1
|
Insuk C, Cheeptham N, Lausen C, Xu J. DNA metabarcoding analyses reveal fine-scale microbiome structures on Western Canadian bat wings. Microbiol Spectr 2024:e0037624. [PMID: 39436130 DOI: 10.1128/spectrum.00376-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Healthy wings are vital for the survival and reproduction of bats, and wing microbiome is a key component of bat wing health. However, relatively little is known about the wing microbiome of bats in western Canada where the white nose syndrome has become an increasing threat. Here, we used DNA metabarcoding to investigate the bacterial and fungal communities on the wings of three bat species: the big brown bat (Eptesicus fuscus), the Yuma myotis (Myotis yumanensis), and the little brown myotis (M. lucifugus) from four field sites in Lillooet, British Columbia, Canada. The bacterial 16S rRNA metabarcoding revealed a total of 4,167 amplicon sequence variants (ASVs) belonging to 27 phyla, 639 genera, and 533 known and 2,423 unknown species. The wing bacteria were dominated by phyla Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria, and the most common genera were Delftia, Bordetella, Sphingomonas, Phyllobacterium, Bradyrhizobium, Pseudomonas, and Corynebacterium. The fungal internal transcribed spacer (ITS) metabarcoding revealed a total of 11,722 ASVs belonging to 16 phyla, 806 genera, and 1,420 known and 10,302 unknown species. The wing fungi were dominated by phyla Ascomycota, Basidiomycota, and Motierellomycota, and the most common genera were Cladosporium, Aspergillus, and Mycosphaerella. Principal coordinates analysis showed that both bat species and field sites contributed variably to the diversity and distribution of bacterial and fungal communities on bat wings. Interestingly, both positive and negative correlations were found in their relative abundances among several groups of microbial taxa. We discuss the implications of our results for bat health, including the management of P. destructans infection and white-nose syndrome spread. IMPORTANCE Microbiomes play important roles in host health. White-nose syndrome (WNS), a fungal infection of bat wings and muzzles, has threatened bat populations across North America since 2006. Recent research suggest that the skin microbiome of bats may play a significant role in bat's susceptibility to WNS. However, relatively little is known about the skin microbiome composition and function in bats in Western Canada, a region with a high diversity of bats, but WNS has yet to be a major issue. Here, we revealed high bacterial and fungal diversities on the skin of three common bat species in Lillooet, British Columbia, including several highly prevalent microbial species that have been rarely reported in other regions. Our analyses showed fine-scale structures of bat wing microbiome based on local sites and bat species. The knowledge obtained from WNS-naïve bat populations in this study may help develop mitigation and management strategies against WNS.
Collapse
Affiliation(s)
- Chadabhorn Insuk
- Department of Biology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Cori Lausen
- Wildlife Conservation Society Canada, Kaslo, British Columbia, Canada
| | - Jianping Xu
- Department of Biology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Singh A, Misser S, Allam M, Chan WY, Ismail A, Munhenga G, Oliver SV. The Effect of Larval Exposure to Heavy Metals on the Gut Microbiota Composition of Adult Anopheles arabiensis (Diptera: Culicidae). Trop Med Infect Dis 2024; 9:249. [PMID: 39453276 PMCID: PMC11510740 DOI: 10.3390/tropicalmed9100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Anopheles arabiensis is a highly adaptable member of the An. gambiae complex. Its flexible resting behaviour and diverse feeding habits make conventional vector control methods less effective in controlling this species. Another emerging challenge is its adaptation to breeding in polluted water, which impacts various life history traits relevant to epidemiology. The gut microbiota of mosquitoes play a crucial role in their life history, and the larval environment significantly influences the composition of this bacterial community. Consequently, adaptation to polluted breeding sites may alter the gut microbiota of adult mosquitoes. This study aimed to examine how larval exposure to metal pollution affects the gut microbial dynamics of An. arabiensis adults. Larvae of An. arabiensis were exposed to either cadmium chloride or copper nitrate, with larvae reared in untreated water serving as a control. Two laboratory strains (SENN: insecticide unselected, SENN-DDT: insecticide selected) and F1 larvae sourced from KwaZulu-Natal, South Africa, were exposed. The gut microbiota of the adults were sequenced using the Illumina Next Generation Sequencing platform and compared. Larval metal exposure affected alpha diversity, with a more marked difference in beta diversity. There was evidence of core microbiota shared between the untreated and metal-treated groups. Bacterial genera associated with metal tolerance were more prevalent in the metal-treated groups. Although larval metal exposure led to an increase in pesticide-degrading bacterial genera in the laboratory strains, this effect was not observed in the F1 population. In the F1 population, Plasmodium-protective bacterial genera were more abundant in the untreated group compared to the metal-treated group. This study therefore highlights the importance of considering the larval environment when searching for local bacterial symbionts for paratransgenesis interventions.
