1
|
Zhu K, Liu X, Fu L, Cao J, Wu Y, Mo C, Mu J, Song J. NIR-II Ratiometric Optical Theranostic Capsule for In Situ Diagnosis and Precise Therapy of Intestinal Inflammation. ACS NANO 2024; 18:34912-34923. [PMID: 39661927 DOI: 10.1021/acsnano.4c12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Capsules were widely used in clinical settings for the oral delivery of various drugs, although it remains challenging to trace real-time drug release behavior and adjust dosages based on the therapeutic effect. To address these issues, we developed theranostic capsules that loaded two kinds of fluorescence nanoparticles, H2O2-responsive Janus Ag/Ag2S nanoparticles (Ag/Ag2S JNPs) and the downconversion nanoparticles (DCNPs), and the dexamethasone (Dex) drug. The Ag/Ag2S JNPs exhibit a highly sensitive fluorescence (FL) signal at 1250 nm in response to H2O2, while the FL signal from the DCNPs at 1550 nm remains stable under physiological conditions. The ratio of these two FL signals formed the ratiometric FL signal, which shows correlation with the H2O2 concentration with a detection limit of 1.7 μM. Moreover, the capsules can be precisely delivered into the intestine, where they release the JNPs and DCNPs simultaneously. The H2O2-triggered ratiometric FL signals and images can diagnose inflammation and indicate its location. Meanwhile, the encapsulated Dex is released in the disease region, with ratiometric imaging allowing for real-time tracking of therapeutic efficacy and providing guidance for ongoing treatment. The theranostic capsule system provides an approach for quantitative detection of disease biomarkers and further localized release of therapeutics, thereby avoiding overdose and reducing side effects.
Collapse
Affiliation(s)
- Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jingjing Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Su G, Zheng L, Wang C, Wang S, Wen Q, Chen J, Jia L, Guo Y, Li F, Huang H, Li J. Automated Actuation of Biodegradable and Self-Fluorescent Chlorella Swarms Using Magnetic Tweezers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408407. [PMID: 39716835 DOI: 10.1002/smll.202408407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/08/2024] [Indexed: 12/25/2024]
Abstract
Magnetic microrobot swarms have broad application prospects in human-targeted therapy. However, the automated assembly and actuation of functional large-volume swarms is a challenging topic. Chlorella with self-fluorescence and biodegradability is used in this paper as a template to prepare magnetic Chlorella-based microrobots through magnetron sputtering. The assembly and actuation of large-volume Chlorella swarms are realized using a magnetic tweezer system with a robust magnetic field. Experimental results indicate that the magnetic Chlorella swarms (MCS) possess excellent degradation capability and mobility, enabling automatic navigation in various scenarios. Notably, the MCS successfully moved on the spiral channel containing bovine serum and effectively crossed the simulated channel. Furthermore, in vitro studies of real articular cartilage fragments have revealed the motion capacity of the MCS. This research provides a functional microrobot swarm platform for targeted delivery and precision therapy.
Collapse
Affiliation(s)
- Guangfei Su
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liushuai Zheng
- Computing Network Research Lab, Quantum Science and Technology Yangtze River Delta Industrial Innovation Center, Suzhou, 215000, China
| | - Cheng Wang
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Shuaida Wang
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qi Wen
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiazheng Chen
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Lanlan Jia
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yaoxian Guo
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Feng Li
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Hanjin Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
3
|
Han H, Ma X, Deng W, Zhang J, Tang S, Pak OS, Zhu L, Criado-Hidalgo E, Gong C, Karshalev E, Yoo J, You M, Liu A, Wang C, Shen HK, Patel PN, Hays CL, Gunnarson PJ, Li L, Zhang Y, Dabiri JO, Wang LV, Shapiro MG, Wu D, Zhou Q, Greer JR, Gao W. Imaging-guided bioresorbable acoustic hydrogel microrobots. Sci Robot 2024; 9:eadp3593. [PMID: 39661698 DOI: 10.1126/scirobotics.adp3593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Micro- and nanorobots excel in navigating the intricate and often inaccessible areas of the human body, offering immense potential for applications such as disease diagnosis, precision drug delivery, detoxification, and minimally invasive surgery. Despite their promise, practical deployment faces hurdles, including achieving stable propulsion in complex in vivo biological environments, real-time imaging and localization through deep tissue, and precise remote control for targeted therapy and ensuring high therapeutic efficacy. To overcome these obstacles, we introduce a hydrogel-based, imaging-guided, bioresorbable acoustic microrobot (BAM) designed to navigate the human body with high stability. Constructed using two-photon polymerization, a BAM comprises magnetic nanoparticles and therapeutic agents integrated into its hydrogel matrix for precision control and drug delivery. The microrobot features an optimized surface chemistry with a hydrophobic inner layer to substantially enhance microbubble retention in biofluids with multiday functionality and a hydrophilic outer layer to minimize aggregation and promote timely degradation. The dual-opening bubble-trapping cavity design enables a BAM to maintain consistent and efficient acoustic propulsion across a range of biological fluids. Under focused ultrasound stimulation, the entrapped microbubbles oscillate and enhance the contrast for real-time ultrasound imaging, facilitating precise tracking and control of BAM movement through wireless magnetic navigation. Moreover, the hydrolysis-driven biodegradability of BAMs ensures its safe dissolution after treatment, posing no risk of long-term residual harm. Thorough in vitro and in vivo experimental evidence demonstrates the promising capabilities of BAMs in biomedical applications. This approach shows promise for advancing minimally invasive medical interventions and targeted therapeutic delivery.
