabolism, playing a crucial role in the pathophysiology of Alzheimer's disease. Notably, impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease. In this review, we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism. Furthermore, we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Zhen Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei Province, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Ruzmetov T, Hung TI, Jonnalagedda SP, Chen SH, Fasihianifard P, Guo Z, Bhanu B, Chang CEA. Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning. J Chem Inf Model 2025. [PMID: 39984300 DOI: 10.1021/acs.jcim.4c01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Proteins are inherently dynamic, and their conformational ensembles play a crucial role in biological function. Large-scale motions may govern the protein structure-function relationship, and numerous transient but stable conformations of intrinsically disordered proteins (IDPs) can play a crucial role in biological function. Investigating conformational ensembles to understand regulations and disease-related aggregations of IDPs is challenging, both experimentally and computationally. In this paper, we first introduce a deep learning-based model, termed Internal Coordinate Net (ICoN), which learns the physical principles of conformational changes from molecular dynamics simulation data. Second, we selected data points through interpolation in the learned latent space to rapidly identify novel synthetic conformations with sophisticated and large-scale side chains and backbone arrangements. Third, with the highly dynamic amyloid-β1-42 (Aβ42) monomer, our deep learning model provided a comprehensive sampling of Aβ42's conformational landscape. Analysis of these synthetic conformations revealed conformational clusters that could be used to rationalize experimental findings. Additionally, the method can identify novel conformations with important interactions in atomistic details that are not included in the training data. New synthetic conformations showed distinct side chain rearrangements that are probed by our electron paramagnetic resonance and amino acid substitution studies. This approach is highly transferable and can be used for any available data for training. The work also demonstrated the ability of deep learning to utilize natural atomistic motions in protein conformation sampling.
Collapse
Affiliation(s)
- Talant Ruzmetov
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ta I Hung
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Saisri Padmaja Jonnalagedda
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Si-Han Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Parisa Fasihianifard
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, University of California, Los Angeles, California 90095, United States
| | - Bir Bhanu
- Department of Bioengineering, University of California, Riverside, California 92521, United States
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Aubrey LD, Radford SE. How is the Amyloid Fold Built? Polymorphism and the Microscopic Mechanisms of Fibril Assembly. J Mol Biol 2025:169008. [PMID: 39954780 DOI: 10.1016/j.jmb.2025.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
For a given protein sequence, many, up to sometimes hundreds of different amyloid fibril folds, can be formed in vitro. Yet, fibrils extracted from, or found in, human tissue, usually at the end of a long disease process, are often structurally homogeneous. Through monitoring of amyloid assembly reactions in vitro, the scientific community has gained a detailed understanding of the kinetic mechanisms of fibril assembly and the rates at which the different processes involved occur. However, how this kinetic information relates to the structural changes as a protein transforms from its initial, native structure to the canonical cross-β structure of amyloid remain obscure. While cryoEM has yielded a plethora of high-resolution information that portray a vast variety of fibril structures, there remains little knowledge of how and why each particular structure resulted. Recent work has demonstrated that fibril structures can change over an assembly time course, despite the different fibril types having similar thermodynamic stability. This points to kinetic control of the fibrils formed, with structures that initiate or elongate faster becoming the dominant products of assembly. Annotating kinetic assembly mechanisms alongside structural analysis of the fibrils formed is required to truly understand the molecular mechanisms of amyloid formation. However, this is a complicated task. In this review, we discuss how embracing this challenge could open new frontiers in amyloid research and new opportunities for therapy.
Collapse
Affiliation(s)
- Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
6
|
Yarbro JM, Han X, Dasgupta A, Yang K, Liu D, Shrestha HK, Zaman M, Wang Z, Yu K, Lee DG, Vanderwall D, Niu M, Sun H, Xie B, Chen PC, Jiao Y, Zhang X, Wu Z, Chepyala SR, Fu Y, Li Y, Yuan ZF, Wang X, Poudel S, Vagnerova B, He Q, Tang A, Ronaldson PT, Chang R, Yu G, Liu Y, Peng J. Human and mouse proteomics reveals the shared pathways in Alzheimer's disease and delayed protein turnover in the amyloidome. Nat Commun 2025; 16:1533. [PMID: 39934151 PMCID: PMC11814087 DOI: 10.1038/s41467-025-56853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Murine models of Alzheimer's disease (AD) are crucial for elucidating disease mechanisms but have limitations in fully representing AD molecular complexities. Here we present the comprehensive, age-dependent brain proteome and phosphoproteome across multiple mouse models of amyloidosis. We identified shared pathways by integrating with human metadata and prioritized components by multi-omics analysis. Collectively, two commonly used models (5xFAD and APP-KI) replicate 30% of the human protein alterations; additional genetic incorporation of tau and splicing pathologies increases this similarity to 42%. We dissected the proteome-transcriptome inconsistency in AD and 5xFAD mouse brains, revealing that inconsistent proteins are enriched within amyloid plaque microenvironment (amyloidome). Our analysis of the 5xFAD proteome turnover demonstrates that amyloid formation delays the degradation of amyloidome components, including Aβ-binding proteins and autophagy/lysosomal proteins. Our proteomic strategy defines shared AD pathways, identifies potential targets, and underscores that protein turnover contributes to proteome-transcriptome discrepancies during AD progression.
Collapse
Affiliation(s)
- Jay M Yarbro
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Abhijit Dasgupta
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computer Science and Engineering, SRM University AP, Andhra Pradesh, India
| | - Ka Yang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Him K Shrestha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Masihuz Zaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaiwen Yu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dong Geun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Vanderwall
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xue Zhang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Surendhar R Chepyala
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xusheng Wang
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbora Vagnerova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Qianying He
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Andrew Tang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rui Chang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, West Haven, CT, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Xue WF. Trace_y: Software algorithms for structural analysis of individual helical filaments by three-dimensional contact point reconstruction atomic force microscopy. Structure 2025; 33:363-371.e2. [PMID: 39642871 DOI: 10.1016/j.str.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Atomic force microscopy (AFM) is a powerful and increasingly accessible technology that has a wide range of bio-imaging applications. AFM is capable of producing detailed three-dimensional topographical images with high signal-to-noise ratio, which enables the structural features of individual molecules to be studied without the need for ensemble averaging. Here, a software tool Trace_y, designed to reconstruct the three-dimensional surface envelopes of individual helical filament structures from topographical AFM images, is presented. Workflow using Trace_y is demonstrated on the structural analysis of individual helical amyloid protein fibrils where the assembly mechanism of heterogeneous, complex and diverse fibril populations due to structural polymorphism is not understood. The algorithms presented here allow structural information encoded in topographical AFM height images to be extracted and understood as three-dimensional (3D) contact point clouds. This approach will facilitate the use of AFM in structural biology to understand molecular structures and behaviors at individual molecule level.
Collapse
Affiliation(s)
- Wei-Feng Xue
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK.
| |
Collapse
|
8
|
Baek Y, Kim H, Lee D, Kim D, Jo E, Roh SH, Ha NC. Structural insights into the role of reduced cysteine residues in SOD1 amyloid filament formation. Proc Natl Acad Sci U S A 2025; 122:e2408582122. [PMID: 39874287 PMCID: PMC11804504 DOI: 10.1073/pnas.2408582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025] Open
Abstract
The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity. The C6A/C111A mutant SOD1 formed filaments more rapidly than the WT protein. The mutant structure had a unique paired-protofilament arrangement, with a smaller filament core than that of the single-protofilament structure observed in WT SOD1. Although the single-protofilament form developed more slowly, cross-seeding experiments demonstrated the predominance of single-protofilament morphology over paired protofilaments, regardless of the presence of the Cys6 and Cys111 mutations. These findings highlight the importance of the number of amino acid residues within the filament core in determining the energy requirements for assembly. Our study provides insights into ALS pathogenesis by elucidating the initiation and propagation of filament formation, which potentially leads to deleterious amyloid filaments.
Collapse
Affiliation(s)
- Yeongjin Baek
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Republic of Korea
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg69117, Germany
| | - Dukwon Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Doyeon Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Eunbyul Jo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
9
|
Parvin F, Larsson JNK, Jackson WS, Nyström S, Hammarström P. Efficient Seeding of Cerebral Vascular Aβ-Amyloidosis by Recombinant AβM1-42 Amyloid Fibrils. J Mol Biol 2025; 437:168923. [PMID: 39725269 DOI: 10.1016/j.jmb.2024.168923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Aβ-amyloid plaques and cerebral amyloid angiopathy (CAA) in the brain are pathological hallmarks of Alzheimer's disease (AD) and vascular dementia. The spreading of Aβ amyloidosis in the brain appears to be mediated by a seeding mechanism, where preformed fibrils (called seeds) accelerate Aβ fibril formation by bypassing the rate-determining nucleation step. Several studies have demonstrated that Aβ amyloidosis can be induced in transgenic mice, producing human Aβ, by injecting Aβ-rich brain extracts (seeds) derived from transgenic mice and human AD brains. However, studies on recombinant seeds are limited. Therefore, we investigated the seeding activity of pure recombinant human Aβ fibrils of different compositions. Seeds were inoculated into APP23 mice at the age of 3 months and were analyzed after 6 months of incubation. Recombinant fibril seeds made from Aβ-peptides with an N-terminal methionine (i.e. (preformed fibrils from AβM1-42, AβM1-40, and AβM1-40 + AβM1-42) accelerated Aβ-amyloid plaque formation in vivo compared to non-inoculated transgenic control mice of the same age. In addition, all seeds induced CAA pathology. Interestingly, AβM1-42 containing seeds produced significantly more CAA and amyloid plaques than seeds containing pure AβM1-40, which was surprising given that APP23 mice produce approximately four-fold more Aβ1-40 substrate than Aβ1-42. This study showed that AβM1-42 fibrils are highly potent in seeding CAA and implies that conformational templating occurs in amyloid plaque as deduced by comparative amyloid ligand staining. Our results verify that recombinant Aβ fibrils are transmissible amyloids, and that in vivo seeding can accelerate, and redirect Aβ amyloidosis patterns compared to spontaneous age dependent amyloidosis.
