1
|
Argatov II, Lyashenko IA, Popov VL. Ad Hoc Modeling of Rate-Dependent Adhesion in Indentation Relaxation Testing. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3944. [PMID: 39203121 PMCID: PMC11355375 DOI: 10.3390/ma17163944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
The phenomenon of rate-dependent adhesion has long been recognized as an intricate problem, and the so-far-developed physics and mechanics-based approaches resulted in analytical relations between the implicit form between the work of adhesion and the contact front velocity which are difficult to implement in practice. To address this issue in the framework of spherical indentation, the adhesion relaxation test in a nominal point contact is introduced to estimate the rate-dependent adhesion. Based on a stretched exponent approximation for the contact radius evolution with time, a relatively simple four-parameter model is proposed for the functional relation between the work of adhesion and the contact front velocity, and its fitting performance is compared to that of the known Greenwood-Johnson and Persson-Brener models.
Collapse
Affiliation(s)
- Ivan I. Argatov
- Institut für Mechanik, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Iakov A. Lyashenko
- Institut für Mechanik, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Valentin L. Popov
- Institut für Mechanik, Technische Universität Berlin, 10623 Berlin, Germany;
- Center of Advanced Studies in Mechanics, Tribology, Bio- and Nanotechnologies, Samarkand State University, Samarkand 140104, Uzbekistan
| |
Collapse
|
2
|
Silva A, Fonseca D, Neto DM, Babcinschi M, Neto P. Integrated Design and Fabrication of Pneumatic Soft Robot Actuators in a Single Casting Step. CYBORG AND BIONIC SYSTEMS 2024; 5:0137. [PMID: 39022336 PMCID: PMC11254383 DOI: 10.34133/cbsystems.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 07/20/2024] Open
Abstract
Bio-inspired soft robots have already shown the ability to handle uncertainty and adapt to unstructured environments. However, their availability is partially restricted by time-consuming, costly, and highly supervised design-fabrication processes, often based on resource-intensive iterative workflows. Here, we propose an integrated approach targeting the design and fabrication of pneumatic soft actuators in a single casting step. Molds and sacrificial water-soluble hollow cores are printed using fused filament fabrication. A heated water circuit accelerates the dissolution of the core's material and guarantees its complete removal from the actuator walls, while the actuator's mechanical operability is defined through finite element analysis. This enables the fabrication of actuators with non-uniform cross-sections under minimal supervision, thereby reducing the number of iterations necessary during the design and fabrication processes. Three actuators capable of bending and linear motion were designed, fabricated, integrated, and demonstrated as 3 different bio-inspired soft robots, an earthworm-inspired robot, a 4-legged robot, and a robotic gripper. We demonstrate the availability, versatility, and effectiveness of the proposed methods, contributing to accelerating the design and fabrication of soft robots. This study represents a step toward increasing the accessibility of soft robots to people at a lower cost.