Collapse
Affiliation(s)
- Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Weiting Deng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA
| | - Junhang Zhang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Songsong Tang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Lailai Zhu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Ernesto Criado-Hidalgo
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Chen Gong
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Emil Karshalev
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jounghyun Yoo
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Ming You
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Ann Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Hao K Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Payal N Patel
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Claire L Hays
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Peter J Gunnarson
- Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA, USA
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lei Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Yang Zhang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - John O Dabiri
- Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA, USA
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, Pasadena, CA, USA
| | - Di Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Julia R Greer
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
4
|
Yoon YB, Cho I, Koo HB, Jung H, Chang JB. Selectively Detachable Hydrogel Adhesion Enabled by Stimulus-Specific Cleavable Cross-Linkers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39565883 DOI: 10.1021/acsami.4c15507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The development of detachable hydrogel adhesion presents an advancement in the fields of soft electronics and bioengineering as it offers additional functionalities to these applications. However, conventional methods typically rely on a single detachment trigger, so it is unclear whether unintentional detachment might occur in the specific environments of other detachment systems. This makes it difficult to directly introduce two independent detachment triggers directly. In this article, we present a strategy for selective detachable adhesion based on two types of cleavable cross-linkers, N,N'-bis(acryloyl)cystamine (BAC) and N,N'-(1,2-dihydroxyethylene)bis(acrylamide) (DHEBA), each with an independent cleavage trigger. BAC can be cleaved through the reduction of disulfide bonds using reducing agents, while DHEBA can be hydrolyzed through heating. We constructed stitching polymer networks for topological adhesion using two types of cleavable cross-linkers, allowing the networks to be selectively degraded depending on which cross-linker was used. Our findings show that the use of cleavable cross-linkers achieved selectively detachable adhesion in various hydrogels, with adhesion energy that reached up to 1223 J m-2 in polyacrylamide-alginate (PAAm-alginate) tough hydrogel. This strategy also proved versatile as it led to effective adhesion with various substrates, including aluminum, copper, glass, and polyester film (PET). Furthermore, we took advantage of the high programmability of this approach to construct hydrogel-based YES and AND logic gates, whose output changed depending on the applied input triggers. In addition, we designed a selective-release capsule model capable of dual-solution release, which emphasizes the potential of our strategy in creating programmable and responsive soft materials.
Collapse
Affiliation(s)
- Young Bin Yoon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hye Been Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hoeyun Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Sui Z, Wan C, Cheng H, Yang B. Micro/nanorobots for gastrointestinal tract. Front Chem 2024; 12:1423696. [PMID: 39582767 PMCID: PMC11581860 DOI: 10.3389/fchem.2024.1423696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
The application of micro/nanomotors (MNMs) in the gastrointestinal tract has become a Frontier in the treatment of gastrointestinal diseases. These miniature robots can enter the gastrointestinal tract through oral administration, achieving precise drug delivery and therapy. They can traverse mucosal layers and tissue barriers, directly targeting tumors or other lesion sites, thereby enhancing the bioavailability and therapeutic effects of drugs. Through the application of nanotechnology, these MNMs are able to accomplish targeted medication release, regulating drug release in response to either external stimuli or the local biological milieu. This results in reduced side effects and increased therapeutic efficacy. This review summarizes the primary classifications and power sources of current MNMs, as well as their applications in the gastrointestinal tract, providing inspiration and direction for the treatment of gastrointestinal diseases with MNMs.