Collapse
Affiliation(s)
- Farjana Parvin
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Johan N K Larsson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Linköping University, 581 85 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| | - Per Hammarström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
10
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Milanesi M, Brotzakis ZF, Vendruscolo M. Transient interactions between the fuzzy coat and the cross-β core of brain-derived Aβ42 filaments. SCIENCE ADVANCES 2025; 11:eadr7008. [PMID: 39813358 PMCID: PMC11734738 DOI: 10.1126/sciadv.adr7008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Several human disorders, including Alzheimer's disease (AD), are characterized by the aberrant formation of amyloid fibrils. In many cases, the amyloid core is flanked by disordered regions, known as fuzzy coat. The structural properties of fuzzy coats, and their interactions with their environments, however, have not been fully described to date. Here, we generate conformational ensembles of two brain-derived amyloid filaments of Aβ42, corresponding respectively to the familial and sporadic forms of AD. Our approach, called metadynamic electron microscopy metainference (MEMMI), provides a characterization of the transient interactions between the fuzzy coat and the cross-β core of the filaments. These calculations indicate that the familial AD filaments are less soluble than the sporadic AD filaments, and that the fuzzy coat contributes to solubilizing both types of filament. These results illustrate how the metainference approach can help analyze cryo-EM maps for the characterization of the properties of amyloid fibrils.
Collapse
Affiliation(s)
- Maria Milanesi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate (MI), Italy
| | - Z. Faidon Brotzakis
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
12
|
Sun W, Yu J, Liang X, Xu R, Yin X, Shen B, Yang Y. Plasmon-Enhanced Fluorescence Based on Gold Nanobipyramids with PEG-Controlled Distance for Near-Infrared and Visual Analysis of Amyloid-β Aggregation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3941-3951. [PMID: 39745392 DOI: 10.1021/acsami.4c18393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The number of cases of Alzheimer's disease (AD) characterized by progressive amnestic syndrome is dramatically increased with population aging. It is urgent to detect and diagnose this disease early. The state of amyloid-beta protein 1-42 (Aβ42) was commonly regarded as a hallmark for early diagnosis of AD. Here, a plasmon-enhanced fluorescence (PEF) sensor based on gold nanobipyramids (Au NBPs) was established for sensitive and visual detection of Aβ42 aggregation. Near-infrared (NIR) emitted boron-dipyrromethene (BODIPY) was employed as a fluorescent substance to obtain a 24-fold turn-on signal to recognize the state of aggregation of Aβ42. The distance between BODIPY and Au NBPs was controlled by the length of polyethylene glycol (PEG). The obtained sensor was applied to real-time and sensitive detection of the state of Aβ42 by detecting the aggregation-dependent color transformation in human neuroblastoma (SH-SY5Y) cells. With the advantage of visual and dynamic detection of the cellular environment, the method can be employed to follow the progression of the Aβ42 protein and has promise as a robust diagnostic tool for AD.
Collapse
Affiliation(s)
- Wen Sun
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jingtian Yu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoyan Liang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Rong Xu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiangyuan Yin
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Baoxing Shen
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
13
|
More SR, Jha SK. Multi-Site Red-Edge Excitation Shift Reveals the Residue-Specific Solvation Dynamics during the Native to Amyloid-like Transition of an Amyloidogenic Protein. J Phys Chem B 2025; 129:176-193. [PMID: 39682034 DOI: 10.1021/acs.jpcb.4c07067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Changes in water-protein interactions are crucial for proteins to achieve functional and nonfunctional conformations during structural transitions by modulating local stability. Amyloid-like protein aggregates in deteriorating neurons are hallmarks of neurodegenerative disorders. These aggregates form through significant structural changes, transitioning from functional native conformations to supramolecular cross-β-sheet structures via misfolded and oligomeric intermediates in a multistep process. However, the site-specific dynamics of water molecules from the native to misfolded conformations and further to oligomeric and compact amyloid structures remain poorly understood. In this study, we used the fluorescence method known as red-edge excitation shift (REES) to investigate the solvation dynamics at specific sites in various equilibrium conformations en route to the misfolding and aggregation of the functional domain of the TDP-43 protein (TDP-43tRRM). We generated three single tryptophan-single cysteine mutants of TDP-43tRRM, with the cysteines at different positions and tryptophan at a fixed position. Each sole cysteine was fluorescently labeled and used as a site-specific fluorophore along with the single tryptophan, creating four monitorable sites for REES studies. By investigating the site-specific extent of REES, we developed a residue-specific solvation dynamics map of TDP-43tRRM during its misfolding and aggregation. Our observations revealed that solvation dynamics progressively became more rigid and heterogeneous to varying extents at different sites during the transition from native to amyloid-like conformations.
Collapse
Affiliation(s)
- Sonal R More
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Sun KT, Mok SA. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Neurotherapeutics 2025:e00512. [PMID: 39755501 DOI: 10.1016/j.neurot.2024.e00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau. We aim to provide an overview of how specific molecular factors can impact aggregation kinetics and aggregate structure to promote disease. Looking toward the future, we highlight some research areas of focus that would accelerate efforts to effectively target protein aggregation in AD.
Collapse
Affiliation(s)
- Kerry T Sun
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
15
|
Tartaglia MC, Ingelsson M. Molecular Therapeutics in Development to Treat Alzheimer's Disease. Mol Diagn Ther 2025; 29:9-24. [PMID: 39316339 PMCID: PMC11748464 DOI: 10.1007/s40291-024-00738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Until recently, only symptomatic therapies, in the form of acetylcholine esterase inhibitors and NMDA-receptor antagonists, have been available for the treatment of Alzheimer's disease. However, advancements in our understanding of the amyloid cascade hypothesis have led to a development of disease-modifying therapeutic strategies. These include immunotherapies based on an infusion of monoclonal antibodies against amyloid-β, three of which have been approved for the treatment of Alzheimer's disease in the USA (one of them, lecanemab, has also been approved in several other countries). They all lead to a dramatic reduction of amyloid plaques in the brain, whereas their clinical effects have been more limited. Moreover, they can all lead to side effects in the form of amyloid-related imaging abnormalities. Ongoing developments aim at facilitating their administration, further improving their effects and reducing the risk for amyloid-related imaging abnormalities. Moreover, a number of anti-tau immunotherapies are in clinical trials, but none has so far shown any robust effects on symptoms or pathology. Another line of development is represented by gene therapy. To date, only antisense oligonucleotides against amyloid precursor protein/amyloid-β and tau have reached the clinical trial stage but a variety of gene editing strategies, such as clustered regularly interspaced short palindromic repeats/Cas9-mediated non-homologous end joining, base editing, and prime editing, have all shown promise on preclinical disease models. In addition, a number of other pharmacological compounds targeting a multitude of biochemical processes, believed to be centrally involved in Alzheimer's disease, are currently being evaluated in clinical trials. This article delves into current and future perspectives on the treatment of Alzheimer's disease, with an emphasis on immunotherapeutic and gene therapeutic strategies.
Collapse
Affiliation(s)
- Maria Carmela Tartaglia
- Krembil Brain Institute, University Health Network, 6th Floor, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, 6th Floor, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Klingstedt T, Shirani H, Parvin F, Nyström S, Hammarström P, Graff C, Ingelsson M, Vidal R, Ghetti B, Sehlin D, Syvänen S, Nilsson KPR. Dual-ligand fluorescence microscopy enables chronological and spatial histological assignment of distinct amyloid-β deposits. J Biol Chem 2025; 301:108032. [PMID: 39615691 PMCID: PMC11731580 DOI: 10.1016/j.jbc.2024.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Different types of deposits comprised of amyloid-β (Aβ) peptides are one of the pathological hallmarks of Alzheimer's disease (AD) and novel methods that enable identification of a diversity of Aβ deposits during the AD continuum are essential for understanding the role of these aggregates during the pathogenesis. Herein, different combinations of five fluorescent thiophene-based ligands were used for detection of Aβ deposits in brain tissue sections from transgenic mouse models with aggregated Aβ pathology, as well as brain tissue sections from patients affected by sporadic or dominantly inherited AD. When analyzing the sections with fluorescence microscopy, distinct ligand staining patterns related to the transgenic mouse model or to the age of the mice were observed. Likewise, specific staining patterns of different Aβ deposits were revealed for sporadic versus dominantly inherited AD, as well as for distinct brain regions in sporadic AD. Thus, by using dual-staining protocols with multiple combinations of fluorescent ligands, a chronological and spatial histological designation of different Aβ deposits could be achieved. This study demonstrates the potential of our approach for resolving the role and presence of distinct Aβ aggregates during the AD continuum and pinpoints the necessity of using multiple ligands to obtain an accurate assignment of different Aβ deposits in the neuropathological evaluation of AD, as well as when evaluating therapeutic strategies targeting Aβ aggregates.