Collapse
Affiliation(s)
- Ashmika Singh
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Shristi Misser
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Wai-Yin Chan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa;
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa;
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
3
|
Schinkel M, Bousema T, van Rij RP. Tripartite interactions between viruses, parasites, and mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101222. [PMID: 38908822 DOI: 10.1016/j.cois.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Mosquito-borne diseases have a major impact on global human health. Biological agents that colonize the mosquito vector are increasingly explored as an intervention strategy to prevent vector-borne disease transmission. For instance, the release of mosquitoes carrying the endosymbiotic bacterium Wolbachia effectively reduced dengue virus incidence and disease. Insect-specific viruses are likewise considered as biocontrol agents against vector-borne diseases. While most studies focused on insect-specific viruses as an intervention against arthropod-borne viruses, we here consider whether mosquito-specific viruses may affect the transmission of the malaria-causing Plasmodium parasite by Anopheles mosquitoes. Although there is no direct experimental evidence addressing this question, we found that viral infections in dipteran insects activate some of the immune pathways that are antiparasitic in Anopheles. These findings suggest that indirect virus-parasite interactions could occur and that insect-specific viruses may modulate malaria transmission. Tripartite interactions between viruses, parasites, and Anopheles mosquitoes thus merit further investigation.
Collapse
Affiliation(s)
- Michelle Schinkel
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Polycarpo CR, Walter-Nuno AB, Azevedo-Reis L, Paiva-Silva GO. The vector-symbiont affair: a relationship as (im)perfect as it can be. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101203. [PMID: 38705385 DOI: 10.1016/j.cois.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries. The balance between costs and benefits provided by these interactions ultimately determines the outcome of the relationship. Here, we will explore aspects concerning the nature of microbe-vector interactions, including the adaptive traits required for their establishment, the varied outcomes of symbiotic interactions, as well as the factors influencing the transition of these relationships across a continuum from parasitism to mutualism.
Collapse
Affiliation(s)
- Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Leonan Azevedo-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
5
|
Zhang L, Wang D, Shi P, Li J, Niu J, Chen J, Wang G, Wu L, Chen L, Yang Z, Li S, Meng J, Ruan F, He Y, Zhao H, Ren Z, Wang Y, Liu Y, Shi X, Wang Y, Liu Q, Li J, Wang P, Wang J, Zhu Y, Cheng G. A naturally isolated symbiotic bacterium suppresses flavivirus transmission by Aedes mosquitoes. Science 2024; 384:eadn9524. [PMID: 38669573 DOI: 10.1126/science.adn9524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.
Collapse
Affiliation(s)
- Liming Zhang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Daxi Wang
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Peibo Shi
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juzhen Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jichen Niu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jielong Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Gang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linjuan Wu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Fangchao Ruan
- Kunming Medical University, Kunming, Yunnan 650000, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Hailong Zhao
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Zirui Ren
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yunfu Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
6
|
Zhu X, Li J, He A, Gurr GM, You M, You S. Developmental Shifts in the Microbiome of a Cosmopolitan Pest: Unraveling the Role of Wolbachia and Dominant Bacteria. INSECTS 2024; 15:132. [PMID: 38392551 PMCID: PMC10888865 DOI: 10.3390/insects15020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Wolbachia bacteria (phylum Proteobacteria) are ubiquitous intracellular parasites of diverse invertebrates. In insects, coevolution has forged mutualistic associations with Wolbachia species, influencing reproduction, immunity, development, pathogen resistance, and overall fitness. However, the impact of Wolbachia on other microbial associates within the insect microbiome, which are crucial for host fitness, remains less explored. The diamondback moth (Plutella xylostella), a major pest of cruciferous vegetables worldwide, harbors the dominant Wolbachia strain plutWB1, known to distort its sex ratio. This study investigated the bacterial community diversity and dynamics across different developmental life stages and Wolbachia infection states in P. xylostella using high-throughput 16S rDNA amplicon sequencing. Proteobacteria and Firmicutes dominated the P. xylostella microbiome regardless of life stage or Wolbachia infection. However, the relative abundance of dominant genera, including an unclassified genus of Enterobacteriaceae, Wolbachia, Carnobacterium, and Delftia tsuruhatensis, displayed significant stage-specific variations. While significant differences in bacterial diversity and composition were observed across life stages, Wolbachia infection had no substantial impact on overall diversity. Nonetheless, relative abundances of specific genera differed between infection states. Notably, Wolbachia exhibited a stable, high relative abundance across all stages and negatively correlated with an unclassified genus of Enterobacteriaceae, Delftia tsuruhatensis, and Carnobacterium. Our findings provide a foundational understanding of the complex interplay between the host, Wolbachia, and the associated microbiome in P. xylostella, paving the way for a deeper understanding of their complex interactions and potential implications for pest control strategies.