Collapse
Affiliation(s)
- Afonso Silva
- Department of Mechanical Engineering,
University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| | - Diogo Fonseca
- Department of Mechanical Engineering,
University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| | - Diogo M. Neto
- Department of Mechanical Engineering,
University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| | - Mihail Babcinschi
- Department of Mechanical Engineering,
University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| | - Pedro Neto
- Department of Mechanical Engineering,
University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| |
Collapse
|
3
|
Winand J, Büscher TH, Gorb SN. TriTrap: A Robotic Gripper Inspired by Insect Tarsal Chains. Biomimetics (Basel) 2024; 9:142. [PMID: 38534827 DOI: 10.3390/biomimetics9030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
Gripping, holding, and moving objects are among the main functional purposes of robots. Ever since automation first took hold in society, optimizing these functions has been of high priority, and a multitude of approaches has been taken to enable cheaper, more reliable, and more versatile gripping. Attempts are ongoing to reduce grippers' weight, energy consumption, and production and maintenance costs while simultaneously improving their reliability, the range of eligible objects, working loads, and environmental independence. While the upper bounds of precision and flexibility have been pushed to an impressive level, the corresponding solutions are often dependent on support systems (e.g., sophisticated sensors and complex actuation machinery), advanced control paradigms (e.g., artificial intelligence and machine learning), and typically require more maintenance owed to their complexity, also increasing their cost. These factors make them unsuited for more modest applications, where moderate to semi-high performance is desired, but simplicity is required. In this paper, we attempt to highlight the potential of the tarsal chain principle on the example of a prototype biomimetic gripping device called the TriTrap gripper, inspired by the eponymous tarsal chain of insects. Insects possess a rigid exoskeleton that receives mobility due to several joints and internally attaching muscles. The tarsus (foot) itself does not contain any major intrinsic muscles but is moved by an extrinsically pulled tendon. Just like its biological counterpart, the TriTrap gripping device utilizes strongly underactuated digits that perform their function using morphological encoding and passive conformation, resulting in a gripper that is versatile, robust, and low cost. Its gripping performance was tested on a variety of everyday objects, each of which represented different size, weight, and shape categories. The TriTrap gripper was able to securely hold most of the tested objects in place while they were lifted, rotated, and transported without further optimization. These results show that the insect tarsus selected approach is viable and warrants further development, particularly in the direction of interface optimization. As such, the main goal of the TriTrap gripper, which was to showcase the tarsal chain principle as a viable approach to gripping in general, was achieved.
Collapse
Affiliation(s)
- Julian Winand
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
4
|
Wang H, Gao B, Hu A, He J. A Variable Stiffness Gripper with Reconfigurable Finger Joint for Versatile Manipulations. Soft Robot 2023; 10:1041-1054. [PMID: 37103972 DOI: 10.1089/soro.2022.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
A reconfigurable dexterous gripper is designed which can switch states, including rigidity and flexibility, for different application scenarios. Moreover, the stiffness of the fingers in the flexible state can also be tuned for different objects. Three fingers are connected to the revolute joints of the palm, and each finger has a reshape mechanism with a slider moving up and down to lock or release the fingertip joint. When the slider moves upward, the gripper works in the rigid state and the fingers are actuated by the servos. When the slider moves downward, the gripper works in the flexible state that the fingertip is supported by a spring, and the fingertip joint is rotated by an embedded motor with two group cables for tuning stiffness. This novel design provides the gripper with the advantages of high precision and strong load capacity of rigid grippers and shape adaptability and safety of soft grippers. The reconfigurable mechanism allows the gripper great versatility for grasping and manipulation, which facilitates the planning and execution of the motion of objects with different shapes and stiffness. We discuss the stiffness-tunable mechanism with different states, analyze the kinematic characteristics, and test the manipulator performance to investigate the application in rigid-flexible collaborative works. Experimental results show the practicability of this gripper under different requirements and the rationality of this proposed concept.
Collapse
Affiliation(s)
- Huan Wang
- School of Electrical Engineering, Southeast University, Nanjing, China
| | - Bingtuan Gao
- School of Electrical Engineering, Southeast University, Nanjing, China
| | - Anqing Hu
- School of Electrical Engineering, Southeast University, Nanjing, China
| | - Jiahong He
- School of Electrical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Alves S, Babcinschi M, Silva A, Neto D, Fonseca D, Neto P. Integrated Design Fabrication and Control of a Bioinspired Multimaterial Soft Robotic Hand. CYBORG AND BIONIC SYSTEMS 2023; 4:0051. [PMID: 37559941 PMCID: PMC10408382 DOI: 10.34133/cbsystems.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Machines that mimic humans have inspired scientists for centuries. Bioinspired soft robotic hands are a good example of such an endeavor, featuring intrinsic material compliance and continuous motion to deal with uncertainty and adapt to unstructured environments. Recent research led to impactful achievements in functional designs, modeling, fabrication, and control of soft robots. Nevertheless, the full realization of life-like movements is still challenging to achieve, often based on trial-and-error considerations from design to fabrication, consuming time and resources. In this study, a soft robotic hand is proposed, composed of soft actuator cores and an exoskeleton, featuring a multimaterial design aided by finite element analysis (FEA) to define the hand geometry and promote finger's bendability. The actuators are fabricated using molding, and the exoskeleton is 3D-printed in a single step. An ON-OFF controller keeps the set fingers' inner pressures related to specific bending angles, even in the presence of leaks. The FEA numerical results were validated by experimental tests, as well as the ability of the hand to grasp objects with different shapes, weights, and sizes. This integrated solution will make soft robotic hands more available to people, at a reduced cost, avoiding the time-consuming design-fabrication trial-and-error processes.