Collapse
Affiliation(s)
- Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Farjana Parvin
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Tanz Centre for Research in Neurodegenerative Diseases, Department of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
17
|
Abraham CB, Lewkowicz E, Gursky O, Straub JE. Elucidating the Mechanism of Recognition and Binding of Heparin to Amyloid Fibrils of Serum Amyloid A. Biochemistry 2024. [PMID: 39688935 DOI: 10.1021/acs.biochem.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Amyloid diseases feature pathologic deposition of normally soluble proteins and peptides as insoluble fibrils in vital organs. Amyloid fibrils co-deposit with various nonfibrillar components including heparan sulfate (HS), a glycosaminoglycan that promotes amyloid formation in vitro for many unrelated proteins. HS-amyloid interactions have been proposed as a therapeutic target for inflammation-linked amyloidosis wherein N-terminal fragments of serum amyloid A (SAA) protein deposit in the kidney and liver. The structural basis for these interactions is unclear. Here, we exploit the high-resolution cryoelectron microscopy (cryo-EM) structures of ex vivo murine and human SAA fibrils in a computational study employing molecular docking, Brownian dynamics simulations, and molecular dynamics simulations to elucidate how heparin, a highly sulfated HS mimetic, recognizes and binds to amyloid protein fibrils. Our results demonstrate that negatively charged heparin chains bind to linear arrays of uncompensated positively charged basic residues along the spines of amyloid fibrils facilitated by electrostatic steering. The predicted heparin binding sites match the location of unidentified densities observed in cryo-EM maps of SAA amyloids, suggesting that these extra densities represent bound HS. Since HS is constitutively found in various amyloid deposits, our results suggest a common mechanism for HS-amyloid recognition and binding.
Collapse
Affiliation(s)
- Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
18
|
Baghel D, Ghosh A. Heterotypic Interactions of Amyloid β and the Islet Amyloid Polypeptide Produce Mixed Aggregates with Non-Native Fibril Structure. J Phys Chem Lett 2024; 15:12197-12205. [PMID: 39625456 PMCID: PMC11781043 DOI: 10.1021/acs.jpclett.4c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Amyloid aggregates are hallmarks of the pathology of a wide range of diseases, including type 2 diabetes (T2D) and Alzheimer's disease (AD). Much epidemiological and pathological evidence points to significant overlap between AD and T2D. Individuals with T2D have a higher likelihood of developing AD; moreover, colocalized aggregates of amyloid β (Aβ) and the islet amyloid polypeptide (IAPP), the two main peptides implicated in the formation of toxic amyloid aggregates in AD and T2D, have also been identified in the brain. However, how these peptides interact with each other is not well understood, and the structural facets of heterotypic mixed fibrils formed via such interactions remain elusive. Here we use atomic force microscopy augmented with infrared spectroscopy to probe the secondary structure of individual aggregates formed via heterotypic interactions of Aβ and IAPP and provide unequivocal direct evidence of mixed aggregates. Furthermore, we show that co-aggregation of the peptides from the monomeric stage leads to the formation of unique polymorphs, in which both peptides undergo structural deviation from their native states, whereas seeding with preformed IAPP fibrils leads to aggregates similar to native Aβ. These findings highlight how heterotypic interactions between amyloidogenic peptides can lead to polymorphic diversity proteinopathies.
Collapse
Affiliation(s)
- Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
19
|
Ruzmetov T, Hung TI, Jonnalagedda SP, Chen SH, Fasihianifard P, Guo Z, Bhanu B, Chang CEA. Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592587. [PMID: 38979147 PMCID: PMC11230202 DOI: 10.1101/2024.05.05.592587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Proteins are inherently dynamic, and their conformational ensembles are functionally important in biology. Large-scale motions may govern protein structure-function relationship, and numerous transient but stable conformations of Intrinsically Disordered Proteins (IDPs) can play a crucial role in biological function. Investigating conformational ensembles to understand regulations and disease-related aggregations of IDPs is challenging both experimentally and computationally. In this paper we first introduce a deep learning-based model, termed Internal Coordinate Net (ICoN), which learns the physical principles of conformational changes from Molecular Dynamics (MD) simulation data. Second, we selected interpolating data points in the learned latent space that rapidly identify novel synthetic conformations with sophisticated and large-scale sidechains and backbone arrangements. Third, with the highly dynamic amyloid-β 1-42 (Aβ42) monomer, our deep learning model provided a comprehensive sampling of Aβ42's conformational landscape. Analysis of these synthetic conformations revealed conformational clusters that can be used to rationalize experimental findings. Additionally, the method can identify novel conformations with important interactions in atomistic details that are not included in the training data. New synthetic conformations showed distinct sidechain rearrangements that are probed by our EPR and amino acid substitution studies. This approach is highly transferable and can be used for any available data for training. The work also demonstrated the ability of deep learning to utilize learned natural atomistic motions in protein conformation sampling.
Collapse
|
20
|
Arutyunyan A, Seuma M, Faure AJ, Bolognesi B, Lehner B. Massively parallel genetic perturbation reveals the energetic architecture of an amyloid beta nucleation reaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604935. [PMID: 39091732 PMCID: PMC11291115 DOI: 10.1101/2024.07.24.604935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Amyloid protein aggregates are pathological hallmarks of more than fifty human diseases but how soluble proteins nucleate to form amyloids is poorly understood. Here we use combinatorial mutagenesis, a kinetic selection assay, and machine learning to massively perturb the energetics of the nucleation reaction of amyloid beta (Aβ42), the protein that aggregates in Alzheimer's disease. In total, we quantify the nucleation rates of >140,000 variants of Aβ42. This allows us to accurately quantify the changes in reaction activation energy for all possible amino acid substitutions in a protein for the first time and, in addition, to quantify >600 energetic interactions between mutations. The data reveal the simple and interpretable genetic architecture of an amyloid nucleation reaction. Strikingly, strong energetic couplings are rare and identify a subset of structural contacts in mature fibrils. Together with the activation energy changes, this strongly suggests that the Aβ42 nucleation reaction transition state is structured in a short C-terminal region, providing a structural model for the reaction that may initiate Alzheimer's disease. We believe this approach can be widely applied to probe the energetics and transition state structures of protein reactions.
Collapse
Affiliation(s)
| | - Mireia Seuma
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Andre J. Faure
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Current address: ALLOX, C/ Dr. Aiguader, 88, PRBB Building, 08003 Barcelona, Spain
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Ben Lehner
- Wellcome Sanger Institute, Cambridge, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
21
|
Cehlar O, Njemoga S, Horvath M, Cizmazia E, Bednarikova Z, Barrera EE. Structures of Oligomeric States of Tau Protein, Amyloid-β, α-Synuclein and Prion Protein Implicated in Alzheimer's Disease, Parkinson's Disease and Prionopathies. Int J Mol Sci 2024; 25:13049. [PMID: 39684761 DOI: 10.3390/ijms252313049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states may be the most toxic agents in the pathogenesis of Alzheimer's and Parkinson's disease. It was shown that oligomers are important players in the aggregation cascade of these proteins. The structural information about these structural states has been provided by methods such as solution and solid-state NMR, cryo-EM, crosslinking mass spectrometry, AFM, TEM, etc., as well as from hybrid structural biology approaches combining experiments with computational modelling and simulations. The reliable structural models of these protein states may provide valuable information for future drug design and therapies.
Collapse
Affiliation(s)
- Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Stefana Njemoga
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Marian Horvath
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Erik Cizmazia
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Zuzana Bednarikova
- Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Kosice, Slovakia
| | - Exequiel E Barrera
- Instituto de Histología y Embriología (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo, Mendoza M5502JMA, Argentina
| |
Collapse
|
22
|
Beeg M, Rocutto B, Battocchio E, Dacomo L, Corbelli A, Fiordaliso F, Balducci C, Gobbi M. The Detection of Toxic Amyloid-β Fibril Fragments Through a Surface Plasmon Resonance Immunoassay. Int J Mol Sci 2024; 25:13020. [PMID: 39684731 DOI: 10.3390/ijms252313020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Amyloid-β1-42 (Aβ42) forms highly stable and insoluble fibrillar structures, representing the principal components of the amyloid plaques present in the brain of Alzheimer's disease (AD) patients. The involvement of Aβ42 in AD-associated neurodegeneration has also been demonstrated, in particular for smaller and soluble aggregates (oligomers). Based on these findings and on genetic evidence, Aβ42 aggregates are considered key players in the pathogenesis of AD and targets for novel therapies. Different approaches are currently used to detect the various aggregation states of Aβ peptide, including spectrophotometric methods, imaging techniques, and immunoassays, but all of these have specific limitations. To overcome them, we have recently exploited the peculiar properties of surface plasmon resonance (SPR) to develop an immunoassay capable of selectively detecting monomers and oligomers, discriminating them also from bigger fibrils in a mixture of different aggregated species, without any manipulation of the solution. In the present study, we extended these previous studies, showing that the SPR-based immunoassay makes it possible to unveil the fibril fragmentation induced mechanically, a result difficult to be conveniently and reliably assessed with other approaches. Moreover, we show that SPR-recognized fibril fragments are more toxic than the larger fibrillar structures, suggesting the relevance of the proposed SPR-based immunoassay.
