1
|
Sutor S, McIntyre NE, Griffis-Kyle KL. Vegetation cover, topography, and low-traffic roads influence Sonoran desert tortoise (Gopherus morafkai) movement and habitat selection. MOVEMENT ECOLOGY 2024; 12:68. [PMID: 39350278 PMCID: PMC11443766 DOI: 10.1186/s40462-024-00503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Anthropogenic activities occurring throughout the Sonoran Desert are replacing and fragmenting habitat and reducing landscape connectivity for the Sonoran desert tortoise (Gopherus morafkai). Understanding how the structure of the landscape influences tortoise habitat use and movement can help develop strategies for mitigating the impacts of these landscape alterations, which are conservation actions needed to support the species' long-term persistence. However, how natural and anthropogenic features influence fine-scale habitat use and movement of Sonoran desert tortoises remains unclear. METHODS The goals of this study were to (1) understand how characteristics of the landscape shape tortoise habitat use and movement in order to (2) identify factors that may reduce habitat use or threaten landscape connectivity for the species by discouraging or restricting movement. We collected GPS telemetry data from 17 adult tortoises tracked for two summer monsoon seasons, when tortoises are most active, in a U.S. National Monument along the international border between Arizona, USA and Sonora, Mexico. We used Hidden Markov Models (HMMs) to assign GPS locations to an encamped or a moving state. We used the moving state data in integrated Step Selection Analyses (iSSA) to examine how range-resident Sonoran desert tortoises select habitat and respond to landscape features while moving. RESULTS Tortoises selected to move through areas of intermediate vegetation cover and terrain ruggedness and avoided areas far from desert washes and close to low-traffic roads. Tortoises increased their speed when approaching or crossing low-traffic roads but showed no detectable response to a highway. CONCLUSION Bare earth or high vegetation cover, flat or extremely rugged terrain, areas far from desert washes, and low-traffic roads may discourage or restrict tortoise movement. Therefore, preventing the development of roads, activities that degrade washes, and activities that thin, remove, or greatly increase vegetation cover may encourage tortoise habitat use and movement within those habitats.
Collapse
Affiliation(s)
- Sean Sutor
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX, 79409-3131, USA.
| | - Nancy E McIntyre
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX, 79409-3131, USA
| | - Kerry L Griffis-Kyle
- Department of Natural Resource Management, Texas Tech University, Goddard Building, Box 42125, Lubbock, TX, 79409-2125, USA
| |
Collapse
|
2
|
Chen X, Tian T, Pan H, Jin Y, Zhang X, Yang B, Zhang L. Establishing a protected area network in Xinlong with other effective area-based conservation measures. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14297. [PMID: 38752477 DOI: 10.1111/cobi.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 07/24/2024]
Abstract
Protected areas (PAs) are pivotal to biodiversity conservation, yet their efficacy is compromised by insufficient funding and management. So-called other effective area-based conservation measures (OECMs) present a paradigm shift and address PA limitations. Such measures can expand conservation areas, enhance connectivity, and improve the existing system. To assess the conservation status of biodiversity in Tibetan cultural areas in China, we investigated the spatial distribution of wildlife vulnerable to human disturbance (large- and medium-sized mammals and terrestrial birds) in Xinlong, a traditional Tibetan cultural area. In particular, we compared a PA (Xionglongxi Nature Reserve) and OECMs targeting species conservation. We also investigated the relationship of wildlife with human temporal and spatial activities. The OECMs complemented areas not covered by PA, especially in rich understory biodiversity regions. More species in OECMs tolerated human presence than species in the PA. Existing biodiversity reserves failed to cover areas of high conservation value in Tibet and offered limited protection capacity. Expanding PAs and identifying OECMs improved Xinlong's system by covering most biodiversity hotspots. Building on the tradition of wildlife conservation in Tibet, harnessing OECMs may be an effective means of augmenting biodiversity conservation capacity. We recommend further evaluation of OECMs effectiveness and coverage in Tibetan area as a way to enhance the current PA system.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Tengteng Tian
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Han Pan
- Society of Entrepreneurs and Ecology (SEE) Foundation, Beijing, China
| | - Yuyi Jin
- Chengdu Aisiyi Ecology Conservation Center, Chengdu, China
| | - Xiaodian Zhang
- Chengdu Aisiyi Ecology Conservation Center, Chengdu, China
| | - Biao Yang
- Society of Entrepreneurs and Ecology (SEE) Foundation, Beijing, China
- College of Life Science, China West Normal University, Nanchong, China
| | - Li Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Ganz TR, Bassing SB, DeVivo MT, Gardner B, Kertson BN, Satterfield LC, Shipley LA, Turnock BY, Walker SL, Abrahamson D, Wirsing AJ, Prugh LR. White-tailed deer population dynamics in a multipredator landscape shaped by humans. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3003. [PMID: 38890813 DOI: 10.1002/eap.3003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/20/2024]