Collapse
Affiliation(s)
- Samuel Alves
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Mihail Babcinschi
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Afonso Silva
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Diogo Neto
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Diogo Fonseca
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Pedro Neto
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| |
Collapse
|
6
|
Li CY, Jiao D, Hao XP, Hong W, Zheng Q, Wu ZL. Bistable Joints Enable the Morphing of Hydrogel Sheets with Multistable Configurations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211802. [PMID: 36680376 DOI: 10.1002/adma.202211802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Joints, as a flexing element to connect different parts, are widespread in natural systems. Various joints exist in the body and play crucial roles to execute gestures and gaits. These scenarios have inspired the design of mechanical joints with passive, hard materials, which usually need an external power supply to drive the transformations. The incorporation of soft and active joints provides a modular strategy to devise soft actuators and robots. However, transformations of responsive joints under external stimuli are usually in uni-mode with a pre-determined direction. Here, hydrogel joints capable of folding and twisting transformation in bi-mode are reported, which enable the composite hydrogel to form multiple configurations under constant conditions. These joints have an in-plane gradient structure and comprise stiff, passive gel as the frame and soft, active gel as the actuating unit. Under external stimuli, the response mismatch between different gels leads to out-of-plane folding or twisting deformation with the feature of bistability. These joints can be modularly integrated with other gels to afford complex deformations and multistable configurations. This approach favors selective control of hydrogel's architectures and versatile design of hydrogel devices, as demonstrated by proof-of-concept examples. It shall also merit the development of metamaterials, soft actuators, and robots, etc.
Collapse
Affiliation(s)
- Chen Yu Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Glaser NC, Langowski JKA. Stiff skin, soft core: soft backings enhance the conformability and friction of fibre-reinforced adhesives. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221263. [PMID: 36908990 PMCID: PMC9993060 DOI: 10.1098/rsos.221263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Biomimetic adhesives with a stiff fibre-reinforced base layer generate strong attachment, even without bioinspired micropatterning of the contact surface. However, current fibre-reinforced adhesive designs are still less versatile with respect to substrate variability than their biological counterparts. In this study, we enhance the comformability of a fibre-reinforced adhesive on curved substrates by adding bioinspired soft backings. We designed and fabricated soft backing variations (polyurethane foams and silicone hydroskeletons) with varying compressive stiffnesses that mimic the soft viscoelastic structures in the adhesive appendages of tree frogs, geckos and other animals. The backings were mounted on a smooth silicone layer enforced with a polyester mesh, and we experimentally investigated the contact area and friction performance of these adhesives on a curved substrate. The results show that the contact area and friction created by a fibre-reinforced adhesive with a soft backing in contact with a non-flat substrate scale inversely with backing stiffness. The integration of stiff fibre-reinforcement with a compressible backing represents an important step in bringing bioinspired adhesives out of the laboratory and into the real world, for example in soft robotic grippers. Moreover, our findings stimulate further research into the role of soft tissues in biological adhesive systems.