Collapse
Affiliation(s)
- Xiangyu Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyang Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ao He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Geoff M Gurr
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Gulbali Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Jennings SAV, Clavel T. Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition. Annu Rev Anim Biosci 2024; 12:283-300. [PMID: 37963399 DOI: 10.1146/annurev-animal-021022-025552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Microbes and animals have a symbiotic relationship that greatly influences nutrient uptake and animal health. This relationship can be studied using selections of microbes termed synthetic communities, or SynComs. SynComs are used in many different animal hosts, including agricultural animals, to investigate microbial interactions with nutrients and how these affect animal health. The most common host focuses for SynComs are currently mouse and human, from basic mechanistic research through to translational disease models and live biotherapeutic products (LBPs) as treatments. We discuss SynComs used in basic research models and findings that relate to human and animal health and nutrition. Translational use cases of SynComs are discussed, followed by LBPs, especially within the context of agriculture. SynComs still face challenges, such as standardization for reproducibility and contamination risks. However, the future of SynComs is hopeful, especially in the areas of genome-guided SynCom design and custom SynCom-based treatments.
Collapse
Affiliation(s)
- Susan A V Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| |
Collapse
|
8
|
Porras MF, Raygoza Garay JA, Brought M, López-Londoño T, Chautá A, Crone M, Rajotte EG, Phan N, Joshi NK, Peter K, Biddinger D. Fungicide ingestion reduces net energy gain and microbiome diversity of the solitary mason bee. Sci Rep 2024; 14:3229. [PMID: 38332135 PMCID: PMC10853529 DOI: 10.1038/s41598-024-53935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Fungicides are frequently used during tree fruit bloom and can threaten insect pollinators. However, little is known about how non-honey bee pollinators such as the solitary bee, Osmia cornifrons, respond to contact and systemic fungicides commonly used in apple production during bloom. This knowledge gap limits regulatory decisions that determine safe concentrations and timing for fungicide spraying. We evaluated the effects of two contact fungicides (captan and mancozeb) and four translaminar/plant systemic fungicides (cyprodinil, myclobutanil, penthiopyrad, and trifloxystrobin) on larval weight gain, survival, sex ratio, and bacterial diversity. This assessment was carried out using chronic oral ingestion bioassays where pollen provisions were treated with three doses based on the currently recommended field use dose (1X), half dose (0.5X), and low dose (0.1X). Mancozeb and penthiopyrad significantly reduced larval weight and survival at all doses. We then sequenced the 16S gene to characterize the larvae bacteriome of mancozeb, the fungicide that caused the highest mortality. We found that larvae fed on mancozeb-treated pollen carried significantly lower bacterial diversity and abundance. Our laboratory results suggest that some of these fungicides can be particularly harmful to the health of O. cornifrons when sprayed during bloom. This information is relevant for future management decisions about the sustainable use of fruit tree crop protection products and informing regulatory processes that aim to protect pollinators.
Collapse
Affiliation(s)
- Mitzy F Porras
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg, University Park, USA.