Collapse
Affiliation(s)
- Marten Beeg
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Beatrice Rocutto
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Elisabetta Battocchio
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Letizia Dacomo
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Alessandro Corbelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Fabio Fiordaliso
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Claudia Balducci
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
23
|
Wilson CB, Lee M, Yau WM, Tycko R. Conformations of a low-complexity protein in homogeneous and phase-separated frozen solutions. Biophys J 2024; 123:4097-4114. [PMID: 39497416 PMCID: PMC11628836 DOI: 10.1016/j.bpj.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/13/2024] Open
Abstract
Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below a temperature TLLPS. To investigate whether local conformational distributions are detectably different in the homogeneous (i.e., single-phase) and phase-separated states of FUS-LC, we performed solid-state NMR (ssNMR) measurements on solutions that were frozen on submillisecond timescales after equilibration at temperatures well above (50°C) or well below (4°C) TLLPS. Measurements were performed at 25 K with signal enhancements from dynamic nuclear polarization. Crosspeak patterns in two-dimensional ssNMR spectra of rapidly frozen solutions in which FUS-LC was uniformly 15N,13C labeled were found to be nearly identical for the two states. Similar results were obtained for solutions in which FUS-LC was labeled only at Thr, Tyr, and Gly residues, as well as solutions of a FUS construct in which five specific residues were labeled by ligation of synthetic and recombinant fragments. These experiments show that local conformational distributions are nearly the same in the homogeneous and phase-separated solutions, despite the much greater protein concentrations and more abundant intermolecular interactions within phase-separated, protein-rich "droplets." Comparison of the experimental results with simulations of the sensitivity of two-dimensional ssNMR crosspeaks to changes in populations of β strand-like conformations suggests that changes in conformational distributions are no larger than 5-10%.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Myungwoon Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
24
|
Schrempel S, Kottwitz AK, Piechotta A, Gnoth K, Büschgens L, Hartlage-Rübsamen M, Morawski M, Schenk M, Kleinschmidt M, Serrano GE, Beach TG, Rostagno A, Ghiso J, Heneka MT, Walter J, Wirths O, Schilling S, Roßner S. Identification of isoAsp7-Aβ as a major Aβ variant in Alzheimer's disease, dementia with Lewy bodies and vascular dementia. Acta Neuropathol 2024; 148:78. [PMID: 39625512 PMCID: PMC11615120 DOI: 10.1007/s00401-024-02824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 12/06/2024]
Abstract
The formation of amyloid-β (Aβ) aggregates in brain is a neuropathological hallmark of Alzheimer's disease (AD). However, there is mounting evidence that Aβ also plays a pathogenic role in other types of dementia and that specific post-translational Aβ modifications contribute to its pathogenic profile. The objective of this study was to test the hypothesis that distinct types of dementia are characterized by specific patterns of post-translationally modified Aβ variants. We conducted a comparative analysis and quantified Aβ as well as Aβ with pyroglutamate (pGlu3-Aβ and pGlu11-Aβ), N-truncation (Aβ(4-X)), isoaspartate racemization (isoAsp7-Aβ and isoAsp27-Aβ), phosphorylation (pSer8-Aβ and pSer26-Aβ) or nitration (3NTyr10-Aβ) modification in post mortem human brain tissue from non-demented control subjects in comparison to tissue classified as pre-symptomatic AD (Pre-AD), AD, dementia with Lewy bodies and vascular dementia. Aβ modification-specific immunohistochemical labelings of brain sections from the posterior superior temporal gyrus were examined by machine learning-based segmentation protocols and immunoassay analyses in brain tissue after sequential Aβ extraction were carried out. Our findings revealed that AD cases displayed the highest concentrations of all Aβ variants followed by dementia with Lewy bodies, Pre-AD, vascular dementia and non-demented controls. With both analytical methods, we identified the isoAsp7-Aβ variant as a highly abundant Aβ form in all clinical conditions, followed by Aβ(4-X), pGlu3-Aβ, pGlu11-Aβ and pSer8-Aβ. These Aβ variants were detected in distinct plaque types of compact, coarse-grained, cored and diffuse morphologies and, with varying frequencies, in cerebral blood vessels. The 3NTyr10-Aβ, pSer26-Aβ and isoAsp27-Aβ variants were not found to be present in Aβ plaques but were detected intraneuronally. There was a strong positive correlation between isoAsp7-Aβ and Thal phase and a moderate negative correlation between isoAsp7-Aβ and performance on the Mini Mental State Examination. Furthermore, the abundance of all Aβ variants was highest in APOE 3/4 carriers. In aggregation assays, the isoAsp7-Aβ, pGlu3-Aβ and pGlu11-Aβ variants showed instant fibril formation without lag phase, whereas Aβ(4-X), pSer26-Aβ and isoAsp27-Aβ did not form fibrils. We conclude that targeting Aβ post-translational modifications, and in particular the highly abundant isoAsp7-Aβ variant, might be considered for diagnostic and therapeutic approaches in different types of dementia. Hence, our findings might have implications for current antibody-based therapies of AD.
Collapse
Affiliation(s)
- Sarah Schrempel
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Anna Katharina Kottwitz
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Kathrin Gnoth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Mathias Schenk
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Martin Kleinschmidt
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Jochen Walter
- Center of Neurology, Molecular Cell Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Stephan Schilling
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Steffen Roßner
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany.
| |
Collapse
|
25
|
Chang HW, Yang CI, Chan JCC. Incubation of Amyloidogenic Peptides in Reverse Micelles Allow Active Control of Oligomer Size and Study of Protein-Protein Interactions. ChemMedChem 2024; 19:e202400310. [PMID: 39090029 DOI: 10.1002/cmdc.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Studies of the structure and dynamics of oligomeric aggregates of amyloidogenic peptides pose challenges due to their transient nature. This concept article provides a brief overview of various nucleation mechanisms with reference to the classical nucleation theory and illustrates the advantages of incubating amyloidogenic peptides in reverse micelles (RMs). The use of RMs not only facilitates size regulation of oligomeric aggregates but also provides an avenue to explore protein-protein interactions among the oligomeric aggregates of various amyloidogenic peptides. Additionally, we envision the feasibility of preparing brain tissue-derived oligomeric aggregates using RMs, potentially advancing the development of monoclonal antibodies with enhanced potency against these pathological species in vivo.
Collapse
Affiliation(s)
- Han-Wen Chang
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chien-I Yang
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
26
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Wu X, Shirani H, Vidal R, Ghetti B, Ingelsson M, Klingstedt T, Nilsson KPR. Distinct Chemical Determinants are Essential for Achieving Ligands for Superior Optical Detection of Specific Amyloid-β Deposits in Alzheimer's Disease. ChemistryOpen 2024; 13:e202400186. [PMID: 39508558 PMCID: PMC11625938 DOI: 10.1002/open.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aggregated forms of different proteins are common hallmarks for several neurodegenerative diseases, including Alzheimer's disease, and ligands that selectively detect specific protein aggregates are vital. Herein, we investigate the molecular requirements of thiophene-vinyl-benzothiazole based ligands to detect a specific type of Aβ deposits found in individuals with dominantly inherited Alzheimer's disease caused by the Arctic APP E693G mutation. The staining of these Aβ deposits was alternated when switching the terminal heterocyclic moiety attached to the thiophene-vinyl-benzothiazole scaffold. The most prevalent staining was observed for ligands having a terminal 3-methyl-1H-indazole moiety or a terminal 1,2-dimethoxybenzene moiety, verifying that specific molecular interactions between these ligands and the aggregates were necessary. The synthesis of additional thiophene-vinyl-benzothiazole ligands aided in pinpointing additional crucial chemical determinants, such as positioning of nitrogen atoms and methyl substituents, for achieving optimal staining of Aβ aggregates. When combining the optimized thiophene-vinyl-benzothiazole based ligands with a conventional ligand, CN-PiB, distinct staining patterns were observed for sporadic Alzheimer's disease versus dominantly inherited Alzheimer's disease caused by the Arctic APP E693G mutation. Our findings provide chemical insights for developing novel ligands that allow for a more precise assignment of Aβ deposits, and might also aid in creating novel agents for clinical imaging of distinct Aβ aggregates in AD.