Abstract
Large terrestrial mammals increasingly rely on human-modified landscapes as anthropogenic footprints expand. Land management activities such as timber harvest, agriculture, and roads can influence prey population dynamics by altering forage resources and predation risk via changes in habitat, but these effects are not well understood in regions with diverse and changing predator guilds. In northeastern Washington state, USA, white-tailed deer (Odocoileus virginianus) are vulnerable to multiple carnivores, including recently returned gray wolves (Canis lupus), within a highly human-modified landscape. To understand the factors governing predator-prey dynamics in a human context, we radio-collared 280 white-tailed deer, 33 bobcats (Lynx rufus), 50 cougars (Puma concolor), 28 coyotes (C. latrans), and 14 wolves between 2016 and 2021. We first estimated deer vital rates and used a stage-structured matrix model to estimate their population growth rate. During the study, we observed a stable to declining deer population (lambda = 0.97, 95% confidence interval: 0.88, 1.05), with 74% of Monte Carlo simulations indicating population decrease and 26% of simulations indicating population increase. We then fit Cox proportional hazard models to evaluate how predator exposure, use of human-modified landscapes, and winter severity influenced deer survival and used these relationships to evaluate impacts on overall population growth. We found that the population growth rate was dually influenced by a negative direct effect of apex predators and a positive effect of timber harvest and agricultural areas. Cougars had a stronger effect on deer population dynamics than wolves, and mesopredators had little influence on the deer population growth rate. Areas of recent timber harvest had 55% more forage biomass than older forests, but horizontal visibility did not differ, suggesting that timber harvest did not influence predation risk. Although proximity to roads did not affect the overall population growth rate, vehicle collisions caused a substantial proportion of deer mortalities, and reducing these collisions could be a win-win for deer and humans. The influence of apex predators and forage indicates a dual limitation by top-down and bottom-up factors in this highly human-modified system, suggesting that a reduction in apex predators would intensify density-dependent regulation of the deer population owing to limited forage availability.
Collapse
Affiliation(s)
- Taylor R Ganz
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Sarah B Bassing
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Melia T DeVivo
- Washington Department of Fish and Wildlife, Spokane Valley, Washington, USA
| | - Beth Gardner
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Brian N Kertson
- Washington Department of Fish and Wildlife, Snoqualmie, Washington, USA
| | - Lauren C Satterfield
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Lisa A Shipley
- School of the Environment, Washington State University, Pullman, Washington, USA
| | | | | | | | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Allen ML, Avrin AC, Wittmer HU, Wang Y, Wilmers CC. Mesocarnivores vary in their spatiotemporal avoidance strategies at communications hubs of an apex carnivore. Oecologia 2024; 204:805-813. [PMID: 38564073 DOI: 10.1007/s00442-024-05541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Mesocarnivores face interspecific competition and risk intraguild predation when sharing resources with apex carnivores. Within a landscape, carnivores across trophic levels may use the same communication hubs, which provide a mix of risks (injury/death) and rewards (gaining information) for subordinate species. We predicted that mesocarnivores would employ different strategies to avoid apex carnivores at shared communication hubs, depending on their trophic position. To test our prediction, we examined how different subordinate carnivore species in the Santa Cruz Mountains of California, USA, manage spatial overlap with pumas (Puma concolor), both at communication hubs and across a landscape-level camera trap array. We estimated species-specific occurrence, visitation rates, temporal overlap, and Avoidance-Attraction Ratios from camera traps and tested for differences between the two types of sites. We found that mesocarnivores generally avoided pumas at communication hubs, and this became more pronounced when pumas scent-marked during their most recent visit. Coyotes (Canis latrans), the pumas' closest subordinate competitor in our system, exhibited the strongest avoidance at communication hubs. Gray foxes (Urocyon cinereoargenteus) avoided pumas the least, which may suggest possible benefits from pumas suppressing coyotes. Overall, mesocarnivores exhibited various spatiotemporal avoidance strategies at communication hubs rather than outright avoidance, likely because they benefit from information gained while 'eavesdropping' on puma activity. Variability in avoidance strategies may be due to differential predation risks, as apex carnivores often interact more aggressively with their closest competitors. Combined, our results show how apex carnivores trigger complex species interactions across the entire carnivore guild and how trophic position determines behavioral responses and subsequent space use of subordinate mesocarnivores across the landscape.
