1
|
Esat T, Borodin D, Oh J, Heinrich AJ, Tautz FS, Bae Y, Temirov R. A quantum sensor for atomic-scale electric and magnetic fields. NATURE NANOTECHNOLOGY 2024; 19:1466-1471. [PMID: 39054385 PMCID: PMC11486657 DOI: 10.1038/s41565-024-01724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The detection of faint magnetic fields from single-electron and nuclear spins at the atomic scale is a long-standing challenge in physics. While current mobile quantum sensors achieve single-electron spin sensitivity, atomic spatial resolution remains elusive for existing techniques. Here we fabricate a single-molecule quantum sensor at the apex of the metallic tip of a scanning tunnelling microscope by attaching Fe atoms and a PTCDA (3,4,9,10-perylenetetracarboxylic-dianhydride) molecule to the tip apex. We address the molecular spin by electron spin resonance and achieve ~100 neV resolution in energy. In a proof-of-principle experiment, we measure the magnetic and electric dipole fields emanating from a single Fe atom and an Ag dimer on an Ag(111) surface with sub-angstrom spatial resolution. Our method enables atomic-scale quantum sensing experiments of electric and magnetic fields on conducting surfaces and may find applications in the sensing of spin-labelled biomolecules and of spin textures in quantum materials.
Collapse
Affiliation(s)
- Taner Esat
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany.
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany.
| | - Dmitriy Borodin
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Jeongmin Oh
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea.
- Department of Physics, Ewha Womans University, Seoul, South Korea.
| | - F Stefan Tautz
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany
| | - Yujeong Bae
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea.
- Department of Physics, Ewha Womans University, Seoul, South Korea.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, Switzerland.
| | - Ruslan Temirov
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, Institute of Physics II, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Gao C, Gao Q, Zhao C, Huo Y, Zhang Z, Yang J, Jia C, Guo X. Technologies for investigating single-molecule chemical reactions. Natl Sci Rev 2024; 11:nwae236. [PMID: 39224448 PMCID: PMC11367963 DOI: 10.1093/nsr/nwae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Single molecules, the smallest independently stable units in the material world, serve as the fundamental building blocks of matter. Among different branches of single-molecule sciences, single-molecule chemical reactions, by revealing the behavior and properties of individual molecules at the molecular scale, are particularly attractive because they can advance the understanding of chemical reaction mechanisms and help to address key scientific problems in broad fields such as physics, chemistry, biology and materials science. This review provides a timely, comprehensive overview of single-molecule chemical reactions based on various technical platforms such as scanning probe microscopy, single-molecule junction, single-molecule nanostructure, single-molecule fluorescence detection and crossed molecular beam. We present multidimensional analyses of single-molecule chemical reactions, offering new perspectives for research in different areas, such as photocatalysis/electrocatalysis, organic reactions, surface reactions and biological reactions. Finally, we discuss the opportunities and challenges in this thriving field of single-molecule chemical reactions.
Collapse
Affiliation(s)
- Chunyan Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yani Huo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zhizhuo Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Wang J, Li Z, Zhao K, Dong S, Wu D, Meng W, Zhang J, Hou Y, Lu Y, Lu Q. Isolated scan unit and scanning tunneling microscope for stable imaging in ultra-high magnetic fields. Ultramicroscopy 2024; 261:113960. [PMID: 38547811 DOI: 10.1016/j.ultramic.2024.113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Accepted: 03/20/2024] [Indexed: 04/22/2024]
Abstract
The high resolution of a scanning tunneling microscope (STM) relies on the stability of its scan unit. In this study, we present an isolated scan unit featuring non-magnetic design and ultra-high stability, as well as bidirectional movement capability. Different types of piezoelectric motors can be incorporated into the scan unit to create a highly stable STM. The standalone structure of scan unit ensures a stable atomic imaging process by decreasing noise generated by motor. The non-magnetic design makes the scan unit work stable in high magnetic field conditions. Moreover, we have successfully constructed a novel STM based on the isolated scan unit, in which two inertial piezoelectric motors act as the coarse approach actuators. The exceptional performance of homebuilt STM is proved by the high-resolution atomic images and dI/dV spectrums on NbSe2 surface at varying temperatures, as well as the raw-data images of graphite obtained at ultra-high magnetic fields of 23 T. According to the literature research, no STM has previously reported the atomic image at extreme conditions of 2 K low temperature and 23 T ultra-high magnetic field. Additionally, we present the ultra-low drift rates between the tip and sample at varying temperatures, as well as when raising the magnetic fields from 0 T to 23 T, indicating the ultra-high stability of the STM in high magnetic field conditions. The outstanding performance of our stable STM hold great potential for investigating the materials in ultra-high magnetic fields.
