1
|
Kronenberg M, Riffelmacher T. Defenders or defectors: mucosal-associated invariant T cells in autoimmune diseases. Curr Opin Immunol 2025; 93:102542. [PMID: 40020256 PMCID: PMC11908677 DOI: 10.1016/j.coi.2025.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/08/2025]
Abstract
Mucosal-associated invariant T (MAIT) cells recognize microbial riboflavin metabolites presented by MR1, a major histocompatibility complex class I-like protein. Activated MAIT cells produce cytokines such as interferon gamma (IFNγ), tumor necrosis factor, and interleukin-17; they traffic to sites of infection and participate in protective responses. They are absent in germ-free mice and are dependent on microbes. MAIT cells not only respond to infections but also have been analyzed in various autoimmune diseases. A trend is that in autoimmune disease, MAIT cells are decreased in the circulation and increased and activated or exhausted in the site of inflammation. Despite a possible pathogenic role, publications show MAIT cells also can function in tissue repair. Mouse autoimmune disease models support the presence of both these MAIT cell functions. The signals driving the balance of inflammatory and tissue repair in MAIT cell responses remain to be fully elucidated.
Collapse
Affiliation(s)
- Mitchell Kronenberg
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA; La Jolla Institute for Immunology, La Jolla, CA, USA.
| | | |
Collapse
|
2
|
Fang Y, Chen Y, Niu S, Lyu Z, Tian Y, Shen X, Li YR, Yang L. Biological functions and therapeutic applications of human mucosal-associated invariant T cells. J Biomed Sci 2025; 32:32. [PMID: 40025566 PMCID: PMC11871619 DOI: 10.1186/s12929-025-01125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a unique subset of innate-like T lymphocytes that bridge innate and adaptive immunity. Characterized by their semi-invariant T cell receptor (TCR) and abundant localization in mucosal tissues, MAIT cells recognize microbial metabolites, primarily derived from the riboflavin biosynthesis pathway, presented by the major histocompatibility complex (MHC)-related protein 1 (MR1). This interaction, along with co-stimulatory signals, triggers rapid immune responses, including cytokine secretion and cytotoxic activity, highlighting their importance in maintaining immune homeostasis and combating infections. This review provides an in-depth overview of MAIT cell biology, including development, activation pathways, and functional diversity, highlighting their protective roles in immunity, contributions to diseases like cancer and inflammatory bowel disease (IBD), and context-dependent dual functions in health and pathology. This review also highlights the emerging therapeutic potential of MAIT cells in immunotherapy. Their unique TCR specificity, abundance, and tissue-homing properties make them ideal candidates for engineering novel therapies, such as chimeric antigen receptor (CAR)-MAIT cells, targeting infections, cancers, and autoimmune diseases. Challenges like antigen escape, T cell exhaustion, and CAR design optimization must be addressed to enhance clinical efficacy. In summary, MAIT cells are integral to immune function, and their therapeutic potential presents exciting opportunities for the treatment of a wide range of diseases. Further research is essential to unlock the full potential of these versatile immune cells.