Collapse
Affiliation(s)
- Ziqi Sui
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chugen Wan
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Hefei Cheng
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Bin Yang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Mundaca-Uribe R, Askarinam N, Fang RH, Zhang L, Wang J. Towards multifunctional robotic pills. Nat Biomed Eng 2024; 8:1334-1346. [PMID: 37723325 DOI: 10.1038/s41551-023-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/20/2023] [Indexed: 09/20/2023]
Abstract
Robotic pills leverage the advantages of oral pharmaceutical formulations-in particular, convenient encapsulation, high loading capacity, ease of manufacturing and high patient compliance-as well as the multifunctionality, increasing miniaturization and sophistication of microrobotic systems. In this Perspective, we provide an overview of major innovations in the development of robotic pills-specifically, oral pills embedded with robotic capabilities based on microneedles, microinjectors, microstirrers or microrockets-summarize current progress and applicational gaps of the technology, and discuss its prospects. We argue that the integration of multiple microrobotic functions within oral delivery systems alongside accurate control of the release characteristics of their payload provides a basis for realizing sophisticated multifunctional robotic pills that operate as closed-loop systems.
Collapse
Affiliation(s)
- Rodolfo Mundaca-Uribe
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Nelly Askarinam
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Ronnie H Fang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.
| | - Joseph Wang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Chen Z, Chen H, Fang K, Liu N, Yu J. Magneto-Thermal Hydrogel Swarms for Targeted Lesion Sealing. Adv Healthc Mater 2024:e2403076. [PMID: 39449232 DOI: 10.1002/adhm.202403076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Magnetic microswarms capable of performing navigation to targeted lesions show great potential for in vivo medical applications. However, using the swarms for lesion cavity filling encounters challenges from precise delivery and sealing. Herein, this work develops a magneto-thermal hydrogel swarm consisting of magnetic hydrogel particles, which can perform phase transition induced by temperature change. The particles are prepared using a temperature-responsive hydrogel matrix, tissue adhesive monomers, and magnetic microparticles. The swarms can be remolded to various shapes, and it can be used to seal perforation in phantom and gastric tissue. The swarms can also serve as drug carriers, and their drug release profiles induced by temperature changes are characterized. Finally, the targeted delivery, adaptive filling, and sealing of a gastric ulcer using the swarms are achieved in ex vivo and in vivo environments.
Collapse
Affiliation(s)
- Ziheng Chen
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Kaiwen Fang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| |
Collapse
|
8
|
Zheng B, Li Q, Fang L, Cai X, Liu Y, Duo Y, Li B, Wu Z, Shen B, Bai Y, Cheng SX, Zhang X. Microorganism microneedle micro-engine depth drug delivery. Nat Commun 2024; 15:8947. [PMID: 39414855 PMCID: PMC11484856 DOI: 10.1038/s41467-024-53280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
As a transdermal drug delivery method, microneedles offer minimal invasiveness, painlessness, and precise in-situ treatment. However, current microneedles rely on passive diffusion, leading to uncontrollable drug penetration. To overcome this, we developed a pneumatic microneedle patch that uses live Enterobacter aerogenes as microengines to actively control drug delivery. These microbes generate gas, driving drugs into deeper tissues, with adjustable glucose concentration allowing precise control over the process. Our results showed that this microorganism-powered system increases drug delivery depth by over 200%, reaching up to 1000 μm below the skin. In a psoriasis animal model, the technology effectively delivered calcitriol into subcutaneous tissues, offering rapid symptom relief. This innovation addresses the limitations of conventional microneedles, enhancing drug efficiency, transdermal permeability, and introducing a creative paradigm for on-demand controlled drug delivery.
Collapse
Affiliation(s)
- Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| | - Qiuya Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Laiping Fang
- Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaolu Cai
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Yanhong Duo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhengyu Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Boxi Shen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Department of Stomatology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Shi-Xiang Cheng
- Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair of Tianjin Economic-Technological Development Area, TANGYI Biomedicine (Tianjin) Co. Ltd (TBMed), Tianjin, China.