Collapse
Affiliation(s)
- Jihao Wang
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, Anhui, China
| | - Zihao Li
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, Anhui, China; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Kesen Zhao
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, Anhui, China
| | - Shuai Dong
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, Anhui, China
| | - Dan Wu
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, Anhui, China
| | - Wenjie Meng
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, Anhui, China
| | - Jing Zhang
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, Anhui, China
| | - Yubin Hou
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, Anhui, China.
| | - Yalin Lu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei Anhui 230026, China
| | - Qingyou Lu
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China; The High Magnetic Field Laboratory of Anhui Province, Hefei 230031, Anhui, China; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei Anhui 230026, China; Hefei Science Center, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
4
|
Siday T, Hayes J, Schiegl F, Sandner F, Menden P, Bergbauer V, Zizlsperger M, Nerreter S, Lingl S, Repp J, Wilhelm J, Huber MA, Gerasimenko YA, Huber R. All-optical subcycle microscopy on atomic length scales. Nature 2024; 629:329-334. [PMID: 38720038 DOI: 10.1038/s41586-024-07355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024]
Abstract
Bringing optical microscopy to the shortest possible length and time scales has been a long-sought goal, connecting nanoscopic elementary dynamics with the macroscopic functionalities of condensed matter. Super-resolution microscopy has circumvented the far-field diffraction limit by harnessing optical nonlinearities1. By exploiting linear interaction with tip-confined evanescent light fields2, near-field microscopy3,4 has reached even higher resolution, prompting a vibrant research field by exploring the nanocosm in motion5-19. Yet the finite radius of the nanometre-sized tip apex has prevented access to atomic resolution20. Here we leverage extreme atomic nonlinearities within tip-confined evanescent fields to push all-optical microscopy to picometric spatial and femtosecond temporal resolution. On these scales, we discover an unprecedented and efficient non-classical near-field response, in phase with the vector potential of light and strictly confined to atomic dimensions. This ultrafast signal is characterized by an optical phase delay of approximately π/2 and facilitates direct monitoring of tunnelling dynamics. We showcase the power of our optical concept by imaging nanometre-sized defects hidden to atomic force microscopy and by subcycle sampling of current transients on a semiconducting van der Waals material. Our results facilitate access to quantum light-matter interaction and electronic dynamics at ultimately short spatio-temporal scales in both conductive and insulating quantum materials.
Collapse
Affiliation(s)
- T Siday
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - J Hayes
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - F Schiegl
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - F Sandner
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - P Menden
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - V Bergbauer
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - M Zizlsperger
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - S Nerreter
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - S Lingl
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - J Repp
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - J Wilhelm
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany.
| | - M A Huber
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany.
| | - Y A Gerasimenko
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany.