Collapse
Affiliation(s)
- Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Siyue Niu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinyuan Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Camard L, Stephen T, Yahia-Cherbal H, Guillemot V, Mella S, Baillet V, Lopez-Maestre H, Capocefalo D, Cantini L, Leloup C, Marsande J, Garro K, Sienes Bailo J, Dangien A, Pietrosemoli N, Hasan M, Wang H, Eckle SB, Fourie AM, Greving C, Joyce-Shaikh B, Parker R, Cua DJ, Bianchi E, Rogge L. IL-23 tunes inflammatory functions of human mucosal-associated invariant T cells. iScience 2025; 28:111898. [PMID: 40008359 PMCID: PMC11850163 DOI: 10.1016/j.isci.2025.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
IL-23 signaling plays a key role in the pathogenesis of chronic inflammatory and infectious diseases, yet the cellular targets and signaling pathways affected by this cytokine remain poorly understood. We show that IL-23 receptors are expressed on the large majority of human mucosal-associated invariant T (MAIT), but not of conventional T cells. Protein and transcriptional profiling at the population and single cell level demonstrates that stimulation with IL-23 or the structurally related cytokine IL-12 drives distinct functional profiles, revealing a high level of plasticity of MAIT cells. IL-23, in particular, affects key molecules and pathways related to autoimmunity and cytotoxic functions. Integrated analysis of transcriptomes and chromatin accessibility, supported by CRISPR-Cas9 mediated deletion, shows that AP-1 transcription factors constitute a key regulatory node of the IL-23 pathway in MAIT cells. In conclusion, our findings indicate that MAIT cells are key mediators of IL-23 functions in immunity to infections and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laetitia Camard
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Tharshana Stephen
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- scBiomarkers, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Hanane Yahia-Cherbal
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Vincent Guillemot
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Sébastien Mella
- scBiomarkers, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Victoire Baillet
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Hélène Lopez-Maestre
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Daniele Capocefalo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, 75015 Paris, France
| | - Laura Cantini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, 75015 Paris, France
| | - Claire Leloup
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Julie Marsande
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Katherine Garro
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Juan Sienes Bailo
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Ambre Dangien
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Department of Dermatology, Hôpital Cochin, AP-HP, AP-HP Centre-Université de Paris, 75014 Paris, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Milena Hasan
- scBiomarkers, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anne M. Fourie
- Janssen Research & Development, LLC, San Diego, CA 92121, USA
| | - Carrie Greving
- Janssen Research & Development, LLC, San Diego, CA 92121, USA
| | | | - Raphaelle Parker
- Janssen Research & Development, Janssen-Cilag, 92130 Issy les Moulineaux, France
| | - Daniel J. Cua
- Janssen Research & Development, LLC, Spring House, PA 19002, USA
| | - Elisabetta Bianchi
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Lars Rogge
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
4
|
Wu Z, Chen X, Han F, Leeansyah E. MAIT cell homing in intestinal homeostasis and inflammation. SCIENCE ADVANCES 2025; 11:eadu4172. [PMID: 39919191 PMCID: PMC11804934 DOI: 10.1126/sciadv.adu4172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Mucosa-associated invariant T (MAIT) cells are a large population of unconventional T cells widely distributed in the human gastrointestinal tract. Their homing to the gut is central to maintaining mucosal homeostasis and immunity. This review discusses the potential mechanisms that guide MAIT cells to the intestinal mucosa during homeostasis and inflammation, emphasizing the roles of chemokines, chemokine receptors, and tissue adhesion molecules. The potential influence of the gut microbiota on MAIT cell homing to different regions of the human gut is also discussed. Last, we introduce how organoid technology offers a potentially valuable approach to advance our understanding of MAIT cell tissue homing by providing a more physiologically relevant model that mimics the human gut tissue. These models may enable a detailed investigation of the gut-specific homing mechanisms of MAIT cells. By understanding the regulation of MAIT cell homing to the human gut, potential avenues for therapeutic interventions targeting gut inflammatory conditions such as inflammatory bowel diseases (IBD) may emerge.
Collapse
Affiliation(s)
- Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Figueiredo AB, Morais KLP, Silva IT, Maia LBL, Buttura JR, Barros BDF, Alves NS, Pignataro-Oshiro F, Shimon SMM, Teixeira-Carvalho A, Almeida L, Carvalho E, Machado P, Blackwell JM, Castellucci L, Dutra WO, Gollob KJ. Circulating Soluble Factors and T-Cell Subsets as Immunological Predictors of Therapy Response in Human Cutaneous Leishmaniasis. J Infect Dis 2025:jiaf042. [PMID: 39903507 DOI: 10.1093/infdis/jiaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Human cutaneous leishmaniasis, a neglected tropical disease caused by Leishmania braziliensis, presents treatment challenges due to varying therapeutic responses. Current therapies often encounter limited efficacy and treatment failure, demanding a deeper understanding of immunopathogenesis and predictive markers. METHODS We explored the immunological determinants influencing therapy response in human cutaneous leishmaniasis, focusing on the intricate host-parasite immune interactions. We evaluated blood and lesions from the same individuals before therapeutic intervention and followed the patients for 60 days to determine treatment efficacy. We employed multiparameter flow cytometry methods for peripheral blood analysis of soluble factors and T-cell subpopulations, and RNA sequencing for analysis of lesion biopsies. RESULTS Our investigation identified a combined set of circulating soluble factors as promising noninvasive predictive markers for treatment outcomes. Additionally, we reveal an association between circulating CD8+ mucosal-associated invariant T (MAIT) cells with increased lesion pathology, and a gene signature in lesions associated with CD8+ MAIT cells in refractory patients. CONCLUSIONS These findings highlight the potential for tailored interventions and novel immunomodulatory strategies to enhance treatment efficacy and address challenges in unresponsive cases of this debilitating disease.
