1
|
Youn JH, Koh JS, Kyung KU. Soft Polymer-Actuated Compliant Microgripper with Adaptive Vibration-Controlled Grasp and Release. Soft Robot 2024; 11:585-595. [PMID: 38557238 DOI: 10.1089/soro.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Microgrippers that incorporate soft actuators are appropriate for micromanipulation or microsurgery owing to their ability to grasp objects without causing damage. However, developing a microgripper with a large gripping range that can produce a large force with high speed remains challenging in soft actuation mechanisms. Herein, we introduce a compliant microgripper driven by a soft dielectric elastomer actuator (DEA) called a spiral flexure cone DEA (SFCDEA). The submillimeter-scale SFCDEA exhibited a controllable linear displacement over a high bandwidth and the capability of lifting 100.9 g, which was 670 times higher than its mass. Subsequently, we developed a compliant microgripper based on the SFCDEA using smart composite microstructure technology to fabricate three-dimensional gripper linkages. We demonstrated that the microgripper was able to grasp various millimeter-scale objects with different shapes, sizes, and weights without a complex feedback control owing to its compliance. We proved the versatility of our gripper in robotic manipulation by demonstrating adaptive grasping and releasing of small objects using vibrations owing to its high bandwidth.
Collapse
Affiliation(s)
- Jung-Hwan Youn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, Suwon, Republic of Korea
| | - Ki-Uk Kyung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Li Y, Di Lallo A, Zhu J, Chi Y, Su H, Yin J. Adaptive hierarchical origami-based metastructures. Nat Commun 2024; 15:6247. [PMID: 39060239 PMCID: PMC11282231 DOI: 10.1038/s41467-024-50497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Shape-morphing capabilities are crucial for enabling multifunctionality in both biological and artificial systems. Various strategies for shape morphing have been proposed for applications in metamaterials and robotics. However, few of these approaches have achieved the ability to seamlessly transform into a multitude of volumetric shapes post-fabrication using a relatively simple actuation and control mechanism. Taking inspiration from thick origami and hierarchies in nature, we present a hierarchical construction method based on polyhedrons to create an extensive library of compact origami metastructures. We show that a single hierarchical origami structure can autonomously adapt to over 103 versatile architectural configurations, achieved with the utilization of fewer than 3 actuation degrees of freedom and employing simple transition kinematics. We uncover the fundamental principles governing theses shape transformation through theoretical models. Furthermore, we also demonstrate the wide-ranging potential applications of these transformable hierarchical structures. These include their uses as untethered and autonomous robotic transformers capable of various gait-shifting and multidirectional locomotion, as well as rapidly self-deployable and self-reconfigurable architecture, exemplifying its scalability up to the meter scale. Lastly, we introduce the concept of multitask reconfigurable and deployable space robots and habitats, showcasing the adaptability and versatility of these metastructures.
Collapse
Affiliation(s)
- Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Antonio Di Lallo
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Junxi Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yinding Chi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
- Lab of Biomechatronics and Intelligent Robotics, Joint NCSU/UNC Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA.
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
3
|
Wang F, Zhang Y, Jin D, Jiang Z, Liu Y, Knoll A, Jiang H, Ying Y, Zhou M. Magnetic Soft Microrobot Design for Cell Grasping and Transportation. CYBORG AND BIONIC SYSTEMS 2024; 5:0109. [PMID: 38680536 PMCID: PMC11052606 DOI: 10.34133/cbsystems.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 05/01/2024] Open
Abstract
Manipulating cells at a small scale is widely acknowledged as a complex and challenging task, especially when it comes to cell grasping and transportation. Various precise methods have been developed to remotely control the movement of microrobots. However, the manipulation of micro-objects necessitates the use of end-effectors. This paper presents a study on the control of movement and grasping operations of a magnetic microrobot, utilizing only 3 pairs of electromagnetic coils. A specially designed microgripper is employed on the microrobot for efficient cell grasping and transportation. To ensure precise grasping, a bending deformation model of the microgripper is formulated and subsequently validated. To achieve precise and reliable transportation of cells to specific positions, an approach that combines an extended Kalman filter with a model predictive control method is adopted to accomplish the trajectory tracking task. Through experiments, we observe that by applying the proposed control strategy, the mean absolute error of path tracking is found to be less than 0.155 mm. Remarkably, this value accounts for only 1.55% of the microrobot's size, demonstrating the efficacy and accuracy of our control strategy. Furthermore, an experiment involving the grasping and transportation of a zebrafish embryonic cell (diameter: 800 μm) is successfully conducted. The results of this experiment not only validate the precision and effectiveness of the proposed microrobot and its associated models but also highlight its tremendous potential for cell manipulation in vitro and in vivo.