| | - R Huber
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Li H, Xiang Z, Naik MH, Kim W, Li Z, Sailus R, Banerjee R, Taniguchi T, Watanabe K, Tongay S, Zettl A, da Jornada FH, Louie SG, Crommie MF, Wang F. Imaging moiré excited states with photocurrent tunnelling microscopy. NATURE MATERIALS 2024; 23:633-638. [PMID: 38172545 DOI: 10.1038/s41563-023-01753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Moiré superlattices provide a highly tuneable and versatile platform to explore novel quantum phases and exotic excited states ranging from correlated insulators to moiré excitons. Scanning tunnelling microscopy has played a key role in probing microscopic behaviours of the moiré correlated ground states at the atomic scale. However, imaging of quantum excited states in moiré heterostructures remains an outstanding challenge. Here we develop a photocurrent tunnelling microscopy technique that combines laser excitation and scanning tunnelling spectroscopy to directly visualize the electron and hole distribution within the photoexcited moiré exciton in twisted bilayer WS2. The tunnelling photocurrent alternates between positive and negative polarities at different locations within a single moiré unit cell. This alternating photocurrent originates from the in-plane charge transfer moiré exciton in twisted bilayer WS2, predicted by our GW-Bethe-Salpeter equation calculations, that emerges from the competition between the electron-hole Coulomb interaction and the moiré potential landscape. Our technique enables the exploration of photoexcited non-equilibrium moiré phenomena at the atomic scale.
Collapse
Affiliation(s)
- Hongyuan Li
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Graduate Group in Applied Science and Technology, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ziyu Xiang
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Graduate Group in Applied Science and Technology, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mit H Naik
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Woochang Kim
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhenglu Li
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Renee Sailus
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Rounak Banerjee
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Alex Zettl
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kavli Energy Nano Sciences Institute, University of California Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Felipe H da Jornada
- Department of Materials Science and Engineering, Stanford University, Palo Alto, CA, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Steven G Louie
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy Nano Sciences Institute, University of California Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Feng Wang
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy Nano Sciences Institute, University of California Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
6
|
Bian K, Zheng W, Chen X, Zhang S, Stöhr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y. A scanning probe microscope compatible with quantum sensing at ambient conditions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:053707. [PMID: 38819258 DOI: 10.1063/5.0202756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
We designed and built up a new type of ambient scanning probe microscope (SPM), which is fully compatible with state-of-the-art quantum sensing technology based on the nitrogen-vacancy (NV) centers in diamond. We chose a qPlus-type tuning fork (Q up to ∼4400) as the current/force sensor of SPM for its high stiffness and stability under various environments, which yields atomic resolution under scanning tunneling microscopy mode and 1.2-nm resolution under atomic force microscopy mode. The tip of SPM can be used to directly image the topography of nanoscale targets on diamond surfaces for quantum sensing and to manipulate the electrostatic environment of NV centers to enhance their sensitivity up to a single proton spin. In addition, we also demonstrated scanning magnetometry and electrometry with a spatial resolution of ∼20 nm. Our new system not only paves the way for integrating atomic/molecular-scale color-center qubits onto SPM tips to produce quantum tips but also provides the possibility of fabricating color-center qubits with nanoscale or atomic precision.