Collapse
Affiliation(s)
- Amanda B Figueiredo
- Translational Immuno-oncology Laboratory, Research and Education Institute, Hospital Israelita Albert Einstein
| | - Katia L P Morais
- Translational Immuno-oncology Laboratory, Research and Education Institute, Hospital Israelita Albert Einstein
| | - Israel T Silva
- International Research Center, A. C. Camargo Cancer Center
| | - Lorhenn B L Maia
- Translational Immuno-oncology Laboratory, Research and Education Institute, Hospital Israelita Albert Einstein
| | - Jaqueline R Buttura
- International Research Center, A. C. Camargo Cancer Center
- Department of Genomics, Fleury Group, São Paulo, São Paulo
| | | | | | | | - Samara M M Shimon
- Translational Immuno-oncology Laboratory, Research and Education Institute, Hospital Israelita Albert Einstein
| | | | - Lucas Almeida
- Serviço de Imunologia, Universidade Federal da Bahia
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais
| | - Edgar Carvalho
- Serviço de Imunologia, Universidade Federal da Bahia
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Paulo Machado
- Serviço de Imunologia, Universidade Federal da Bahia
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais
| | - Jenefer M Blackwell
- Telethon Kids Institute, University of Western Australia, Nedlands, Australia
- Department of Pathology, University of Cambridge, United Kingdom
| | - Lea Castellucci
- Serviço de Imunologia, Universidade Federal da Bahia
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais
| | - Walderez O Dutra
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais
- Laboratório Biologia das Interações Celulares, Departament de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kenneth J Gollob
- Translational Immuno-oncology Laboratory, Research and Education Institute, Hospital Israelita Albert Einstein
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais
| |
Collapse
|
6
|
Ascui G, Cedillo-Castelan V, Mendis A, Phung E, Liu HY, Verstichel G, Chandra S, Murray MP, Luna C, Cheroutre H, Kronenberg M. Innateness transcriptome gradients characterize mouse T lymphocyte populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:223-237. [PMID: 40073243 PMCID: PMC11878997 DOI: 10.1093/jimmun/vkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/01/2024] [Indexed: 03/14/2025]
Abstract
A fundamental dichotomy in lymphocytes separates adaptive T and B lymphocytes, with clonally expressed antigen receptors, from innate lymphocytes, which carry out more rapid responses. Some T cell populations, however, are intermediates between these 2 poles, with the capacity to respond rapidly through T cell receptor activation or by cytokine stimulation. Here, using publicly available datasets, we constructed linear mixed models that not only define a gradient of innate gene expression in common for mouse innate-like T cells, but also are applicable to other mouse T lymphoid populations. A similar gradient could be identified for chromatin landscape based on ATAC-seq (assay for transposase-accessible chromatin using sequencing) data. The gradient included increased transcripts related to many traits of innate immune responses, with increased scores related to evidence for antigen experience. While including genes typical for T helper 1 (Th1) responses, the innateness gene program could be separated from Th1, Th2, and Th17 responses. Lymphocyte populations with higher innateness scores correlated with lower calcium-dependent T cell receptor-mediated cell activation, with some downstream signaling proteins dependent on calcium or affecting metabolism prephosphorylation. Therefore, as a group, different mouse innate-like T cell populations had related gene expression programs and activation pathways that are different from naive CD4 and CD8 T cells.