Collapse
Affiliation(s)
- Niels C. Glaser
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University and Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
8
|
Zhu J, Chai Z, Yong H, Xu Y, Guo C, Ding H, Wu Z. Bioinspired Multimodal Multipose Hybrid Fingers for Wide-Range Force, Compliant, and Stable Grasping. Soft Robot 2023; 10:30-39. [PMID: 35584255 DOI: 10.1089/soro.2021.0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The increasing demand for grasping diverse objects in unstructured environments poses severe challenges to the existing soft/rigid robotic fingers due to the issues in balancing force, compliance, and stability, and hence has given birth to several hybrid designs. These hybrid designs utilize the advantages of rigid and soft structures and show better performance, but they are still suffering from narrow output force range, limited compliance, and rarely reported stability. Owing to its rigid-soft coupling structure with flexible switched multiple poses, human finger, as an excellent hybrid design, shows wide-range output force, excellent compliance, and stability. Inspired by human finger, we propose a hybrid finger with multiple modes and poses, coupled by a soft actuator (SA) and a rigid actuator (RA) in parallel. The multiple actuation modes formed by a pneumatic-based rigid-soft collaborative strategy can selectively enable the RA's high force and SA's softness, whereas the multiple poses derived from the specially designed underactuated RA skeleton can be flexibly switched with tasks, thus achieving high compliance. Such hybrid fingers also proved to be highly stable under external stimuli or gravity. Furthermore, we modularize and configure these fingers into a series of grippers with excellent grasping performance, for example, wide graspable object range (diverse from 0.1 g potato chips to 27 kg dumbbells for a 420 g two-finger gripper), high compliance (tolerate objects with 94% gripper span size and 4 cm offset), and high stability. Our study highlights the potential of fusing rigid-soft technologies for robot development, and potentially impacts future bionics and high-performance robot development.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Soft Intelligence Lab, State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiping Chai
- Soft Intelligence Lab, State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haochen Yong
- Soft Intelligence Lab, State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xu
- Soft Intelligence Lab, State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanfei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Han Ding
- Soft Intelligence Lab, State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang Wu
- Soft Intelligence Lab, State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Reversible Adhesive Bio-Toe with Hierarchical Structure Inspired by Gecko. Biomimetics (Basel) 2023; 8:biomimetics8010040. [PMID: 36648826 PMCID: PMC9844372 DOI: 10.3390/biomimetics8010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The agile locomotion of adhesive animals is mainly attributed to their sophisticated hierarchical feet and reversible adhesion motility. Their structure-function relationship is an urgent issue to be solved to understand biologic adhesive systems and the design of bionic applications. In this study, the reversible adhesion/release behavior and structural properties of gecko toes were investigated, and a hierarchical adhesive bionic toe (bio-toe) consisting of an upper elastic actuator as the supporting/driving layer and lower bionic lamellae (bio-lamellae) as the adhesive layer was designed, which can adhere to and release from targets reversibly when driven by bi-directional pressure. A mathematical model of the nonlinear deformation and a finite element model of the adhesive contact of the bio-toe were developed. Meanwhile, combined with experimental tests, the effects of the structure and actuation on the adhesive behavior and mechanical properties of the bio-toe were investigated. The research found that (1) the bending curvature of the bio-toe, which is approximately linear with pressure, enables the bio-toe to adapt to a wide range of objects controllably; (2) the tabular bio-lamella could achieve a contact rate of 60% with a low squeeze contact of less than 0.5 N despite a ±10° tilt in contact posture; (3) the upward bending of the bio-toe under negative pressure provided sufficient rebounding force for a 100% success rate of release; (4) the ratio of shear adhesion force to preload of the bio-toe with tabular bio-lamellae reaches approximately 12, which is higher than that of most existing adhesion units and frictional gripping units. The bio-toe shows good adaptability, load capacity, and reversibility of adhesion when applied as the basic adhesive unit in a robot gripper and wall-climbing robot. Finally, the proposed reversible adhesive bio-toe with a hierarchical structure has great potential for application in space, defense, industry, and daily life.