Collapse
Affiliation(s)
- Ke Bian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Wentian Zheng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xiakun Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Shichen Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Rainer Stöhr
- Third Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology (IQST), Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Andrej Denisenko
- Third Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology (IQST), Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Sen Yang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jörg Wrachtrup
- Third Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology (IQST), Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- New Cornerstone Science Laboratory, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Todorov Y, Dhillon S, Mangeney J. THz quantum gap: exploring potential approaches for generating and detecting non-classical states of THz light. NANOPHOTONICS 2024; 13:1681-1691. [PMID: 38681681 PMCID: PMC11052537 DOI: 10.1515/nanoph-2023-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/30/2023] [Indexed: 05/01/2024]
Abstract
Over the past few decades, THz technology has made considerable progress, evidenced by the performance of current THz sources and detectors, as well as the emergence of several THz applications. However, in the realm of quantum technologies, the THz spectral domain is still in its infancy, unlike neighboring spectral domains that have flourished in recent years. Notably, in the microwave domain, superconducting qubits currently serve as the core of quantum computers, while quantum cryptography protocols have been successfully demonstrated in the visible and telecommunications domains through satellite links. The THz domain has lagged behind in these impressive advancements. Today, the current gap in the THz domain clearly concerns quantum technologies. Nonetheless, the emergence of quantum technologies operating at THz frequencies will potentially have a significant impact. Indeed, THz radiation holds significant promise for wireless communications with ultimate security owing to its low sensitivity to atmospheric disturbances. Moreover, it has the potential to raise the operating temperature of solid-state qubits, effectively addressing existing scalability issues. In addition, THz radiation can manipulate the quantum states of molecules, which are recognized as new platforms for quantum computation and simulation with long range interactions. Finally, its ability to penetrate generally opaque materials or its resistance to Rayleigh scattering are very appealing features for quantum sensing. In this perspective, we will discuss potential approaches that offer exciting prospects for generating and detecting non-classical states of THz light, thereby opening doors to significant breakthroughs in THz quantum technologies.
Collapse
Affiliation(s)
- Yanko Todorov
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Sukhdeep Dhillon
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Juliette Mangeney
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
8
|
Xia Y, Wang L, Ho W. Mechanisms Underlying a Quantum Superposition Microscope Based on THz-Driven Coherent Oscillations in a Two-Level Molecular Sensor. PHYSICAL REVIEW LETTERS 2024; 132:076903. [PMID: 38427859 DOI: 10.1103/physrevlett.132.076903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 03/03/2024]
Abstract
We report pump-probe measurements of a hydrogen molecule (H_{2}) in the tunnel junction of a scanning tunneling microscope coupled to ultrashort terahertz (THz) pulses. The coherent oscillation of the THz-induced dc tunneling current at a frequency of ∼0.5 THz fingerprints the absorption by H_{2} as a two-level system (TLS). Two components of the oscillatory signal are observed and point to both photon and field aspects of the THz pulses. A few loosely bound states with similar energies for the upper state of the TLS are evidenced by the coherent revival of oscillatory signal. Furthermore, the comparison of spectroscopic features of H_{2} with different tips provides an understanding of the TLS for H_{2}.
Collapse
Affiliation(s)
- Yunpeng Xia
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| | - Likun Wang
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| | - W Ho
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| |
Collapse
|
9
|
Yao J, Park Y, Shi W, Chen S, Ho W. Origin of photoinduced DC current and two-level population dynamics in a single molecule. SCIENCE ADVANCES 2024; 10:eadk9211. [PMID: 38295170 PMCID: PMC10830102 DOI: 10.1126/sciadv.adk9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Studying the photoinduced changes of materials with atomic-scale spatial resolution can provide a fundamental understanding of light-matter interaction. A long-standing impediment has been the detrimental thermal effects on the stability of the tunneling gap from intensity-modulated laser irradiation of the scanning tunneling microscope junction. Photoinduced DC current transduces photons to an electric current and is widely applied in optoelectronics as switches and signal transmission. Our results revealed the origin of the light-induced DC current and related it to the two-level population dynamics and related nonlinearity in the conductance of a single molecule. Here, we compensated for the near-visible laser-induced thermal effects to demonstrate photoinduced DC current spectroscopy and microscopy and to observe the persistent photoconductivity of a two-level pyrrolidine molecule. The methodology can be generally applied to the coupling of light to scan probes to investigate light-matter interactions at the atomic scale.