Collapse
Affiliation(s)
- Xiongyu Wu
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - Hamid Shirani
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - Ruben Vidal
- Department of Pathology and Laboratory MedicineIndiana University School of Medicine46202Indianapolis, IndianaUSA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory MedicineIndiana University School of Medicine46202Indianapolis, IndianaUSA
| | - Martin Ingelsson
- Krembil Brain InstituteUniversity Health NetworkM5T 1 M8Toronto, OntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseasesDepartments of Medicine and Laboratory Medicine & PathobiologyUniversity of TorontoM5T 0S8Toronto, OntarioCanada
- Molecular GeriatricsDepartment of Public Health and Caring SciencesUppsala UniversitySE-751 85UppsalaSweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| |
Collapse
|
28
|
Iwata N, Tsubuki S, Sekiguchi M, Watanabe-Iwata K, Matsuba Y, Kamano N, Fujioka R, Takamura R, Watamura N, Kakiya N, Mihira N, Morito T, Shirotani K, Mann DM, Robinson AC, Hashimoto S, Sasaguri H, Saito T, Higuchi M, Saido TC. Metabolic resistance of Aβ3pE-42, a target epitope of the anti-Alzheimer therapeutic antibody, donanemab. Life Sci Alliance 2024; 7:e202402650. [PMID: 39348937 PMCID: PMC11443169 DOI: 10.26508/lsa.202402650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
The amyloid β peptide (Aβ), starting with pyroglutamate (pE) at position 3 and ending at position 42 (Aβ3pE-42), predominantly accumulates in the brains of Alzheimer's disease. Consistently, donanemab, a therapeutic antibody raised against Aβ3pE-42, has been shown to be effective in recent clinical trials. Although the primary Aβ produced physiologically is Aβ1-40/42, an explanation for how and why this physiological Aβ is converted to the pathological form remains elusive. Here, we present experimental evidence that accounts for the aging-associated Aβ3pE-42 deposition: Aβ3pE-42 was metabolically more stable than other Aβx-42 variants; deficiency of neprilysin, the major Aβ-degrading enzyme, induced a relatively selective deposition of Aβ3pE-42 in both APP transgenic and App knock-in mouse brains; Aβ3pE-42 deposition always colocalized with Pittsburgh compound B-positive cored plaques in APP transgenic mouse brains; and under aberrant conditions, such as a significant reduction in neprilysin activity, aminopeptidases, dipeptidyl peptidases, and glutaminyl-peptide cyclotransferase-like were up-regulated in the progression of aging, and a proportion of Aβ1-42 may be processed to Aβ3pE-42. Our findings suggest that anti-Aβ therapies are more effective if given before Aβ3pE-42 deposition.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Tsubuki
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Kaori Watanabe-Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Risa Takamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takahiro Morito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Keiro Shirotani
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - David Ma Mann
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
29
|
Perdok A, Van Acker ZP, Vrancx C, Sannerud R, Vorsters I, Verrengia A, Callaerts-Végh Z, Creemers E, Gutiérrez Fernández S, D'hauw B, Serneels L, Wierda K, Chávez-Gutiérrez L, Annaert W. Altered expression of Presenilin2 impacts endolysosomal homeostasis and synapse function in Alzheimer's disease-relevant brain circuits. Nat Commun 2024; 15:10412. [PMID: 39613768 DOI: 10.1038/s41467-024-54777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Rare mutations in the gene encoding presenilin2 (PSEN2) are known to cause familial Alzheimer's disease (FAD). Here, we explored how altered PSEN2 expression impacts on the amyloidosis, endolysosomal abnormalities, and synaptic dysfunction observed in female APP knock-in mice. We demonstrate that PSEN2 knockout (KO) as well as the FAD-associated N141IKI mutant accelerate AD-related pathologies in female mice. Both models showed significant deficits in working memory that linked to elevated PSEN2 expression in the hippocampal CA3 region. The mossy fiber circuit of APPxPSEN2KO and APPxFADPSEN2 mice had smaller pre-synaptic compartments, distinct changes in synaptic vesicle populations and significantly impaired long term potentiation compared to APPKI mice. At the cellular level, altered PSEN2 expression resulted in endolysosomal defects and lowered surface expression of synaptic proteins. As PSEN2/γ-secretase is restricted to late endosomes/lysosomes, we propose PSEN2 impacts endolysosomal homeostasis, affecting synaptic signaling in AD-relevant vulnerable brain circuits; which could explain how mutant PSEN2 accelerates AD pathogenesis.
Collapse
Affiliation(s)
- Anika Perdok
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Assunta Verrengia
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Zsuzsanna Callaerts-Végh
- mINT Animal Behavior Facility, Faculty of Psychology, KU Leuven, Tiensestraat 102, Leuven, Belgium
| | - Eline Creemers
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Sara Gutiérrez Fernández
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Laboratory of Proteolytic Mechanisms mediating Neurodegeneration, Leuven, Belgium
| | - Britt D'hauw
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Lutgarde Serneels
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Mouse Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Keimpe Wierda
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Lucía Chávez-Gutiérrez
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Laboratory of Proteolytic Mechanisms mediating Neurodegeneration, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium.
| |
Collapse
|
30
|
An X, He J, Bi B, Wu G, Xu J, Yu W, Ren Z. The role of astrocytes in Alzheimer's disease: a bibliometric analysis. Front Aging Neurosci 2024; 16:1481748. [PMID: 39665038 PMCID: PMC11632101 DOI: 10.3389/fnagi.2024.1481748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder marked by cognitive decline and memory loss. Recent research underscores the crucial role of astrocytes in AD. This study reviews research trends and contributions on astrocytes in AD from 2000 to 2024, shedding light on the evolving research landscape. Methods We conducted a bibliometric analysis using data from the Web of Science Core Collection, covering publications from January 1, 2000, to July 6, 2024, on "Alzheimer's disease" and "astrocytes." We identified 5,252 relevant English articles and reviews. For data visualization and analysis, we used VOSviewer, CiteSpace, and the R package "bibliometrix," examining collaboration networks, co-citation networks, keyword co-occurrence, and thematic evolution. Results Between 2000 and 2024, 5,252 publications were identified, including 4,125 original research articles and 1,127 review articles. Publications increased significantly after 2016. The United States had the most contributions (1,468), followed by China (836). Major institutions were the University of California system (517) and Harvard University (402). The Journal of Alzheimer's Disease published the most articles (215). Verkhratsky A was the top author with 51 papers and 1,585 co-citations. Conclusion Our extensive bibliometric analysis indicates a significant increase in research on astrocytes in AD over the past 20 years. This study emphasizes the growing acknowledgment of astrocytes' crucial role in AD pathogenesis and points to future research on their mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Xiaoqiong An
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
| | - Jun He
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bin Bi
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Gang Wu
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianwei Xu
- Guizhou Provincial Center for Clinical Laboratory, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, China
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhenkui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
| |
Collapse
|
31
|
Kaji S, Berghoff SA, Spieth L, Schlaphoff L, Sasmita AO, Vitale S, Büschgens L, Kedia S, Zirngibl M, Nazarenko T, Damkou A, Hosang L, Depp C, Kamp F, Scholz P, Ewers D, Giera M, Ischebeck T, Wurst W, Wefers B, Schifferer M, Willem M, Nave KA, Haass C, Arzberger T, Jäkel S, Wirths O, Saher G, Simons M. Apolipoprotein E aggregation in microglia initiates Alzheimer's disease pathology by seeding β-amyloidosis. Immunity 2024; 57:2651-2668.e12. [PMID: 39419029 DOI: 10.1016/j.immuni.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-β (Aβ) amyloidosis and in human AD brain autopsies. These APOE aggregates that stained positive for β sheet-binding dyes triggered Aβ amyloidosis within the endo-lysosomal system of microglia, in a process influenced by microglial lipid metabolism and the JAK/STAT signaling pathway. Taking these observations together, we propose a model for the onset of Aβ amyloidosis in AD, suggesting that the endocytic uptake and aggregation of APOE by microglia can initiate Aβ plaque formation.
Collapse
Affiliation(s)
- Seiji Kaji
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stefan A Berghoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Lena Spieth
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lennart Schlaphoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andrew O Sasmita
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Simona Vitale
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Shreeya Kedia
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martin Zirngibl
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Taisiia Nazarenko
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, Göttingen, Germany
| | - Constanze Depp
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Frits Kamp
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - David Ewers
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany; Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Klaus-Armin Nave
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Gesine Saher
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
32
|
Yang T, Hou X, Li X, Chen X, Qu Z, Zhang W, Wang M, Li J. Altered static brain activity and functional connectivity after heat stroke. Neuroreport 2024; 35:1035-1040. [PMID: 39292952 DOI: 10.1097/wnr.0000000000002096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
This study aimed to investigate the alteration of brain function based on resting-state functional MRI in patients after heat stroke. This study included 10 cases of patients after heat stroke and 10 cases of healthy controls. Abnormal brain function was calculated using amplitude of low-frequency fluctuations (ALFF) and degree centrality analysis, as well as functional connectivity analysis based on regions of interest (ROI). Correlation analyses were performed to evaluate the association between brain function changes and clinical scales. Combining ALFF and degree centrality results, the decreased brain regions included the left cuneus and the right angular gyrus, while the increased brain regions included the right cerebellar_Crus1. Using the left cuneus with significant differences in ALFF and degree centrality as ROI, the functional connectivity results revealed decreased brain regions including bilateral lingual gyrus, bilateral postcentral cingulate gyrus, and left precentral gyrus. The degree centrality value of the right cerebellar_Crus1 was positively correlated with glasgow coma scale (GCS) scores ( r = 0.726, P = 0.027), and the functional connectivity value of the right posterior cingulate gyrus was positively correlated with GCS scores ( r = 0.717, P = 0.030). Heat stroke patients exhibit abnormal activity in multiple brain regions, which has important clinical significance for evaluating the severity of the disease.