Collapse
|
10
|
Özelçi E, Mailand E, Rüegg M, Oates AC, Sakar MS. Deconstructing body axis morphogenesis in zebrafish embryos using robot-assisted tissue micromanipulation. Nat Commun 2022; 13:7934. [PMID: 36566327 PMCID: PMC9789989 DOI: 10.1038/s41467-022-35632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Classic microsurgical techniques, such as those used in the early 1900s by Mangold and Spemann, have been instrumental in advancing our understanding of embryonic development. However, these techniques are highly specialized, leading to issues of inter-operator variability. Here we introduce a user-friendly robotic microsurgery platform that allows precise mechanical manipulation of soft tissues in zebrafish embryos. Using our platform, we reproducibly targeted precise regions of tail explants, and quantified the response in real-time by following notochord and presomitic mesoderm (PSM) morphogenesis and segmentation clock dynamics during vertebrate anteroposterior axis elongation. We find an extension force generated through the posterior notochord that is strong enough to buckle the structure. Our data suggest that this force generates a unidirectional notochord extension towards the tailbud because PSM tissue around the posterior notochord does not let it slide anteriorly. These results complement existing biomechanical models of axis elongation, revealing a critical coupling between the posterior notochord, the tailbud, and the PSM, and show that somite patterning is robust against structural perturbations.
Collapse
Affiliation(s)
- Ece Özelçi
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland
| | - Erik Mailand
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Matthias Rüegg
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Andrew C Oates
- Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland.
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Zhang P, Chen W, Tang B. From Two-Dimensional to Three-Dimensional: Diversified Bending Modality of a Cable-Driven Actuator and Its Grasping Characteristics. Soft Robot 2022; 9:1154-1166. [PMID: 35073198 DOI: 10.1089/soro.2021.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cable-driven actuators are widely studied and utilized in soft robotics, and cable-driven is a traditional, advanced, and practical driving method. While limited by the uniaxial force transfer of the driving cable in previous researches, the cable-driven actuator can only bend in a two-dimensional (2D) plane. To further expand their scope of utilization, a new design scheme of an actuator is proposed to realize the transition from 2D bending to three-dimensional motion. A zigzag cable routing (ZCR) mode is presented to improve the helical motion. Compared with the straight cable routing mode, the ZCR actuator has better smooth movement characteristics and expanded functionality. Furthermore, we experimentally investigated the contact force and holding ability. The results show that the contact force is evenly acting on the cylinder target, and the grab weight is greater than 1950 g.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, China.,Institute of Internal Combustion Engine, Dalian University of Technology, Dalian, China
| | - Weichun Chen
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, China
| | - Bin Tang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, China.,Institute of Internal Combustion Engine, Dalian University of Technology, Dalian, China
| |
Collapse
|
12
|
Büscher TH, Gorb SN. Convergent Evolution of Adhesive Properties in Leaf Insect Eggs and Plant Seeds: Cross-Kingdom Bioinspiration. Biomimetics (Basel) 2022; 7:biomimetics7040173. [PMID: 36412700 PMCID: PMC9680409 DOI: 10.3390/biomimetics7040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022] Open
Abstract
Plants and animals are often used as a source for inspiration in biomimetic engineering. However, stronger engagement of biologists is often required in the field of biomimetics. The actual strength of using biological systems as a source of inspiration for human problem solving does not lie in a perfect copy of a single system but in the extraction of core principles from similarly functioning systems that have convergently solved the same problem in their evolution. Adhesive systems are an example of such convergent traits that independently evolved in different organisms. We herein compare two analogous adhesive systems, one from plants seeds and one from insect eggs, to test their properties and functional principles for differences and similarities in order to evaluate the input that can be potentially used for biomimetics. Although strikingly similar, the eggs of the leaf insect Phyllium philippinicum and the seeds of the ivy gourd Coccinia grandis make use of different surface structures for the generation of adhesion. Both employ a water-soluble glue that is spread on the surface via reinforcing fibrous surface structures, but the morphology of these structures is different. In addition to microscopic analysis of the two adhesive systems, we mechanically measured the actual adhesion generated by both systems to quantitatively compare their functional differences on various standardized substrates. We found that seeds can generate much stronger adhesion in some cases but overall provided less reliable adherence in comparison to eggs. Furthermore, eggs performed better regarding repetitive attachment. The similarities of these systems, and their differences resulting from their different purposes and different structural/chemical features, can be informative for engineers working on technical adhesive systems.