Collapse
Affiliation(s)
- Maximilian L Allen
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 S. Oak Street, Champaign, IL, 61820, USA.
- Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin, Urbana, IL, 61801, USA.
| | - Alexandra C Avrin
- Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin, Urbana, IL, 61801, USA
| | - Heiko U Wittmer
- School of Biological Sciences, Victoria University of Wellington, P. O. Box 600, Wellington, 6140, New Zealand
| | - Yiwei Wang
- Environmental Studies Department, Center for Integrated Spatial Research, University of California, 1156 High Street, Santa Cruz, CA, USA
| | - Christopher C Wilmers
- Environmental Studies Department, Center for Integrated Spatial Research, University of California, 1156 High Street, Santa Cruz, CA, USA
| |
Collapse
|
5
|
Ganz TR, DeVivo MT, Wirsing AJ, Bassing SB, Kertson BN, Walker SL, Prugh LR. Cougars, wolves, and humans drive a dynamic landscape of fear for elk. Ecology 2024; 105:e4255. [PMID: 38361248 DOI: 10.1002/ecy.4255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
To manage predation risk, prey navigate a dynamic landscape of fear, or spatiotemporal variation in risk perception, reflecting predator distributions, traits, and activity cycles. Prey may seek to reduce risk across this landscape using habitat at times and in places when predators are less active. In multipredator landscapes, avoiding one predator could increase vulnerability to another, making the landscape of fear difficult to predict and navigate. Additionally, humans may shape interactions between predators and prey, and induce new sources of risk. Humans can function as a shield, providing a refuge for prey from human-averse carnivores, and as a predator, causing mortality through hunting and vehicle collisions and eliciting a fear response that can exceed that of carnivores. We used telemetry data collected between 2017 and 2021 from 63 Global Positioning System-collared elk (Cervus canadensis), 42 cougars (Puma concolor), and 16 wolves (Canis lupus) to examine how elk habitat selection changed in relation to carnivores and humans in northeastern Washington, USA. Using step selection functions, we evaluated elk habitat use in relation to cougars, wolves, and humans, diel period (daytime vs. nighttime), season (summer calving season vs. fall hunting season), and habitat structure (open vs. closed habitat). The diel cycle was critical to understanding elk movement, allowing elk to reduce encounters with predators where and when they would be the largest threat. Elk strongly avoided cougars at night but had a near-neutral response to cougars during the day, whereas elk avoided wolves at all times of day. Elk generally used more open habitats where cougars and wolves were most active, rather than altering the use of habitat structure depending on the predator species. Elk avoided humans during the day and ~80% of adult female mortality was human caused, suggesting that humans functioned as a "super predator" in this system. Simultaneously, elk leveraged the human shield against wolves but not cougars at night, and no elk were confirmed to have been killed by wolves. Our results add to the mounting evidence that humans profoundly affect predator-prey interactions, highlighting the importance of studying these dynamics in anthropogenic areas.
Collapse
Affiliation(s)
- Taylor R Ganz
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Melia T DeVivo
- Washington Department of Fish and Wildlife, Spokane Valley, Washington, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Sarah B Bassing
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Brian N Kertson
- Washington Department of Fish and Wildlife, Snoqualmie, Washington, USA
| | | | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Tomita KM, Hiura T. Brown bear digging decreases tree growth: Implication for ecological role of top predators in anthropogenic landscapes. Ecology 2024; 105:e4266. [PMID: 38425026 DOI: 10.1002/ecy.4266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/10/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Large carnivores have recently increased in number and recolonized in human-dominated landscapes; however, their ecological roles in these landscapes have not been well studied. In the Shiretoko World Heritage (SWH) site, brown bears have recolonized a previously abandoned mosaic landscape of natural forests and conifer plantations after land abandonment. We previously reported that the bears had recently begun to dig for cicada nymphs in association with the creation of larch plantations. As a result, this digging activity decreased soil nutrients. To deepen the understanding of the novel ecological role of brown bears within human-modified landscapes, we examined the impacts of brown bear digging on the growth of larch trees. We found that brown bear digging decreased fine root biomass of larch, soil water, and nitrogen availability. Brown bear digging negatively affected needle nitrogen content, but not carbon isotope ratios, a water stress index of trees. Tree ring data suggest that digging negatively affected the radial growth of larches. The results imply that digging decreases tree growth due to limited soil nitrogen uptake. Our findings indicate that the ecological roles of large carnivores may differ between natural and anthropogenic landscapes.