Collapse
Affiliation(s)
- Jiang Yao
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Youngwook Park
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Wenlu Shi
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Siyu Chen
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - W. Ho
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| |
Collapse
|
10
|
Azazoglu H, Kapitza P, Mittendorff M, Möller R, Gruber M. Variable-temperature lightwave-driven scanning tunneling microscope with a compact, turn-key terahertz source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:023703. [PMID: 38376386 DOI: 10.1063/5.0165719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
We report on a lightwave-driven scanning tunneling microscope based on a home-built microscope and a compact, commercial, and cost-effective terahertz-generation unit with a repetition rate of 100 MHz. The measurements are performed in an ultrahigh vacuum at temperatures between 8.5 and 300 K. The cross-correlation of the pump and probe pulses indicates a temporal resolution on the order of a picosecond. In terms of spatial resolution, CO molecules, step edges, and atomically resolved terraces are readily observed in terahertz images, with sometimes better contrast than in the topographic and (DC) current channels. The utilization of a compact, turn-key terahertz-generation system requires only limited experience with optics and terahertz generation, which may facilitate the deployment of the technique to further research groups.
Collapse
Affiliation(s)
- Hüseyin Azazoglu
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
- Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Philip Kapitza
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
- Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Martin Mittendorff
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Rolf Möller
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
- Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Manuel Gruber
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
- Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
11
|
Xia Y, Wang L, Bai D, Ho W. Avoided Level Crossing and Entangled States of Interacting Hydrogen Molecules Detected by the Quantum Superposition Microscope. ACS NANO 2023; 17:23144-23151. [PMID: 37955976 DOI: 10.1021/acsnano.3c09109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pump-probe measurements by ultrashort THz pulses can be used to excite and follow the coherence dynamics in the time domain of single hydrogen molecules (H2) in the junction of a scanning tunneling microscope (STM). By tailoring the resonance frequency through the sample bias, we identified two spectral signatures of the interactions among multiple H2 molecules. First, the avoided level crossing featured by energy gaps ranging from 20 to 80 GHz was observed because of the level repulsion between two H2 molecules. Second, the tip can sense the signal of H2 outside the junction through the projective measurement on the H2 inside the junction, owing to the entangled states created through the interactions. A dipolar-type interaction was integrated into the tunneling two-level system model of H2, enabling accurate reproduction of the observed behaviors. Our results obtained by the quantum superposition microscope reveal the intricate quantum mechanical interplay among H2 molecules and additionally provide a 2D platform to investigate unresolved questions of amorphous materials.
Collapse
Affiliation(s)
- Yunpeng Xia
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Likun Wang
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Dan Bai
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Wilson Ho
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
12
|
Allerbeck J, Kuttruff J, Bobzien L, Huberich L, Tsarev M, Schuler B. Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy. ACS PHOTONICS 2023; 10:3888-3895. [PMID: 38027247 PMCID: PMC10655500 DOI: 10.1021/acsphotonics.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 12/01/2023]
Abstract
The fundamental understanding of quantum dynamics in advanced materials requires precise characterization at the limit of spatiotemporal resolution. Ultrafast scanning tunneling microscopy is a powerful tool combining the benefits of picosecond time resolution provided by single-cycle terahertz (THz) pulses and atomic spatial resolution of a scanning tunneling microscope (STM). For the selective excitation of localized electronic states, the transient field profile must be tailored to the energetic structure of the system. Here, we present an advanced THz-STM setup combining multi-MHz repetition rates, strong THz near fields, and continuous carrier-envelope phase (CEP) control of the transient waveform. In particular, we employ frustrated total internal reflection as an efficient and cost-effective method for precise CEP control of single-cycle THz pulses with >60% field transmissivity, high pointing stability, and continuous phase shifting of up to 0.75 π in the far and near field. Efficient THz generation and dispersion management enable peak THz voltages at the tip-sample junction exceeding 20 V at 1 MHz and 1 V at 41 MHz. The system comprises two distinct THz generation arms, which facilitate individual pulse shaping and amplitude modulation. This unique feature enables the flexible implementation of various THz pump-probe schemes, thereby facilitating the study of electronic and excitonic excited-state propagation in nanostructures and low-dimensional materials systems. Scalability of the repetition rate up to 41 MHz, combined with a state-of-the-art low-temperature STM, paves the way toward the investigation of dynamical processes in atomic quantum systems at their native length and time scales.