Collapse
Affiliation(s)
- Fanghao Wang
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Youchao Zhang
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Daoyuan Jin
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Zhongliang Jiang
- TUM School of Computation, Information, and Technology, Garching 85748, Germany
| | - Yaqian Liu
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Alois Knoll
- TUM School of Computation, Information, and Technology, Garching 85748, Germany
| | - Huanyu Jiang
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Mingchuan Zhou
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
He J, Liu Y, Yang C, Tong Z, Wang G. Design and Evaluation of an Adjustable Compliant Constant-Force Microgripper. MICROMACHINES 2023; 15:52. [PMID: 38258171 PMCID: PMC10818475 DOI: 10.3390/mi15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Precise control of the manipulating force within an appropriate range is crucial to prevent potential damage to the operating object. However, achieving accurate force control through force feedback is challenging in micro-scale applications. This study presents the design of a quasi-zero stiffness-compliant constant-force microgripper with adjustable force output. The parameters of the constant-force mechanism are designed using a model-based optimization method. By utilizing this mechanism, a compliant microgripper capable of providing adjustable constant-force output is developed to overcome the limitation of traditional grippers that offer only a single constant force. Finite element analysis is performed to simulate the behavior and verify the stability of the constant-force output. Furthermore, an experimental platform is constructed to validate the mechanical properties of the developed microgripper. The experimental results demonstrate that the automatically optimized structural parameters enable the microgripper to achieve the desired constant-force value of 2 N with an adjustable range of 0.15 N. These findings provide a further basis for the application and promotion of compliant constant-force structures.
Collapse
Affiliation(s)
| | | | | | | | - Guangwei Wang
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Li J, Deng J, Zhang S, Chen W, Zhao J, Liu Y. Developments and Challenges of Miniature Piezoelectric Robots: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305128. [PMID: 37888844 PMCID: PMC10754097 DOI: 10.1002/advs.202305128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Miniature robots have been widely studied and applied in the fields of search and rescue, reconnaissance, micromanipulation, and even the interior of the human body benefiting from their highlight features of small size, light weight, and agile movement. With the development of new smart materials, many functional actuating elements have been proposed to construct miniature robots. Compared with other actuating elements, piezoelectric actuating elements have the advantages of compact structure, high power density, fast response, high resolution, and no electromagnetic interference, which make them greatly suitable for actuating miniature robots, and capture the attentions and favor of numerous scholars. In this paper, a comprehensive review of recent developments in miniature piezoelectric robots (MPRs) is provided. The MPRs are classified and summarized in detail from three aspects of operating environment, structure of piezoelectric actuating element, and working principle. In addition, new manufacturing methods and piezoelectric materials in MPRs, as well as the application situations, are sorted out and outlined. Finally, the challenges and future trends of MPRs are evaluated and discussed. It is hoped that this review will be of great assistance for determining appropriate designs and guiding future developments of MPRs, and provide a destination board to the researchers interested in MPRs.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Jie Deng
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Shijing Zhang
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Weishan Chen
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Jie Zhao
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Yingxiang Liu
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
6
|
Wang Y, Chen J, Su G, Mei J, Li J. A Review of Single-Cell Microrobots: Classification, Driving Methods and Applications. MICROMACHINES 2023; 14:1710. [PMID: 37763873 PMCID: PMC10537272 DOI: 10.3390/mi14091710] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Single-cell microrobots are new microartificial devices that use a combination of single cells and artificial devices, with the advantages of small size, easy degradation and ease of manufacture. With externally driven strategies such as light fields, sound fields and magnetic fields, microrobots are able to carry out precise micromanipulations and movements in complex microenvironments. Therefore, single-cell microrobots have received more and more attention and have been greatly developed in recent years. In this paper, we review the main classifications, control methods and recent advances in the field of single-cell microrobot applications. First, different types of robots, such as cell-based microrobots, bacteria-based microrobots, algae-based microrobots, etc., and their design strategies and fabrication processes are discussed separately. Next, three types of external field-driven technologies, optical, acoustic and magnetic, are presented and operations realized in vivo and in vitro by applying these three technologies are described. Subsequently, the results achieved by these robots in the fields of precise delivery, minimally invasive therapy are analyzed. Finally, a short summary is given and current challenges and future work on microbial-based robotics are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (Y.W.); (J.C.); (G.S.); (J.M.)
| |
Collapse
|