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Mapile AN, Scatena LF. Bulking up: the impact of polymer sterics on emulsion stability. SOFT MATTER 2024; 20:7471-7483. [PMID: 39258873 DOI: 10.1039/d4sm00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Encapsulation of hydrophobic active ingredients is critical for targeted drug delivery as water-insoluble drugs dominate the pharmaceutical marketplace. We previously demonstrated hexadecane-in-water emulsions stabilized with a pH-tunable polymer, poly(acrylic acid) (PAA), via a steric layer preventing particle aggregation. Using vibrational sum frequency scattering spectroscopy (VSFSS), here we probe the influence of steric hindrance on emulsion colloidal stability by tailoring the molecular weight of PAA and by adding an additional methyl group to the polymer backbone via poly(methacrylic acid) (PMAA) at pH 2, 4, and 6. At low polymer molecular weight (2 and 10 kDa), PAA adsorption is entropy driven and akin to surfactant-mediated stabilization. With 450 kDa PAA, the longer polymer chain emphasizes enthalpically favored polymer-oil interactions to initially coat the surface, and forms layers at increasing molecular weight (1000 and 4000 kDa). PMAA exhibits better oil-solubility than PAA at low concentrations but cannot accommodate the steric hindrance at higher concentrations leading to disorder. Finally, we connect our molecular-level understanding of PAA ordering with temperature-dependent dynamic light scattering experiments and observe that emulsions coated with PAA at pH 2 and 4 maintain colloidal stability from 0-90 °C, making PAA a promising polymer for hydrophobic drug delivery.
Collapse
Affiliation(s)
- Ashley N Mapile
- University of Oregon Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403, USA.
| | - Lawrence F Scatena
- University of Oregon Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
10
|
Kim J, Mayorga-Burrezo P, Song SJ, Mayorga-Martinez CC, Medina-Sánchez M, Pané S, Pumera M. Advanced materials for micro/nanorobotics. Chem Soc Rev 2024; 53:9190-9253. [PMID: 39139002 DOI: 10.1039/d3cs00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Autonomous micro/nanorobots capable of performing programmed missions are at the forefront of next-generation micromachinery. These small robotic systems are predominantly constructed using functional components sourced from micro- and nanoscale materials; therefore, combining them with various advanced materials represents a pivotal direction toward achieving a higher level of intelligence and multifunctionality. This review provides a comprehensive overview of advanced materials for innovative micro/nanorobotics, focusing on the five families of materials that have witnessed the most rapid advancements over the last decade: two-dimensional materials, metal-organic frameworks, semiconductors, polymers, and biological cells. Their unique physicochemical, mechanical, optical, and biological properties have been integrated into micro/nanorobots to achieve greater maneuverability, programmability, intelligence, and multifunctionality in collective behaviors. The design and fabrication methods for hybrid robotic systems are discussed based on the material categories. In addition, their promising potential for powering motion and/or (multi-)functionality is described and the fundamental principles underlying them are explained. Finally, their extensive use in a variety of applications, including environmental remediation, (bio)sensing, therapeutics, etc., and remaining challenges and perspectives for future research are discussed.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Su-Jin Song
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Mariana Medina-Sánchez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, Bilbao, 48009, Spain
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and Nano-Biosystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
11
|
Ren A, Hu J, Qin C, Xia N, Yu M, Xu X, Yang H, Han M, Zhang L, Ma L. Oral administration microrobots for drug delivery. Bioact Mater 2024; 39:163-190. [PMID: 38808156 PMCID: PMC11130999 DOI: 10.1016/j.bioactmat.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Oral administration is the most simple, noninvasive, convenient treatment. With the increasing demands on the targeted drug delivery, the traditional oral treatment now is facing some challenges: 1) biologics how to implement the oral treatment and ensure the bioavailability is not lower than the subcutaneous injections; 2) How to achieve targeted therapy of some drugs in the gastrointestinal tract? Based on these two issues, drug delivery microrobots have shown great application prospect in oral drug delivery due to their characteristics of flexible locomotion or driven ability. Therefore, this paper summarizes various drug delivery microrobots developed in recent years and divides them into four categories according to different driving modes: magnetic-controlled drug delivery microrobots, anchored drug delivery microrobots, self-propelled drug delivery microrobots and biohybrid drug delivery microrobots. As oral drug delivery microrobots involve disciplines such as materials science, mechanical engineering, medicine, and control systems, this paper begins by introducing the gastrointestinal barriers that oral drug delivery must overcome. Subsequently, it provides an overview of typical materials involved in the design process of oral drug delivery microrobots. To enhance readers' understanding of the working principles and design process of oral drug delivery microrobots, we present a guideline for designing such microrobots. Furthermore, the current development status of various types of oral drug delivery microrobots is reviewed, summarizing their respective advantages and limitations. Finally, considering the significant concerns regarding safety and clinical translation, we discuss the challenges and prospections of clinical translation for various oral drug delivery microrobots presented in this paper, providing corresponding suggestions for addressing some existing challenges.