Collapse
Affiliation(s)
- Gabriel Ascui
- La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | | | - Alba Mendis
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Eleni Phung
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Hsin-Yu Liu
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Shilpi Chandra
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Cindy Luna
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Wang H, Souter MNT, de Lima Moreira M, Li S, Zhou Y, Nelson AG, Yu J, Meehan LJ, Meehan BS, Eckle SBG, Lee HJ, Schröder J, Haque A, Mak JYW, Fairlie DP, McCluskey J, Wang Z, Chen Z, Corbett AJ. MAIT cell plasticity enables functional adaptation that drives antibacterial immune protection. Sci Immunol 2024; 9:eadp9841. [PMID: 39642244 DOI: 10.1126/sciimmunol.adp9841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are known for their rapid effector functions and antibacterial immune protection. Here, we define the plasticity of interferon-γ (IFN-γ)-producing MAIT1 and interleukin-17A (IL-17A)-producing MAIT17 cell subsets in vivo. Whereas T-bet+ MAIT1 cells remained stable in all experimental settings, after adoptive transfer or acute Legionella or Francisella infection, RORγt+ MAIT17 cells could undergo phenotypic and functional conversion into both RORγt+T-bet+ MAIT1/17 and RORγt-T-bet+ MAIT1 cells. This plasticity ensured that MAIT17 cells played a dominant role in generating antibacterial MAIT1 responses in mucosal tissues. Single-cell transcriptomics revealed that MAIT17-derived MAIT1 cells were distinct from canonical MAIT1 cells yet could migrate out of mucosal tissues to contribute to the global MAIT1 pool in subsequent systemic infections. Human IL-17A-secreting MAIT cells also showed similar functional plasticity. Our findings have broad implications for understanding the role of MAIT cells in combatting infections and their potential utility in MAIT cell-targeted vaccines.
Collapse
Affiliation(s)
- Huimeng Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Michael N T Souter
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marcela de Lima Moreira
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Shihan Li
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Computational Sciences Initiative, Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yuchen Zhou
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Tsinghua Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Adam G Nelson
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jinhan Yu
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lucy J Meehan
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S Meehan
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sidonia B G Eckle
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hyun Jae Lee
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jan Schröder
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Computational Sciences Initiative, Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ashraful Haque
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - James McCluskey
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Chen
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
8
|
Xu C, Obers A, Qin M, Brandli A, Wong J, Huang X, Clatch A, Fayed A, Starkey G, D’Costa R, Gordon CL, Mak JY, Fairlie DP, Beattie L, Mackay LK, Godfrey DI, Koay HF. Selective regulation of IFN-γ and IL-4 co-producing unconventional T cells by purinergic signaling. J Exp Med 2024; 221:e20240354. [PMID: 39560665 PMCID: PMC11577439 DOI: 10.1084/jem.20240354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024] Open
Abstract
Unconventional T cells, including mucosal-associated invariant T (MAIT), natural killer T (NKT), and gamma-delta T (γδT) cells, comprise distinct T-bet+, IFN-γ+ and RORγt+, IL-17+ subsets which play differential roles in health and disease. NKT1 cells are susceptible to ARTC2-mediated P2X7 receptor (P2RX7) activation, but the effects on other unconventional T-cell types are unknown. Here, we show that MAIT, γδT, and NKT cells express P2RX7 and are sensitive to P2RX7-mediated cell death. Mouse peripheral T-bet+ MAIT1, γδT1, and NKT1 cells, especially in liver, co-express ARTC2 and P2RX7. These markers could be further upregulated upon exposure to retinoic acid. Blocking ARTC2 or inhibiting P2RX7 protected MAIT1, γδT1, and NKT1 cells from cell death, enhanced their survival in vivo, and increased the number of IFN-γ-secreting cells without affecting IL-17 production. Importantly, this revealed the existence of IFN-γ and IL-4 co-producing unconventional T-cell populations normally lost upon isolation due to ARTC2/P2RX7-induced death. Administering extracellular NAD in vivo activated this pathway, depleting P2RX7-sensitive unconventional T cells. Our study reveals ARTC2/P2RX7 as a common regulatory axis modulating the unconventional T-cell compartment, affecting the viability of IFN-γ- and IL-4-producing T cells, offering important insights to facilitate future studies into how these cells can be regulated in health and disease.