Collapse
Affiliation(s)
- Ting Yang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University
| | - Xinyu Hou
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University
| | - Xu Li
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University
| | - Xiaoxin Chen
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University
| | - Zhengwei Qu
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University
| | - Wenzheng Zhang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University
| | - Maoyang Wang
- Department of Imaging Technology, School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Jun Li
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University
| |
Collapse
|
33
|
Song Z, Tang H, Gatch A, Sun Y, Ding F. Islet amyloid polypeptide fibril catalyzes amyloid-β aggregation by promoting fibril nucleation rather than direct axial growth. Int J Biol Macromol 2024; 279:135137. [PMID: 39208885 PMCID: PMC11469950 DOI: 10.1016/j.ijbiomac.2024.135137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aberrant aggregation of amyloid-β (Aβ) and islet amyloid polypeptide (IAPP) into amyloid fibrils underlies the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes (T2D), respectively. T2D significantly increases AD risk, with evidence suggesting that IAPP and Aβ co-aggregation and cross-seeding might contribute to the cross-talk between two diseases. Experimentally, preformed IAPP fibril seeds can accelerate Aβ aggregation, though the cross-seeding mechanism remains elusive. Here, we computationally demonstrated that Aβ monomer preferred to bind to the elongation ends of preformed IAPP fibrils. However, due to sequence mismatch, the Aβ monomer could not directly grow onto IAPP fibrils by forming multiple stable β-sheets with the exposed IAPP peptides. Conversely, in our control simulations of self-seeding, the Aβ monomer could axially grow on the Aβ fibril, forming parallel in-register β-sheets. Additionally, we showed that the IAPP fibril could catalyze Aβ fibril nucleation by promoting the formation of parallel in-register β-sheets in the C-terminus between bound Aβ peptides. This study enhances our understanding of the molecular interplay between Aβ and IAPP, shedding light on the cross-seeding mechanisms potentially linking T2D and AD. Our findings also underscore the importance of clearing IAPP deposits in T2D patients to mitigate AD risk.
Collapse
Affiliation(s)
- Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States; Department of Engineering Mechanics, Hohai University, Nanjing 210098, China
| | - Adam Gatch
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States; School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
34
|
Jin Y, Du Q, Song M, Kang R, Zhou J, Zhang H, Ding Y. Amyloid-β-targeting immunotherapies for Alzheimer's disease. J Control Release 2024; 375:346-365. [PMID: 39271059 DOI: 10.1016/j.jconrel.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Recent advances in clinical passive immunotherapy have provided compelling evidence that eliminating amyloid-β (Aβ) slows cognitive decline in Alzheimer's disease (AD). However, the modest benefits and side effects observed in clinical trials indicate that current immunotherapy therapy is not a panacea, highlighting the need for a deeper understanding of AD mechanisms and the significance of early intervention through optimized immunotherapy or immunoprevention. This review focuses on the centrality of Aβ pathology in AD and summarizes recent clinical progress in passive and active immunotherapies targeting Aβ, discussing their lessons and failures to inform future anti-Aβ biotherapeutics design. Various delivery strategies to optimize Aβ-targeting immunotherapies are outlined, highlighting their benefits and drawbacks in overcoming challenges such as poor stability and limited tissue accessibility of anti-Aβ biotherapeutics. Additionally, the perspectives and challenges of immunotherapy and immunoprevention targeting Aβ are concluded in the end, aiming to guide the development of next-generation anti-Aβ immunotherapeutic agents towards improved efficacy and safety.
Collapse
Affiliation(s)
- Yi Jin
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qiaofei Du
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mingjie Song
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Kang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jianping Zhou
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Huaqing Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yang Ding
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
35
|
Jayaraman S, Narula N, Narula J, Gursky O. Amyloid and collagen templates in aortic valve calcification. Trends Mol Med 2024; 30:1010-1019. [PMID: 38845326 PMCID: PMC11563925 DOI: 10.1016/j.molmed.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 11/16/2024]
Abstract
Calcific aortic valve disease (CAVD) is a widely prevalent heart disorder in need of pharmacological interventions. Calcified areas in aortic valves often contain amyloid fibrils that promote calcification in vitro. This opinion paper suggests that amyloid contributes to CAVD development; amyloid-assisted nucleation can accelerate hydroxyapatite deposition onto collagen matrix. Notably, acidic arrays in amyloid match calcium-calcium spacing in the amorphous hydroxyapatite precursor, while oscillating hemodynamic perturbations promote amyloid deposition in the valve. Lipoprotein(a), a genetic risk factor for CAVD, augments calcification via several mechanisms, wherein hydrolysis of oxidized phospholipids (oxPLs) by Lp(a)-associated enzymes helps generate orthophosphate, and apolipoprotein(a) blocks plasmin-induced fibril degradation. Current studies of amyloid-calcium-collagen interactions in solution and in fibrillar complexes allow deeper insight into the role of amyloid in calcification.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Navneet Narula
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Jagat Narula
- University of Texas Health Sciences Center, Houston, TX, USA
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
36
|
Isidro F. Brain aging and Alzheimer's disease, a perspective from non-human primates. Aging (Albany NY) 2024; 16:13145-13171. [PMID: 39475348 PMCID: PMC11552644 DOI: 10.18632/aging.206143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/03/2024] [Indexed: 11/07/2024]
Abstract
Brain aging is compared between Cercopithecinae (macaques and baboons), non-human Hominidae (chimpanzees, orangutans, and gorillas), and their close relative, humans. β-amyloid deposition in the form of senile plaques (SPs) and cerebral β-amyloid angiopathy (CAA) is a frequent neuropathological change in non-human primate brain aging. SPs are usually diffuse, whereas SPs with dystrophic neurites are rare. Tau pathology, if present, appears later, and it is generally mild or moderate, with rare exceptions in rhesus macaques and chimpanzees. Behavior and cognitive impairment are usually mild or moderate in aged non-human primates. In contrast, human brain aging is characterized by early tau pathology manifested as neurofibrillary tangles (NFTs), composed of paired helical filaments (PHFs), progressing from the entorhinal cortex, hippocampus, temporal cortex, and limbic system to other brain regions. β-amyloid pathology appears decades later, involves the neocortex, and progresses to the paleocortex, diencephalon, brain stem, and cerebellum. SPs with dystrophic neurites containing PHFs and CAA are common. Cognitive impairment and dementia of Alzheimer's type occur in about 1-5% of humans aged 65 and about 25% aged 85. In addition, other proteinopathies, such as limbic-predominant TDP-43 encephalopathy, amygdala-predominant Lewy body disease, and argyrophilic grain disease, primarily affecting the archicortex, paleocortex, and amygdala, are common in aged humans but non-existent in non-human primates. These observations show that human brain aging differs from brain aging in non-human primates, and humans constitute the exception among primates in terms of severity and extent of brain aging damage.
Collapse
Affiliation(s)
- Ferrer Isidro
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
- Reial Acadèmia de Medicina de Catalunya, Barcelona, Spain
| |
Collapse
|
37
|
Huang G, Song Z, Xu Y, Sun Y, Ding F. Deciphering the Morphological Difference of Amyloid-β Fibrils in Familial and Sporadic Alzheimer's Diseases. J Chem Inf Model 2024; 64:8024-8033. [PMID: 39382320 PMCID: PMC11590496 DOI: 10.1021/acs.jcim.4c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The aggregation of amyloid-β (Aβ) into amyloid fibrils is the major pathological hallmark of Alzheimer's disease (AD). Aβ fibrils can adopt a variety of morphologies, the relative populations of which are recently found to be associated with different AD subtypes such as familial and sporadic AD (fAD and sAD, respectively). The two AD subtypes differ in their ages of onset, AD-related genetic predispositions, and dominant Aβ fibril morphologies. We postulate that these disease subtype-dependent fibril morphology differences can be attributed to the intrinsic fibril properties and interacting molecules in the environment. Using atomistic discrete molecular dynamics simulations, we demonstrated that the fAD-dominant morphology exhibited a lower free-energy barrier for fibril growth but also a lower stability compared with the sAD-dominant fibril morphology, resulting in the time-dependent population change consistent with experimental observations. Additionally, we studied the effect of the Bri2 BRICHOS domain, an endogenous protein that has been reported to inhibit Aβ aggregation by preferential binding to fibrils, as one of the possible environmental factors. The Bri2 BRICHOS domain showed stronger binding to the fAD-dominant fibril than the sAD-dominant fibril in silico, suggesting a more effective suppression of fAD-dominant fibril formation. This result explains the high population of the sAD-dominant fibril morphology in sporadic cases with normal Bri2 functions. Genetic predisposition in fAD, on the other hand, might impair or overwhelm Bri2 functions, leading to a high population of fAD-associated fibril morphology. Together, our computational findings provide a theoretical framework for elucidating the AD subtypes entailed by distinct dominant amyloid fibril morphologies.
Collapse
Affiliation(s)
- Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yun Xu
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
38
|
Yarbro JM, Han X, Dasgupta A, Yang K, Liu D, Shrestha HK, Zaman M, Wang Z, Yu K, Lee DG, Vanderwall D, Niu M, Sun H, Xie B, Chen PC, Jiao Y, Zhang X, Wu Z, Fu Y, Li Y, Yuan ZF, Wang X, Poudel S, Vagnerova B, He Q, Tang A, Ronaldson PT, Chang R, Yu G, Liu Y, Peng J. Human-mouse proteomics reveals the shared pathways in Alzheimer's disease and delayed protein turnover in the amyloidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620263. [PMID: 39484428 PMCID: PMC11527136 DOI: 10.1101/2024.10.25.620263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Murine models of Alzheimer's disease (AD) are crucial for elucidating disease mechanisms but have limitations in fully representing AD molecular complexities. We comprehensively profiled age-dependent brain proteome and phosphoproteome (n > 10,000 for both) across multiple mouse models of amyloidosis. We identified shared pathways by integrating with human metadata, and prioritized novel components by multi-omics analysis. Collectively, two commonly used models (5xFAD and APP-KI) replicate 30% of the human protein alterations; additional genetic incorporation of tau and splicing pathologies increases this similarity to 42%. We dissected the proteome-transcriptome inconsistency in AD and 5xFAD mouse brains, revealing that inconsistent proteins are enriched within amyloid plaque microenvironment (amyloidome). Determining the 5xFAD proteome turnover demonstrates that amyloid formation delays the degradation of amyloidome components, including Aβ-binding proteins and autophagy/lysosomal proteins. Our proteomic strategy defines shared AD pathways, identify potential new targets, and underscores that protein turnover contributes to proteome-transcriptome discrepancies during AD progression.