Collapse
|
13
|
van den Boogaart LM, Langowski JKA, Amador GJ. Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics (Basel) 2022; 7:biomimetics7030134. [PMID: 36134938 PMCID: PMC9496521 DOI: 10.3390/biomimetics7030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Controlled, reversible attachment is widely spread throughout the animal kingdom: from ticks to tree frogs, whose weights span from 2 mg to 200 g, and from geckos to mosquitoes, who stick under vastly different situations, such as quickly climbing trees and stealthily landing on human hosts. A fascinating and complex interplay of adhesive and frictional forces forms the foundation of attachment of these highly diverse systems to various substrates. In this review, we present an overview of the techniques used to quantify the adhesion and friction of terrestrial animals, with the aim of informing future studies on the fundamentals of bioadhesion, and motivating the development and adoption of new or alternative measurement techniques. We classify existing methods with respect to the forces they measure, including magnitude and source, i.e., generated by the whole body, single limbs, or by sub-structures. Additionally, we compare their versatility, specifically what parameters can be measured, controlled, and varied. This approach reveals critical trade-offs of bioadhesion measurement techniques. Beyond stimulating future studies on evolutionary and physicochemical aspects of bioadhesion, understanding the fundamentals of biological attachment is key to the development of biomimetic technologies, from soft robotic grippers to gentle surgical tools.
Collapse
Affiliation(s)
- Luc M. van den Boogaart
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (J.K.A.L.); (G.J.A.)
| | - Guillermo J. Amador
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (J.K.A.L.); (G.J.A.)
| |
Collapse
|
14
|
Li Y, Wang P, Li R, Tao M, Liu Z, Qiao H. A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods. Front Neurorobot 2022; 16:843267. [PMID: 35574228 PMCID: PMC9097019 DOI: 10.3389/fnbot.2022.843267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Multifingered robotic hands (usually referred to as dexterous hands) are designed to achieve human-level or human-like manipulations for robots or as prostheses for the disabled. The research dates back 30 years ago, yet, there remain great challenges to effectively design and control them due to their high dimensionality of configuration, frequently switched interaction modes, and various task generalization requirements. This article aims to give a brief overview of multifingered robotic manipulation from three aspects: a) the biological results, b) the structural evolvements, and c) the learning methods, and discuss potential future directions. First, we investigate the structure and principle of hand-centered visual sensing, tactile sensing, and motor control and related behavioral results. Then, we review several typical multifingered dexterous hands from task scenarios, actuation mechanisms, and in-hand sensors points. Third, we report the recent progress of various learning-based multifingered manipulation methods, including but not limited to reinforcement learning, imitation learning, and other sub-class methods. The article concludes with open issues and our thoughts on future directions.
Collapse
Affiliation(s)
- Yinlin Li
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Peng Wang
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Centre for Artificial Intelligence and Robotics, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Rui Li
- School of Automation, Chongqing University, Chongqing, China
| | - Mo Tao
- Science and Technology on Thermal Energy and Power Laboratory, Wuhan Second Ship Design and Research Institute, Wuhan, China
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Qiao
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Hao T, Xiao H, Liu S, Zhang C, Ma H. Multijointed Pneumatic Soft Hand with Flexible Thenar. Soft Robot 2021; 9:745-753. [PMID: 34747642 DOI: 10.1089/soro.2021.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soft robotic hands provide better safety and adaptability than rigid robotic hands. Furthermore, a multijointed structure that imitates the movement of a human hand represents significant progress in realizing its anthropomorphism. In this study, we present a multijointed pneumatic soft anthropomorphic hand that is capable of expressing letters through sign language and grasping different objects using three grasping modes, namely thumb grasping, precision grasping, and power grasping. This novel soft hand is composed of multijointed soft fingers, a thumb, thenar, and 3D-printed palm. Tests were performed to characterize the displacement track and force performance of the fingers, thumb, and thenar, which was made by mold casting silicone rubber. In addition, a dedicated pneumatic control system was designed and built to enable the soft hand to automatically perform the tasks set by specific programs. This new multijointed hand with a flexible thenar represents significant progress in the development of anthropomorphic bionic hands, offering the benefits of fast response, low cost, as well as ease of fabrication, assembly, and replacement.