Collapse
Affiliation(s)
- An Ren
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Changwei Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaobin Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804 China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Kim H, Jo K, Choi H, Hahn SK. Biocompatible polymer-based micro/nanorobots for theranostic translational applications. J Control Release 2024; 374:606-626. [PMID: 39208932 DOI: 10.1016/j.jconrel.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Recently, micro/nanorobots (MNRs) with self-propulsion have emerged as a promising smart platform for diagnostic, therapeutic and theranostic applications. Especially, polymer-based MNRs have attracted huge attention due to their inherent biocompatibility and versatility, making them actively explored for various medical applications. As the translation of MNRs from laboratory to clinical settings is imperative, the use of appropriate polymers for MNRs is a key strategy, which can prompt the advancement of MNRs to the next phase. In this review, we describe the multifunctional versatile polymers in MNRs, and their biodegradability, motion control, cargo loading and release, adhesion, and other characteristics. After that, we review the theranostic applications of polymer-based MNRs to bioimaging, biosensing, drug delivery, and tissue engineering. Furthermore, we address the challenges that must be overcome to facilitate the translational development of polymeric MNRs with future perspectives. This review would provide valuable insights into the state-of-the-art technologies associated with polymeric MNRs and contribute to their progression for further clinical development.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyungjoo Jo
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
13
|
Liu S, Shi L, Luo H, Chen K, Song M, Wu Y, Liu F, Li M, Gao J, Wu Y. Processed microalgae: green gold for tissue regeneration and repair. Theranostics 2024; 14:5235-5261. [PMID: 39267781 PMCID: PMC11388063 DOI: 10.7150/thno.99181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
As novel biomedical materials, microalgae have garnered significant interest because of their ability to generate photosynthetic oxygen, their antioxidant activity, and their favorable biocompatibility. Many studies have concentrated on the hypoxia-alleviating effects of microalgae within tumor microenvironments. However, recent findings indicate that microalgae can significantly increase the regeneration of various tissues and organs. To augment microalgae's therapeutic efficacy and mitigate the limitations imposed by immune clearance, it is essential to process microalgae through various processing strategies. This review examines common microalgal species in biomedical applications, such as Chlorella, Chlamydomonas reinhardtii, diatoms, and Spirulina. This review outlines diverse processing methods, including microalgae extracts, microalgae‒nanodrug composite delivery systems, surface modifications, and living microalgae‒loaded hydrogels. It also discusses the latest developments in tissue repair using processed microalgae for skin, gastrointestinal, bone, cardiovascular, lung, nerve, and oral tissues. Furthermore, future directions are presented, and research gaps for processed microalgae are identified. Collectively, these insights may inform the innovation of processed microalgae for various uses and offer guidance for ongoing research in tissue repair.
Collapse
Affiliation(s)
- Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Hailong Luo
- Department of Neurology, the Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang 157011, China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Meichen Song
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Yingjun Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Fengzhi Liu
- Pathology Department of the Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
14
|
Boccardo F, Pierre-Louis O. Reinforcement learning with thermal fluctuations at the nanoscale. Phys Rev E 2024; 110:L023301. [PMID: 39294981 DOI: 10.1103/physreve.110.l023301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/06/2024] [Indexed: 09/21/2024]
Abstract
Reinforcement Learning offers a framework to learn to choose actions in order to control a system. However, at small scales Brownian fluctuations limit the control of nanomachine actuation or nanonavigation and of the molecular machinery of life. We analyze this regime using the general framework of Markov decision processes. We show that at the nanoscale, while optimal control actions should bring an improvement proportional to the small ratio of the applied force times a length scale over the temperature, the learned improvement is smaller and proportional to the square of this small ratio. Consequently, the efficiency of learning, which compares the learning improvement to the theoretical optimal improvement, drops to zero. Nevertheless, these limitations can be circumvented by using actions learned at a lower temperature. These results are illustrated with simulations of the control of the shape of small particle clusters.