Collapse
Affiliation(s)
- Kanji M Tomita
- Faculty of Agriculture and Marine Science Kochi University, Nankoku, Japan
| | - Tsutom Hiura
- Department of Ecosystem Studies, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Sharma HP, Bhattarai BP, Regmi S, Bhandari S, Adhikari D, Aryal B, Tamang K, Nepali A, K C S, Rawal B, Parajuli S, Baral BD, Devkota S, Koirala S, Belant JL, Katuwal HB. Occurrence and temporal overlap of sympatric jungle cats and leopard cats in Parsa‒Koshi Complex, Nepal. Sci Rep 2024; 14:2387. [PMID: 38287050 PMCID: PMC10825126 DOI: 10.1038/s41598-024-52644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Co-occurrence and spatial and temporal overlap of sympatric jungle and leopard cats are influenced by habitat preferences, and interspecific competition. Understanding these factors influence is crucial for developing effective conservation strategies. We conducted a camera survey in Parsa‒Koshi Complex (PKC), Nepal during December 2022-March 2023 to investigate factors influencing occupancy and spatial and temporal overlap between jungle cats (Felis chaus) and leopard cats (Prionailurus bengalensis). The mean detection probability (t = 0.664, p = 0.507) did not differ between jungle cats (p = 0.500 ± 0.289) and leopard cats (p = 0.501 ± 0.288); however, occupancy (t = 31.008, p < 0.001) was greater for jungle cats (ψ = 0.247 ± 0.020) than leopard cats (ψ = 0.178 ± 0.019). Jungle cats and leopard cats were positively associated with large predators, and jungle cats were positively associated with human presence and negatively associated with canopy cover. We observed high diel overlap between leopard cats and jungle cats (Dhat1 = 0.802, norm0CI: 0.720-0.884), with both species largely nocturnal. Co-existence of jungle cats and leopard cats in PKC appears to be facilitated by spatial segregation. These findings provide valuable insights into the complex ecological dynamics and interactions between sympatric jungle and leopard cats.
Collapse
Affiliation(s)
- Hari Prasad Sharma
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
- Nepal Zoological Society, Kirtipur, Kathmandu, Nepal.
| | - Bishnu Prasad Bhattarai
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Nepal Zoological Society, Kirtipur, Kathmandu, Nepal
| | - Sandeep Regmi
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Shivish Bhandari
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | | | - Bishnu Aryal
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Krishna Tamang
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Amrit Nepali
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sabin K C
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Basudha Rawal
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sagar Parajuli
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bashu Dev Baral
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Surya Devkota
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | | - Jerrold L Belant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Hem Bahadur Katuwal
- Nepal Zoological Society, Kirtipur, Kathmandu, Nepal.
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.
| |
Collapse
|
8
|
Zanette LY, Frizzelle NR, Clinchy M, Peel MJS, Keller CB, Huebner SE, Packer C. Fear of the human "super predator" pervades the South African savanna. Curr Biol 2023; 33:4689-4696.e4. [PMID: 37802052 DOI: 10.1016/j.cub.2023.08.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023]
Abstract
Lions have long been perceived as Africa's, if not the world's, most fearsome terrestrial predator,1,2,3,4,5,6,7,8,9 the "king of beasts". Wildlife's fear of humans may, however, be far more powerful and all-prevailing1,10 as recent global surveys show that humans kill prey at much higher rates than other predators,10,11,12 due partly to technologies such as hunting with dogs or guns.11,13,14,15 We comprehensively experimentally tested whether wildlife's fear of humans exceeds even that of lions, by quantifying fear responses1 in the majority of carnivore and ungulate species (n = 19) inhabiting South Africa`s Greater Kruger National Park (GKNP),9,15,16,17 using automated camera-speaker systems9,18 at waterholes during the dry season that broadcast playbacks of humans, lions, hunting sounds (dogs, gunshots) or non-predator controls (birds).9,19,20,21,22 Fear of humans significantly exceeded that of lions throughout the savanna mammal community. As a whole (n = 4,238 independent trials), wildlife were twice as likely to run (p < 0.001) and abandoned waterholes in 40% faster time (p < 0.001) in response to humans than to lions (or hunting sounds). Fully 95% of species ran more from humans than lions (significantly in giraffes, leopards, hyenas, zebras, kudu, warthog, and impala) or abandoned waterholes faster (significantly in rhinoceroses and elephants). Our results greatly strengthen the growing experimental evidence that wildlife worldwide fear the human "super predator" far more than other predators,1,19,20,21,22,23,24,25,26,27,28 and the very substantial fear of humans demonstrated can be expected to cause considerable ecological impacts,1,6,22,23,24,29,30,31,32,33,34,35 presenting challenges for tourism-dependent conservation,1,36,37 particularly in Africa,38,39 while providing new opportunities to protect some species.1,22,40.