Collapse
Affiliation(s)
- Tianze Hao
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing, China
| | - Huaping Xiao
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing, China
| | - Shuhai Liu
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing, China
| | - Chao Zhang
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing, China
| | - Hao Ma
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing, China
| |
Collapse
|
16
|
Roh Y, Kim M, Won SM, Lim D, Hong I, Lee S, Kim T, Kim C, Lee D, Im S, Lee G, Kim D, Shin D, Gong D, Kim B, Kim S, Kim S, Kim HK, Koo BK, Seo S, Koh JS, Kang D, Han S. Vital signal sensing and manipulation of a microscale organ with a multifunctional soft gripper. Sci Robot 2021; 6:eabi6774. [PMID: 34644158 DOI: 10.1126/scirobotics.abi6774] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yeonwook Roh
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Minho Kim
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daseul Lim
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Insic Hong
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Seunggon Lee
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Taewi Kim
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Changhwan Kim
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Doohoe Lee
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Sunghoon Im
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Gunhee Lee
- Department of Environment Machinery, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Dongjin Kim
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Dongwook Shin
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Dohyeon Gong
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Baekgyeom Kim
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Seongyeon Kim
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Sungyeong Kim
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Hyun Kuk Kim
- Department of Internal Medicine and Cardiovascular Center, Chosun University Hospital, University of Chosun College of Medicine, Gwangju 61453, Republic of Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sungchul Seo
- Department of Environmental Health and Safety, EulJi University, Seoul 11759, Republic of Korea
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Daeshik Kang
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| | - Seungyong Han
- Department of Mechanical Engineering, Ajou University, Multiscale Bio-inspired Technology Lab, Suwon 16499, Republic of Korea
| |
Collapse
|
17
|
Büscher TH, Gorb SN. Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:725-743. [PMID: 34354900 PMCID: PMC8290099 DOI: 10.3762/bjnano.12.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
Adhesive pads are functional systems with specific micro- and nanostructures which evolved as a response to specific environmental conditions and therefore exhibit convergent traits. The functional constraints that shape systems for the attachment to a surface are general requirements. Different strategies to solve similar problems often follow similar physical principles, hence, the morphology of attachment devices is affected by physical constraints. This resulted in two main types of attachment devices in animals: hairy and smooth. They differ in morphology and ultrastructure but achieve mechanical adaptation to substrates with different roughness and maximise the actual contact area with them. Species-specific environmental surface conditions resulted in different solutions for the specific ecological surroundings of different animals. As the conditions are similar in discrete environments unrelated to the group of animals, the micro- and nanostructural adaptations of the attachment systems of different animal groups reveal similar mechanisms. Consequently, similar attachment organs evolved in a convergent manner and different attachment solutions can occur within closely related lineages. In this review, we present a summary of the literature on structural and functional principles of attachment pads with a special focus on insects, describe micro- and nanostructures, surface patterns, origin of different pads and their evolution, discuss the material properties (elasticity, viscoelasticity, adhesion, friction) and basic physical forces contributing to adhesion, show the influence of different factors, such as substrate roughness and pad stiffness, on contact forces, and review the chemical composition of pad fluids, which is an important component of an adhesive function. Attachment systems are omnipresent in animals. We show parallel evolution of attachment structures on micro- and nanoscales at different phylogenetic levels, focus on insects as the largest animal group on earth, and subsequently zoom into the attachment pads of the stick and leaf insects (Phasmatodea) to explore convergent evolution of attachment pads at even smaller scales. Since convergent events might be potentially interesting for engineers as a kind of optimal solution by nature, the biomimetic implications of the discussed results are briefly presented.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|