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, 94132, USA.
| | - Juan Antonio Raygoza Garay
- Department of Communication Sciences and Disorders, Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Malachi Brought
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg, University Park, USA
| | - Tomas López-Londoño
- Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, PA16802, USA
| | - Alexander Chautá
- Department of Ecology, Cornell University, Ithaca, NY, 14850, USA
| | - Makaylee Crone
- Center for Pollinator Research, Intercollege Graduate Program in Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA16802, USA
| | - Edwin G Rajotte
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg, University Park, USA
| | - Ngoc Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Neelendra K Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kari Peter
- Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Pennsylvania State University, 290 University Dr., Biglerville, PA, 17307, USA
| | - David Biddinger
- Department of Entomology, Fruit Research and Extension Center, 290 University Dr., Biglerville, PA, 17307, USA
| |
Collapse
|
9
|
Weng SC, Masri RA, Akbari OS. Advances and challenges in synthetic biology for mosquito control. Trends Parasitol 2024; 40:75-88. [PMID: 38000957 PMCID: PMC11064511 DOI: 10.1016/j.pt.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Mosquito-borne illnesses represent a significant global health peril, resulting in approximately one million fatalities annually. West Nile, dengue, Zika, and malaria are continuously expanding their global reach, driven by factors that escalate mosquito populations and pathogen transmission. Innovative control measures are imperative to combat these catastrophic ailments. Conventional approaches, such as eliminating breeding sites and using insecticides, have been helpful, but they face challenges such as insecticide resistance and environmental harm. Given the mounting severity of mosquito-borne diseases, there is promise in exploring innovative approaches using synthetic biology to bolster mosquitoes' resistance to pathogens, or even eliminate the mosquito vectors, as a means of control. This review outlines current strategies, future goals, and the importance of gene editing for global health defenses against mosquito-borne diseases.
Collapse
Affiliation(s)
- Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reem A Masri
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Koh C, Saleh MC. Translating mosquito viromes into vector management strategies. Trends Parasitol 2024; 40:10-20. [PMID: 38065789 DOI: 10.1016/j.pt.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Mosquitoes are best known for transmitting human and animal viruses. However, they also harbour mosquito-specific viruses (MSVs) as part of their microbiota. These are a group of viruses whose diversity and prevalence overshadow their medically relevant counterparts. Although metagenomics sequencing has remarkably accelerated the discovery of these viruses, what we know about them is often limited to sequence information, leaving much of their fundamental biology to be explored. Understanding the biology and ecology of MSVs can enlighten our knowledge of virus-virus interactions and lead to new innovations in the management of mosquito-borne viral diseases. We retrace the history of their discovery and discuss research milestones that would line the path from mosquito virome knowledge to vector management strategies.
Collapse
Affiliation(s)
- Cassandra Koh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France.
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| |
Collapse
|
11
|
Zadra N, Tatti A, Silverj A, Piccinno R, Devilliers J, Lewis C, Arnoldi D, Montarsi F, Escuer P, Fusco G, De Sanctis V, Feuda R, Sánchez-Gracia A, Rizzoli A, Rota-Stabelli O. Shallow Whole-Genome Sequencing of Aedes japonicus and Aedes koreicus from Italy and an Updated Picture of Their Evolution Based on Mitogenomics and Barcoding. INSECTS 2023; 14:904. [PMID: 38132578 PMCID: PMC10743467 DOI: 10.3390/insects14120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, shallow genome sequencing of A. japonicus and A. koreicus individuals from northern Italy, which we used for downstream phylogenetic and barcode analyses. We explored associated microbial DNA and found high occurrences of Delftia bacteria in both samples, but neither Asaia nor Wolbachia. We then assembled complete mitogenomes and used these data to infer divergence times estimating the split of A. japonicus from A. koreicus in the Oligocene, which was more recent than that previously reported using mitochondrial markers. We recover a younger age for most other nodes within Aedini and other Culicidae. COI barcoding and phylogenetic analyses indicate that A. japonicus yaeyamensis, A. japonicus amamiensis, and the two A. koreicus sampled from Europe should be considered as separate species within a monophyletic species complex. Our studies further clarify the evolution of A. japonicus and A. koreicus, and indicate the need to obtain whole-genome data from putative species in order to disentangle their complex patterns of evolution.
Collapse
Affiliation(s)
- Nicola Zadra
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Alessia Tatti
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology, University of Padova, 35121 Padova, Italy;
- University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy
| | - Andrea Silverj
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Riccardo Piccinno
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Julien Devilliers
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Clifton Lewis
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Daniele Arnoldi
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy;
| | - Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Giuseppe Fusco
- Department of Biology, University of Padova, 35121 Padova, Italy;
| | | | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| |
Collapse
|
12
|
Taglialegna A. A mosquito symbiont takes down malaria. Nat Rev Microbiol 2023; 21:629. [PMID: 37580420 DOI: 10.1038/s41579-023-00964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
|