Collapse
Affiliation(s)
- Liana Y Zanette
- Department of Biology, Western University, London, ON N6A 5B7, Canada.
| | | | - Michael Clinchy
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Michael J S Peel
- ARC - Animal Production Institute, Rangeland Ecology Group, Mbombela 1200, South Africa; School for Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2017, South Africa; Applied Behavioural Ecology and Ecosystem Research Unit, University of South Africa, Florida 1710, South Africa
| | - Carson B Keller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah E Huebner
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Craig Packer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
9
|
Chen X, Tian T, Pan H, Jin Y, Zhang X, Long Q, Tang L, Yang B, Zhang L. The Minimal Impact of Anthropogenic Disturbances on the Spatial Activities of Leopard Cats in Xinlong, China. Animals (Basel) 2023; 13:3328. [PMID: 37958083 PMCID: PMC10650319 DOI: 10.3390/ani13213328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The habitat plays a crucial role in ensuring the survival of wildlife. However, the increasing disturbances caused by human activities present a substantial threat to habitats, especially for species such as the leopard cat (Prionailurus bengalensis), which is a significant small predator. Currently, research on leopard cats predominantly focuses on low-altitude regions within its distribution range, leaving plateau areas understudied. To enhance our understanding of the impact of human disturbances on leopard cat habitats, we undertook a study employing infrared camera trappings to monitor leopard cats' activity in Xinlong of southwestern China between 2015 and 2023. We analyzed the spatial distribution and habitat suitability of the leopard cats by utilizing ensemble species distribution models (ESDMs). Moreover, we employed two-species occupancy models to investigate the spatial interaction between leopard cats and human disturbances. The results indicated that (1) the potential suitable habitat area for leopard cats encompassed approximately 1324.93 km2 (14.3%), primarily located along the banks of Yalong river. (2) The distribution of suitable habitat was predominantly influenced by competitors, specifically the yellow-throated marten (YTM), accounting for 52.4% of the influence, as well as environmental factors such as distance to water (DTW) at 12.0% and terrain roughness index (TRI) at 10.0%. Human interference, including cattle presence (4.6%), distance to road (DTD, 4.9%), and distance to settlement (DTS, 3.5%), had a limited impact on the habitat distribution. (3) Within a 5 km radius, habitat suitability increased with proximity to human settlements. (4) Leopard cats exhibited spatial independence from humans and domestic cattle (species interaction factor (SIF) = 1.00) while avoiding domestic horses (SIF = 0.76 ± 0.03). The relatively minor impact of human disturbances in Xinlong could be attributed to traditional cultural practices safeguarding wildlife and the leopard cat's environmental adaptability. We recommend establishing a novel conservation paradigm based on the living dynamics of wildlife communities in Xinlong, thereby offering a more targeted approach to biodiversity preservation in the future.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China; (X.C.); (T.T.); (H.P.)
| | - Tengteng Tian
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China; (X.C.); (T.T.); (H.P.)
| | - Han Pan
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China; (X.C.); (T.T.); (H.P.)
- College of Life Science, China West Normal University, Nanchong 637002, China
- Society of Entrepreneurs and Ecology (SEE) Foundation, Beijing 100020, China; (Y.J.); (X.Z.)
| | - Yuyi Jin
- Society of Entrepreneurs and Ecology (SEE) Foundation, Beijing 100020, China; (Y.J.); (X.Z.)
| | - Xiaodian Zhang
- Society of Entrepreneurs and Ecology (SEE) Foundation, Beijing 100020, China; (Y.J.); (X.Z.)
| | - Qinggang Long
- China Environmental Protection Foundation, Beijing 100062, China; (Q.L.); (L.T.)
| | - Ling Tang
- China Environmental Protection Foundation, Beijing 100062, China; (Q.L.); (L.T.)
| | - Biao Yang
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Li Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China; (X.C.); (T.T.); (H.P.)
| |
Collapse
|
10
|
Darimont CT, Shukla I. When the enemy of an enemy is no friend. Science 2023; 380:691-692. [PMID: 37200414 DOI: 10.1126/science.adh9166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Some wildlife species mistakenly seek human-inhabited areas to avoid predators.
Collapse
Affiliation(s)
- Chris T Darimont
- Department of Geography, University of Victoria, Victoria, BC, Canada
- Raincoast Conservation Foundation, Sidney, BC, Canada
| | - Ishana Shukla
- Department of Geography, University of Victoria, Victoria, BC, Canada
- Raincoast Conservation Foundation, Sidney, BC, Canada
| |
Collapse
|