Collapse
Affiliation(s)
- Calvin Xu
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Minyi Qin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Joelyn Wong
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Xin Huang
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Allison Clatch
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Aly Fayed
- Liver and Intestinal Transplant Unit, Austin Health, Melbourne, Australia
- Department of Surgery, The University of Melbourne, Austin Health, Melbourne, Australia
| | - Graham Starkey
- Liver and Intestinal Transplant Unit, Austin Health, Melbourne, Australia
- Department of Surgery, The University of Melbourne, Austin Health, Melbourne, Australia
| | - Rohit D’Costa
- DonateLife Victoria, Carlton, Australia
- Department of Intensive Care Medicine, Melbourne Health, Melbourne, Australia
| | - Claire L. Gordon
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
- North Eastern Public Health Unit, Austin Health, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Laura K. Mackay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
9
|
Rehermann B, Graham AL, Masopust D, Hamilton SE. Integrating natural commensals and pathogens into preclinical mouse models. Nat Rev Immunol 2024:10.1038/s41577-024-01108-3. [PMID: 39562646 DOI: 10.1038/s41577-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Fundamental discoveries in many aspects of mammalian physiology have been made using laboratory mice as research models. These studies have been facilitated by the genetic tractability and inbreeding of such mice, the large set of immunological reagents that are available, and the establishment of environmentally controlled, high-throughput facilities. Such facilities typically include barriers to keep the mouse colonies free of pathogens and the frequent re-derivation of the mice severely limits their commensal flora. Because humans have co-evolved with microorganisms and are exposed to a variety of pathogens, a growing community of researchers posits that preclinical disease research can be improved by studying mice in the context of the microbiota and pathogens that they would encounter in the natural world. Here, we provide a perspective of how these different approaches can be combined and integrated to improve existing mouse models to enhance our understanding of disease mechanisms and develop new therapies for humans. We also propose that the term 'mice with natural microbiota' is more appropriate for describing these models than existing terms such as 'dirty mice'.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - David Masopust
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
López-Rodríguez JC, Barral P. Mucosal associated invariant T cells: Powerhouses of the lung. Immunol Lett 2024; 269:106910. [PMID: 39128630 PMCID: PMC11835791 DOI: 10.1016/j.imlet.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The lungs face constant environmental challenges from harmless molecules, airborne pathogens and harmful agents that can damage the tissue. The lungs' immune system includes numerous tissue-resident lymphocytes that contribute to maintain tissue homeostasis and to the early initiation of immune responses. Amongst tissue-resident lymphocytes, Mucosal Associated Invariant T (MAIT) cells are present in human and murine lungs and emerging evidence supports their contribution to immune responses during infections, chronic inflammatory disorders and cancer. This review explores the mechanisms underpinning MAIT cell functions in the airways, their impact on lung immunity and the potential for targeting pulmonary MAIT cells in a therapeutic context.
Collapse
Affiliation(s)
- J C López-Rodríguez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| | - P Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Prabakar RK, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the phenotypic states of human innate-like T cells: Comparative insights with conventional T cells and mouse models. Cell Rep 2024; 43:114705. [PMID: 39264810 PMCID: PMC11552652 DOI: 10.1016/j.celrep.2024.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity. We explore the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single-cell RNA sequencing (scRNA-seq) and flow cytometry. In human blood, the majority of Tinn cells share an effector program driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type 1/type 17 effector potential. Cross-species analysis uncovers species-specific distinctions, including the absence of type 2 Tinn cells in humans, which implies distinct immune regulatory mechanisms across species.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Joanne Domenico
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea Spengler
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rishvanth K Prabakar
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Norman
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah V Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
12
|
Kammann T, Cai C, Sekine T, Mouchtaridi E, Boulouis C, Nilsén V, Ballesteros OR, Müller TR, Gao Y, Raineri EJM, Mily A, Adamo S, Constantz C, Niessl J, Weigel W, Kokkinou E, Stamper C, Marchalot A, Bassett J, Ferreira S, Rødahl I, Wild N, Brownlie D, Tibbitt C, Mak JYW, Fairlie DP, Leeansyah E, Michaelsson J, Marquardt N, Mjösberg J, Jorns C, Buggert M, Sandberg JK. MAIT cell heterogeneity across paired human tissues reveals specialization of distinct regulatory and enhanced effector profiles. Sci Immunol 2024; 9:eadn2362. [PMID: 39241054 DOI: 10.1126/sciimmunol.adn2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 09/08/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize microbial riboflavin pathway metabolites presented by evolutionarily conserved MR1 molecules. We explored the human MAIT cell compartment across organ donor-matched blood, barrier, and lymphoid tissues. MAIT cell population size was donor dependent with distinct tissue compartmentalization patterns and adaptations: Intestinal CD103+ resident MAIT cells presented an immunoregulatory CD39highCD27low profile, whereas MAIT cells expressing NCAM1/CD56 dominated in the liver and exhibited enhanced effector capacity with elevated response magnitude and polyfunctionality. Both intestinal CD39high and hepatic CD56+ adaptations accumulated with donor age. CD56+ MAIT cells displayed limited T cell receptor-repertoire breadth, elevated MR1 binding, and a transcriptional profile skewed toward innate activation pathways. Furthermore, CD56 was dynamically up-regulated to a persistent steady-state equilibrium after exposure to antigen or IL-7. In summary, we demonstrate functional heterogeneity and tissue site adaptation in resident MAIT cells across human barrier tissues with distinct regulatory and effector signatures.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elli Mouchtaridi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Vera Nilsén