Collapse
Affiliation(s)
- Jonas Allerbeck
- nanotech@surfaces
Laboratory, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Joel Kuttruff
- Department
of Physics, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Laric Bobzien
- nanotech@surfaces
Laboratory, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Lysander Huberich
- nanotech@surfaces
Laboratory, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Maxim Tsarev
- Department
of Physics, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Bruno Schuler
- nanotech@surfaces
Laboratory, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
13
|
Yuan S, Zhu Z, Lu J, Zheng F, Jiang H, Sun Q. Applying a Deep-Learning-Based Keypoint Detection in Analyzing Surface Nanostructures. Molecules 2023; 28:5387. [PMID: 37513258 PMCID: PMC10384857 DOI: 10.3390/molecules28145387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Scanning tunneling microscopy (STM) imaging has been routinely applied in studying surface nanostructures owing to its capability of acquiring high-resolution molecule-level images of surface nanostructures. However, the image analysis still heavily relies on manual analysis, which is often laborious and lacks uniform criteria. Recently, machine learning has emerged as a powerful tool in material science research for the automatic analysis and processing of image data. In this paper, we propose a method for analyzing molecular STM images using computer vision techniques. We develop a lightweight deep learning framework based on the YOLO algorithm by labeling molecules with its keypoints. Our framework achieves high efficiency while maintaining accuracy, enabling the recognitions of molecules and further statistical analysis. In addition, the usefulness of this model is exemplified by exploring the length of polyphenylene chains fabricated from on-surface synthesis. We foresee that computer vision methods will be frequently used in analyzing image data in the field of surface chemistry.
Collapse
Affiliation(s)
- Shaoxuan Yuan
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhiwen Zhu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Jiayi Lu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Fengru Zheng
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Hao Jiang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Qiang Sun
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Liang K, Bi L, Zhu Q, Zhou H, Li S. Ultrafast Dynamics Revealed with Time-Resolved Scanning Tunneling Microscopy: A Review. ACS APPLIED OPTICAL MATERIALS 2023; 1:924-938. [PMID: 37260467 PMCID: PMC10227725 DOI: 10.1021/acsaom.2c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/02/2023]
Abstract
A scanning tunneling microscope (STM) capable of performing pump-probe spectroscopy integrates unmatched atomic-scale resolution with high temporal resolution. In recent years, the union of electronic, terahertz, or visible/near-infrared pulses with STM has contributed to our understanding of the atomic-scale processes that happen between milliseconds and attoseconds. This time-resolved STM (TR-STM) technique is evolving into an unparalleled approach for exploring the ultrafast nuclear, electronic, or spin dynamics of molecules, low-dimensional structures, and material surfaces. Here, we review the recent advancements in TR-STM; survey its application in measuring the dynamics of three distinct systems, nucleus, electron, and spin; and report the studies on these transient processes in a series of materials. Besides the discussion on state-of-the-art techniques, we also highlight several emerging research topics about the ultrafast processes in nanoscale objects where we anticipate that the TR-STM can help broaden our knowledge.