Collapse
Affiliation(s)
- Jay M Yarbro
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Abhijit Dasgupta
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Andhra Pradesh 522240, India
- These authors contributed equally
| | - Ka Yang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Him K Shrestha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Masihuz Zaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaiwen Yu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dong Geun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Vanderwall
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xue Zhang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Barbora Vagnerova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Qianying He
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Andrew Tang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Rui Chang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Research Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
39
|
Kang W, Lu Y, Etaka JC, Salsbury FR, Derreumaux P. Structural Insight into Melatonin's Influence on the Conformation of Aβ42 Dimer Studied by Molecular Dynamics Simulation. J Phys Chem B 2024; 128:9947-9958. [PMID: 39364725 DOI: 10.1021/acs.jpcb.4c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The accumulation of amyloid-beta (Aβ) oligomers is recognized as a potential culprit in Alzheimer's disease (AD). Experimental studies show that melatonin, a hormone that mainly regulates circadian rhythm and sleep, can interact with Aβ peptides and disrupt the formation of oligomers. However, how melatonin inhibits the oligomerization of soluble Aβ is unclear. Here, by computational simulations, we investigate the effect of different levels of melatonin on the conformation of the Aβ42 dimer. We find that the conformation of the Aβ42 dimer is dependent on melatonin levels. When melatonin is absent, the dimer mainly forms a parallel β-sheet in the CHC region. When one melatonin molecule is present, the overall conformation of the dimer does not change much, but the N-terminal of the dimer tends to adopt antiparallel β-sheets. When two melatoinin molecules are present, the Aβ42 dimer exhibits significant structural change, especially in its central region, resulting in a more compact conformation, and forms parallel β-sheets in the C-terminal. This conformational difference induced by different levels of melatoinin can shed light on the protective role of melatonin.
Collapse
Affiliation(s)
- Wei Kang
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- School of Physics, Xidian University, Xi'an 710071, China
| | - Yan Lu
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- School of Physics, Xidian University, Xi'an 710071, China
| | - Judith C Etaka
- School of Physics, Xidian University, Xi'an 710071, China
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, United States
| | - Philippe Derreumaux
- UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, Paris 75005, France
- Institut Universitaire de France (IUF), Université Paris Cité, Paris 75005, France
| |
Collapse
|
40
|
Kenyaga JM, Qiang W. Extraction of In-Cell β-Amyloid Fibrillar Aggregates for Studying Molecular-Level Structural Propagations Using Solid-State NMR Spectroscopy. Biochemistry 2024; 63:2557-2564. [PMID: 39348718 DOI: 10.1021/acs.biochem.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Molecular-level structural polymorphisms of β-amyloid (Aβ) fibrils have recently been recognized as pathologically significant. High-resolution solid-state nuclear magnetic resonance (ssNMR) spectroscopy has been utilized to study these structural polymorphisms, particularly in ex-vivo fibrils seeded from amyloid extracts of post-mortem brain tissues of Alzheimer's disease (AD) patients. One unaddressed question in current ex-vivo seeding protocol is whether fibrillation from exogenous monomeric Aβ peptides, added to the extracted seeds, can be quantitatively suppressed. Addressing this issue is critical because uncontrolled fibrillation could introduce biased molecular structural polymorphisms in the resulting fibrils. Here, we present a workflow to optimize the key parameters of ex-vivo seeding protocols, focusing on the quantification of amyloid extraction and the selection of exogenous monomeric Aβ concentrations to minimize nonseeded fibrillation. We validate this workflow using three structurally different 40-residue Aβ (Aβ40) fibrillar seeds, demonstrating their ability to propagate their structural features to exogenous wild-type Aβ40.
Collapse
Affiliation(s)
- June M Kenyaga
- Department of Chemistry, Binghamton University, the State University of New York, Vestal, New York 13850, United States
| | - Wei Qiang
- Department of Chemistry, Binghamton University, the State University of New York, Vestal, New York 13850, United States
| |
Collapse
|
41
|
Kell DB, Pretorius E. Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots. Int J Mol Sci 2024; 25:10809. [PMID: 39409138 PMCID: PMC11476703 DOI: 10.3390/ijms251910809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots' resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
42
|
Thompson M, Martín M, Olmo TS, Rajesh C, Koo PK, Bolognesi B, Lehner B. Massive experimental quantification of amyloid nucleation allows interpretable deep learning of protein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603366. [PMID: 39071305 PMCID: PMC11275847 DOI: 10.1101/2024.07.13.603366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Protein aggregation is a pathological hallmark of more than fifty human diseases and a major problem for biotechnology. Methods have been proposed to predict aggregation from sequence, but these have been trained and evaluated on small and biased experimental datasets. Here we directly address this data shortage by experimentally quantifying the amyloid nucleation of >100,000 protein sequences. This unprecedented dataset reveals the limited performance of existing computational methods and allows us to train CANYA, a convolution-attention hybrid neural network that accurately predicts amyloid nucleation from sequence. We adapt genomic neural network interpretability analyses to reveal CANYA's decision-making process and learned grammar. Our results illustrate the power of massive experimental analysis of random sequence-spaces and provide an interpretable and robust neural network model to predict amyloid nucleation.
Collapse
Affiliation(s)
- Mike Thompson
- Systems and Synthetic Biology, Centre for Genomic Regulation, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Mariano Martín
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Trinidad Sanmartín Olmo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Chandana Rajesh
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Peter K. Koo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Systems and Synthetic Biology, Centre for Genomic Regulation, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
43
|
Jang J, Joo S, Yeom J, Jo Y, Zhang J, Hong S, Park CB. Lateral Piezoelectricity of Alzheimer's Aβ Aggregates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406678. [PMID: 39159132 PMCID: PMC11497015 DOI: 10.1002/advs.202406678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disorder in the elderly aged over 65. The extracellular accumulation of beta-amyloid (Aβ) aggregates in the brain is considered as the major event worsening the AD symptoms, but its underlying reason has remained unclear. Here the piezoelectric characteristics of Aβ aggregates are revealed. The vector piezoresponse force microscopy (PFM) analysis results exhibit that Aβ fibrils have spiraling piezoelectric domains along the length and a lateral piezoelectric constant of 44.1 pC N-1. Also, the continuous sideband Kelvin probe force microscopy (KPFM) images display that the increment of charge-induced surface potential on a single Aβ fibril is allowed to reach above +1700 mV in response to applied forces. These findings shed light on the peculiar mechano-electrical surface properties of pathological Aβ fibrils that exceed those of normal body components.
Collapse
Affiliation(s)
- Jinhyeong Jang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
- Applied Science Research InstituteKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Soyun Joo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Jiwon Yeom
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Yonghan Jo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Jingshu Zhang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| |
Collapse
|
44
|
Diessner E, Thomas LJ, Butts CT. Production of Distinct Fibrillar, Oligomeric, and Other Aggregation States from Network Models of Multibody Interaction. J Chem Theory Comput 2024; 20. [PMID: 39259851 PMCID: PMC11448054 DOI: 10.1021/acs.jctc.4c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Protein aggregation can produce a wide range of states, ranging from fibrillar structures and oligomers to unstructured and semistructured gel phases. Recent work has shown that many of these states can be recapitulated by relatively simple, topological models specified in terms of multibody interaction energies, providing a direct connection between aggregate intermolecular forces and aggregation products. Here, we examine a low-dimensional network Hamiltonian model (NHM) based on four basic multibody interactions found in any aggregate system. We characterize the phase behavior of this NHM family, showing that fibrils arise from a balance between elongation-inducing and contact-inhibiting forces. Complex oligomers (including annular oligomers resembling those thought to be toxic species in Alzheimer's disease) also form distinct phases in this regime, controlled in part by closure-inducing forces. We show that phase structure is largely independent of system size, and provide evidence of a rich structure of minor oligomeric phases that can arise from appropriate conditions. We characterize the phase behavior of this NHM family, demonstrating the range of ordered and disordered aggregation states possible with this set of interactions. As we show, fibrils arise from a balance between elongation-inducing and contact-inhibiting forces, existing in a regime bounded by gel-like and disaggregated phases; complex oligomers (including annular oligomers resembling those thought to be toxic species in Alzheimer's disease) also form distinct phases in this regime, controlled in part by closure-inducing forces. We show that phase structure is largely independent of system size, allowing generalization to macroscopic systems, and provide evidence of a rich structure of minor oligomeric phases that can arise from appropriate conditions.