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Thomas R Müller
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elisa J M Raineri
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Adamo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christian Constantz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne Marchalot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - John Bassett
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Ferreira
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inga Rødahl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Wild
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Chris Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jakob Michaelsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- ME Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Gao M, Zhao X. Insights into the tissue repair features of MAIT cells. Front Immunol 2024; 15:1432651. [PMID: 39086492 PMCID: PMC11289772 DOI: 10.3389/fimmu.2024.1432651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are a subset of innate-like non-conventional T cells characterized by multifunctionality. In addition to their well-recognized antimicrobial activity, increasing attention is being drawn towards their roles in tissue homeostasis and repair. However, the precise mechanisms underlying these functions remain incompletely understood and are still subject to ongoing exploration. Currently, it appears that the tissue localization of MAIT cells and the nature of the diseases or stimuli, whether acute or chronic, may induce a dynamic interplay between their pro-inflammatory and anti-inflammatory, or pathogenic and reparative functions. Therefore, elucidating the conditions and mechanisms of MAIT cells' reparative functions is crucial for fully maximizing their protective effects and advancing future MAIT-related therapies. In this review, we will comprehensively discuss the establishment and potential mechanisms of their tissue repair functions as well as the translational application prospects and current challenges in this field.
Collapse
Affiliation(s)
- Mengge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaosu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
14
|
Liu Q, Pickett T, Hodge D, Rios C, Arnold M, Dong G, Hamilton SE, Rehermann B. Leveraging dirty mice that have microbial exposure to improve preclinical models of human immune status and disease. Nat Immunol 2024; 25:947-950. [PMID: 38750319 PMCID: PMC11656454 DOI: 10.1038/s41590-024-01842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The National Institute of Allergy and Infectious Diseases (NIAID) hosted a two-day virtual workshop on leveraging microbial exposure to improve mouse models of human immune status and disease. The workshop’s objective was to evaluate the current state of knowledge in the field and to identify gaps, challenges and future directions.
Collapse
Affiliation(s)
- Qian Liu
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA.
| | - Thames Pickett
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA
| | - Deborah Hodge
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA
| | - Carmen Rios
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA
| | - Michelle Arnold
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA
| | - Gang Dong
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA
| | - Sara E Hamilton
- Department of Laboratory Medicine & Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA.
| |
Collapse
|
15
|
Ignacio A, Czyz S, McCoy KD. Early life microbiome influences on development of the mucosal innate immune system. Semin Immunol 2024; 73:101885. [PMID: 38788491 DOI: 10.1016/j.smim.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Czyz
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
16
|
Konecny AJ, Huang Y, Setty M, Prlic M. Signals that control MAIT cell function in healthy and inflamed human tissues. Immunol Rev 2024; 323:138-149. [PMID: 38520075 DOI: 10.1111/imr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.
Collapse
Affiliation(s)
- Andrew J Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Yin Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the Phenotypic States of Human innate-like T Cells: Comparative Insights with Conventional T Cells and Mouse Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570707. [PMID: 38105962 PMCID: PMC10723458 DOI: 10.1101/2023.12.07.570707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity, having the ability to mount rapid responses following activation. In mice, this ability is acquired during thymic development. We explored the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single cell RNA sequencing and flow cytometry. We reveal that in human blood, the majority of Tinn cells, including iNKT, MAIT, and Vδ2+Vγ9+ T cells, share an effector program characterized by the expression of unique chemokine and cytokine receptors, and cytotoxic molecules. This program is driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type I/type III effector potential. To conduct a comprehensive cross-species analysis, we constructed a murine Tinn developmental atlas and uncovered additional species-specific distinctions, including the absence of type II Tinn cells in humans, which implies distinct immune regulatory mechanisms across species. The study provides insights into the development and functionality of Tinn cells, emphasizing their role in immune responses and their potential as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Paul J. Norman
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Hannah V. Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, USA
| |
Collapse
|