Collapse
Affiliation(s)
- Kangkai Liang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Hao Zhou
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
15
|
Chen S, Shi W, Ho W. Single-Molecule Continuous-Wave Terahertz Rectification Spectroscopy and Microscopy. NANO LETTERS 2023; 23:2915-2920. [PMID: 36999877 DOI: 10.1021/acs.nanolett.3c00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We report rectification spectroscopy (RS) for single molecules performed with continuous-wave terahertz (CW THz) radiation at the tunneling junction of a scanning tunneling microscope (STM) at 8 K. CW THz-RS serves as a new technique in single-molecule vibrational and magnetic excitation spectroscopy besides inelastic electron tunneling spectroscopy (IETS). By quantitatively studying IETS and THz RS, we show that CW THz induces a sinusoidal bias modulation with amplitude linearly dependent on the THz far-field amplitude. Such THz-induced bias modulation amplitude appears to be sensitive to the THz beam alignment but insensitive to variation in the tunneling gap far smaller than the THz wavelength.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Wenlu Shi
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - W Ho
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
16
|
Wang L, Bai D, Xia Y, Ho W. Electrical Manipulation of Quantum Coherence in a Two-Level Molecular System. PHYSICAL REVIEW LETTERS 2023; 130:096201. [PMID: 36930940 DOI: 10.1103/physrevlett.130.096201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
We report the manipulation of ultrafast quantum coherence of a two-level single hydrogen molecular system by employing static electric field from the sample bias in a femtosecond terahertz scanning tunneling microscope. A H_{2} molecule adsorbed on the polar Cu_{2}N surface develops an electric dipole and exhibits a giant Stark effect. An avoided crossing of the quantum state energy levels is derived from the resonant frequency of the single H_{2} two levels in a double-well potential. The dephasing time of the initial wave packet can also be changed by applying the electric field. The electrical manipulation for different tunneling gaps in three dimensions allows quantification of the surface electrostatic fields at the atomic scale. Our work demonstrated the potential application of molecules as controllable two-level molecular systems.
Collapse
Affiliation(s)
- Likun Wang
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA
| | - Dan Bai
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA
| | - Yunpeng Xia
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA
| | - W Ho
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA
| |
Collapse
|
17
|
Iwaya K, Yokota M, Hanada H, Mogi H, Yoshida S, Takeuchi O, Miyatake Y, Shigekawa H. Externally-triggerable optical pump-probe scanning tunneling microscopy with a time resoloution of tens-picosecond. Sci Rep 2023; 13:818. [PMID: 36697458 PMCID: PMC9877009 DOI: 10.1038/s41598-023-27383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Photoinduced carrier dynamics of nanostructures play a crucial role in developing novel functionalities in advanced materials. Optical pump-probe scanning tunneling microscopy (OPP-STM) represents distinctive capabilities of real-space imaging of such carrier dynamics with nanoscale spatial resolution. However, combining the advanced technology of ultrafast pulsed lasers with STM for stable time-resolved measurements has remained challenging. The recent OPP-STM system, whose laser-pulse timing is electrically controlled by external triggers, has significantly simplified this combination but limited its application due to nanosecond temporal resolution. Here we report an externally-triggerable OPP-STM system with a temporal resolution in the tens-picosecond range. We also realize the stable laser illumination of the tip-sample junction by placing a position-movable aspheric lens driven by piezo actuators directly on the STM stage and by employing an optical beam stabilization system. We demonstrate the OPP-STM measurements on GaAs(110) surfaces, observing carrier dynamics with a decay time of [Formula: see text] ps and revealing local carrier dynamics at features including a step edge and a nanoscale defect. The stable OPP-STM measurements with the tens-picosecond resolution by the electrical control of laser pulses highlight the potential capabilities of this system for investigating nanoscale carrier dynamics of a wide range of functional materials.
Collapse
Affiliation(s)
| | | | | | - Hiroyuki Mogi
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8573, Japan
| | - Shoji Yoshida
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8573, Japan
| | - Osamu Takeuchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8573, Japan
| | | | - Hidemi Shigekawa
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
18
|
Sloan PA, Rusimova KR. A self-consistent model to link surface electronic band structure to the voltage dependence of hot electron induced molecular nanoprobe experiments. NANOSCALE ADVANCES 2022; 4:4880-4885. [PMID: 36381505 PMCID: PMC9642357 DOI: 10.1039/d2na00644h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Understanding the ultra-fast transport properties of hot charge carriers is of significant importance both fundamentally and technically in applications like solar cells and transistors. However, direct measurement of charge transport at the relevant nanometre length scales is challenging with only a few experimental methods demonstrated to date. Here we report on molecular nanoprobe experiments on the Si(111)-7 × 7 at room temperature where charge injected from the tip of a scanning tunnelling microscope (STM) travels laterally across a surface and induces single adsorbate toluene molecules to react over length scales of tens of nanometres. A simple model is developed for the fraction of the tunnelling current captured into each of the surface electronic bands with input from only high-resolution scanning tunnelling spectroscopy (STS) of the clean Si(111)-7 × 7 surface. This model is quantitatively linked to the voltage dependence of the molecular nanoprobe experiments through a single manipulation probability (i.e. fitting parameter) per state. This model fits the measured data and gives explanation to the measured voltage onsets, exponential increase in the measured manipulation probabilities and plateau at higher voltages. It also confirms an ultrafast relaxation to the bottom of a surface band for the injected charge after injection, but before the nonlocal spread across the surface.