Collapse
Affiliation(s)
- Elizabeth
M. Diessner
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Loring J. Thomas
- Department
of Sociology, University of California, Irvine, California 92697, United States
| | - Carter T. Butts
- Department
of Sociology, University of California, Irvine, California 92697, United States
- Departments
of Statistics, Computer Science, and EECS, University of California, Irvine, California 92697, United States
| |
Collapse
|
45
|
Avey DR, Ng B, Vialle RA, Kearns NA, de Paiva Lopes K, Iatrou A, De Tissera S, Vyas H, Saunders DM, Flood DJ, Xu J, Tasaki S, Gaiteri C, Bennett DA, Wang Y. Uncovering Plaque-Glia Niches in Human Alzheimer's Disease Brains Using Spatial Transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611566. [PMID: 39314329 PMCID: PMC11418937 DOI: 10.1101/2024.09.05.611566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyloid-beta (Aβ) plaques and surrounding glial activation are prominent histopathological hallmarks of Alzheimer's Disease (AD). However, it is unclear how Aβ plaques interact with surrounding glial cells in the human brain. Here, we applied spatial transcriptomics (ST) and immunohistochemistry (IHC) for Aβ, GFAP, and IBA1 to acquire data from 258,987 ST spots within 78 postmortem brain sections of 21 individuals. By coupling ST and adjacent-section IHC, we showed that low Aβ spots exhibit transcriptomic profiles indicative of greater neuronal loss than high Aβ spots, and high-glia spots present transcriptomic changes indicative of more significant inflammation and neurodegeneration. Furthermore, we observed that this ST glial response bears signatures of reported mouse gene modules of plaque-induced genes (PIG), oligodendrocyte (OLIG) response, disease-associated microglia (DAM), and disease-associated astrocytes (DAA), as well as different microglia (MG) states identified in human AD brains, indicating that multiple glial cell states arise around plaques and contribute to local immune response. We then validated the observed effects of Aβ on cell apoptosis and plaque-surrounding glia on inflammation and synaptic loss using IHC. In addition, transcriptomic changes of iPSC-derived microglia-like cells upon short-interval Aβ treatment mimic the ST glial response and mirror the reported activated MG states. Our results demonstrate an exacerbation of synaptic and neuronal loss in low-Aβ or high-glia areas, indicating that microglia response to Aβ-oligomers likely initiates glial activation in plaque-glia niches. Our study lays the groundwork for future pathology genomics studies, opening the door for investigating pathological heterogeneity and causal effects in neurodegenerative diseases.
Collapse
|
46
|
Muhammedkutty FNK, Zhou HX. Membrane-assisted Aβ40 aggregation pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611426. [PMID: 39282376 PMCID: PMC11398458 DOI: 10.1101/2024.09.05.611426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Alzheimer's disease (AD) is caused by the assembly of amyloid-beta (Aβ) peptides into oligomers and fibrils. Endogenous Aβ aggregation may be assisted by cell membranes, which can accelerate the nucleation step enormously, but knowledge of membrane-assisted aggregation is still very limited. Here we used extensive MD simulations to structurally and energetically characterize key intermediates along the membrane-assisted aggregation pathways of Aβ40. Reinforcing experimental observations, the simulations reveal unique roles of GM1 ganglioside and cholesterol in stabilizing membrane-embedded β-sheets and of Y10 and K28 in the ordered release of a small oligomeric seed into solution. The same seed leads to either an open-shaped or R-shaped fibril, with significant stabilization provided by inter- or intra-subunit interfaces between a straight β-sheet (residues Q15-D23) and a bent β-sheet (residues A30-V36). This work presents the first comprehensive picture of membrane-assisted aggregation of Aβ40, with broad implications for developing AD therapies and rationalizing disease-specific polymorphisms of amyloidogenic proteins.
Collapse
Affiliation(s)
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Department of Physics, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Meng F, Kim JY, Louis JM, Chung HS. Single-Molecule Characterization of Heterogeneous Oligomer Formation during Co-Aggregation of 40- and 42-Residue Amyloid-β. J Am Chem Soc 2024; 146:24426-24439. [PMID: 39177153 DOI: 10.1021/jacs.4c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The two most abundant isoforms of amyloid-β (Aβ) are the 40- (Aβ40) and 42-residue (Aβ42) peptides. Since they coexist and there is a correlation between toxicity and the ratio of the two isoforms, quantitative characterization of their interactions is crucial for understanding the Aβ aggregation mechanism. In this work, we follow the aggregation of individual isoforms in a mixture using single-molecule FRET spectroscopy by labeling Aβ42 and Aβ40 with the donor and acceptor fluorophores, respectively. We found that there are two phases of aggregation. The first phase consists of coaggregation of Aβ42 with a small amount of Aβ40, while the second phase results mostly from aggregation of Aβ40. We also found that the aggregation of Aβ42 is slowed by Aβ40 while the aggregation of Aβ40 is accelerated by Aβ42 in a concentration-dependent manner. The formation of oligomers was monitored by incubating mixtures in a plate reader and performing a single-molecule free-diffusion experiment at several different stages of aggregation. The detailed properties of the oligomers were obtained by maximum likelihood analysis of fluorescence bursts. The FRET efficiency distribution is much broader than that of the Aβ42 oligomers, indicating the diversity in isoform composition of the oligomers. Pulsed interleaved excitation experiments estimate that the fraction of Aβ40 in the co-oligomers in a 1:1 mixture of Aβ42 and Aβ40 varies between 0 and 20%. The detected oligomers were mostly co-oligomers especially at the physiological ratio of Aβ42 and Aβ40 (1:10), suggesting the critical role of Aβ40 in oligomer formation and aggregation.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
48
|
Lin LT, Zhang ST, Shang BL, Dai YQ, Cheng XQ, Wu QG, Zhan RT, Liu SJ. The effect and mechanism of patchouli alcohol on cognitive dysfunction in AD mice induced by Aβ 1-42 oligomers through AMPK/mTOR pathway. Brain Res Bull 2024; 215:111030. [PMID: 38996935 DOI: 10.1016/j.brainresbull.2024.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder that progressively impairs long-term and working memory. The function and mechanism of PA(Patchouli alcohol) in improving AD in the external treatment of encephalopathy remain unclear. This study aimed to investigate the therapeutic effect of PA on AD using an Aβ1-42 induced AD mouse model with LPS(Lipopolysaccharide) stimulation of BV2 microglial cells. Additionally, we aimed to explore the potential mechanism of PA in enhancing autophagy and reducing neuroinflammation through the AMPK (AMP-activated protein kinase)/mTOR (Mammaliam target of rapamycin) signaling pathway. The Morris water maze was used to assess cognitive function, and cortical and hippocampal tissues were collected for further analysis of the corresponding signaling pathways and inflammatory changes through biological experiments. Our research findings demonstrate that PA has a significant positive impact on cognitive and memory impairments in mice that have been induced with Aβ1-42-induced AD. Additionally, PA was also found to revert the activation of microglia induced by LPS. These effects may be attributed to the reduction of neuroinflammation and enhancement of the AMPK/mTOR autophagy pathway. Therefore, PA may serve as an effective therapeutic option to prevent or delay the progression of AD-associated memory dysfunction.
Collapse
Affiliation(s)
- Li-Ting Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Shu-Ting Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Bao-Ling Shang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Yu-Qiong Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiao-Qing Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qing-Guang Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ruo-Ting Zhan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Si-Jun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
49
|
Abstract
Aggregation of the amyloid β (Aβ) peptide into fibrils represents one of the major biochemical pathways underlying the development of Alzheimer's disease (AD). Extensive studies have been carried out to understand the role of fibrillar seeds on the overall kinetics of amyloid aggregation. However, the precise effect of seeds that are structurally or sequentially different from Aβ on the structure of the resulting amyloid aggregates is yet to be fully understood. Herein, nanoscale infrared spectroscopy is used to probe the spectral facets of individual aggregates formed by aggregating Aβ42 with antiparallel fibrillar seeds of Aβ(16-22) and E22Q Aβ(1-40) Dutch mutant and it is demonstrated that Aβ can form heterotypic or mixed polymorphs that deviate significantly from its expected parallel cross β structure. It is further shown that the formation of heterotypic aggregates is not limited to the coaggregation of Aβ and its isomers, and that the former can form heterotypic fibrils with alpha-synuclein and brain protein lysates. These findings highlight the complexity of Aβ aggregation in AD and underscore the need to explore how Aβ interacts with other brain components, which is crucial for developing better therapeutic strategies for AD.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Harrison O. Edmonds
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487, USA
| |
Collapse
|
50
|
Baek Y, Lee M. Exploring the complexity of amyloid-beta fibrils: structural polymorphisms and molecular interactions. Biochem Soc Trans 2024; 52:1631-1646. [PMID: 39034652 DOI: 10.1042/bst20230854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The aggregation of amyloid-beta (Aβ) peptides into cross-β structures forms a variety of distinct fibril conformations, potentially correlating with variations in neurodegenerative disease progression. Recent advances in techniques such as X-ray crystallography, solid-state NMR, and cryo-electron microscopy have enabled the development of high-resolution molecular structures of these polymorphic amyloid fibrils, which are either grown in vitro or isolated from human and transgenic mouse brain tissues. This article reviews our current understanding of the structural polymorphisms in amyloid fibrils formed by Aβ40 and Aβ42, as well as disease-associated mutants of Aβ peptides. The aim is to enhance our understanding of various molecular interactions, including hydrophobic and ionic interactions, within and among cross-β structures.
Collapse
Affiliation(s)
- Yoongyeong Baek
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A
| | - Myungwoon Lee
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A
| |
Collapse
|