Collapse
Affiliation(s)
- Peter A Sloan
- Department of Physics, University of Bath Bath BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath Bath BA2 7AY UK
| | - Kristina R Rusimova
- Department of Physics, University of Bath Bath BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath Bath BA2 7AY UK
- Centre for Photonics and Photonic Materials, University of Bath Bath BA2 7AY UK
| |
Collapse
|
19
|
Liu S, Hammud A, Hamada I, Wolf M, Müller M, Kumagai T. Nanoscale coherent phonon spectroscopy. SCIENCE ADVANCES 2022; 8:eabq5682. [PMID: 36269832 PMCID: PMC9586471 DOI: 10.1126/sciadv.abq5682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/02/2022] [Indexed: 06/02/2023]
Abstract
Coherent phonon spectroscopy can provide microscopic insight into ultrafast lattice dynamics and its coupling to other degrees of freedom under nonequilibrium conditions. Ultrafast optical spectroscopy is a well-established method to study coherent phonons, but the diffraction limit has hampered observing their local dynamics directly. Here, we demonstrate nanoscale coherent phonon spectroscopy using ultrafast laser-induced scanning tunneling microscopy in a plasmonic junction. Coherent phonons are locally excited in ultrathin zinc oxide films by the tightly confined plasmonic field and are probed via the photoinduced tunneling current through an electronic resonance of the zinc oxide film. Concurrently performed tip-enhanced Raman spectroscopy allows us to identify the involved phonon modes. In contrast to the Raman spectra, the phonon dynamics observed in coherent phonon spectroscopy exhibit strong nanoscale spatial variations that are correlated with the distribution of the electronic local density of states resolved by scanning tunneling spectroscopy.
Collapse
Affiliation(s)
- Shuyi Liu
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Adnan Hammud
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Martin Wolf
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Melanie Müller
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Takashi Kumagai
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Center for Mesoscopic Sciences, Institute for Molecular Science, Okazaki 444-8585, Japan
| |
Collapse
|
20
|
Yao J, Wagner PJ, Xia Y, Czap G, Ho W. Atomic-Scale Rectification and Inelastic Electron Tunneling Spectromicroscopy. NANO LETTERS 2022; 22:7848-7852. [PMID: 36162080 DOI: 10.1021/acs.nanolett.2c02503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The phenomenon of rectification describes the emergence of a DC current from the application of an oscillating voltage. Although the origin of this effect has been associated with the nonlinearity in the current-voltage I(V) relation, a rigorous understanding of the microscopic mechanisms for this phenomenon remains challenging. Here, we show the close connection between rectification and inelastic electron tunneling spectroscopy and microscopy for single molecules with a scanning tunneling microscope. While both techniques are based on nonlinear features in the I(V) curve, comprehensive line shape analyses reveal notable differences that highlight the two complementary techniques of nonlinear conductivity spectromicroscopy for probing nanoscale systems.
Collapse
Affiliation(s)
- Jiang Yao
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Peter J Wagner
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Yunpeng Xia
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Gregory Czap
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - W Ho
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|