Collapse
|
15
|
Li W, Liu B, Ou L, Li G, Lei D, Xiong Z, Xu H, Wang J, Tang J, Li D. Arbitrary Construction of Versatile NIR-Driven Microrobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402482. [PMID: 38940072 DOI: 10.1002/adma.202402482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Emerging light-driven micro/nanorobots (LMNRs) showcase profound potential for sophisticated manipulation and various applications. However, the realization of a versatile and straightforward fabrication technique remains a challenging pursuit. This study introduces an innovative bulk heterojunction organic semiconductor solar cell (OSC)-based spin-coating approach, aiming to facilitate the arbitrary construction of LMNRs. Leveraging the distinctive properties of a near-infrared (NIR)-responsive organic semiconductor heterojunction solution, this technique enables uniform coating across various dimensional structures (0D, 1D, 2D, 3D) to be LMNRs, denoted as "motorization." The film, with a slender profile measuring ≈140 nm in thickness, effectively preserves the original morphology of objects while imparting actuation capabilities exceeding hundreds of times their own weight. The propelled motion of these microrobots is realized through NIR-driven photoelectrochemical reaction-induced self-diffusiophoresis, showcasing a versatile array of controllable motion profiles. The strategic customization of arbitrary microrobot construction addresses specific applications, ranging from 0D microrobots inducing living crystal formation to intricate, multidimensional structures designed for tasks such as microplastic extraction, cargo delivery, and phototactic precise maneuvers. This study advances user-friendly and versatile LMNR technologies, unlocking new possibilities for various applications, signaling a transformative era in multifunctional micro/nanorobot technologies.
Collapse
Affiliation(s)
- Wanyuan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Baiyao Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Leyan Ou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Gangzhou Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Dapeng Lei
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Ze Xiong
- Wireless and Smart Bioelectronics Lab, School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Huihua Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
16
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
17
|
Wang B, Chen Y, Ye Z, Yu H, Chan KF, Xu T, Guo Z, Liu W, Zhang L. Low-Friction Soft Robots for Targeted Bacterial Infection Treatment in Gastrointestinal Tract. CYBORG AND BIONIC SYSTEMS 2024; 5:0138. [PMID: 38975252 PMCID: PMC11223897 DOI: 10.34133/cbsystems.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Untethered and self-transformable miniature robots are capable of performing reconfigurable deformation and on-demand locomotion, which aid the traversal toward various lumens, and bring revolutionary changes for targeted delivery in gastrointestinal (GI) tract. However, the viscous non-Newtonian liquid environment and plicae gastricae obstacles severely hamper high-precision actuation and payload delivery. Here, we developed a low-friction soft robot by assembly of densely arranged cone structures and grafting of hydrophobic monolayers. The magnetic orientation encoded robot can move in multiple modes, with a substantially reduced drag, terrain adaptability, and improved motion velocity across the non-Newtonian liquids. Notably, the robot stiffness can be reversibly controlled with magnetically induced hardening, enabling on-site scratching and destruction of antibiotic-ineradicable polymeric matrix in biofilms with a low-frequency magnetic field. Furthermore, the magnetocaloric effect can be utilized to eradicate the bacteria by magnetocaloric effect under high-frequency alternating field. To verify the potential applications inside the body, the clinical imaging-guided actuation platforms were developed for vision-based control and delivery of the robots. The developed low-friction robots and clinical imaging-guided actuation platforms show their high potential to perform bacterial infection therapy in various lumens inside the body.
Collapse
Affiliation(s)
- Ben Wang
- College of Chemistry and Environmental Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Yunrui Chen
- College of Chemistry and Environmental Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Haidong Yu
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials,
Guangxi University, Nanning 530004, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Centre for Innovative Medicine,
The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Biomedical Imaging Science and System,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials,
Hubei University, Wuhan 430062, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,
Chinese Academy of Science, Lanzhou 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,
Chinese Academy of Science, Lanzhou 730000, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering,
The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
18
|
Li Z, Duan Y, Zhang F, Luan H, Shen WT, Yu Y, Xian N, Guo Z, Zhang E, Yin L, Fang RH, Gao W, Zhang L, Wang J. Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease. Sci Robot 2024; 9:eadl2007. [PMID: 38924422 DOI: 10.1126/scirobotics.adl2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Cytokines have been identified as key contributors to the development of inflammatory bowel disease (IBD), yet conventional treatments often prove inadequate and carry substantial side effects. Here, we present an innovative biohybrid robotic system, termed "algae-MΦNP-robot," for addressing IBD by actively neutralizing colonic cytokine levels. Our approach combines moving green microalgae with macrophage membrane-coated nanoparticles (MΦNPs) to efficiently capture proinflammatory cytokines "on the fly." The dynamic algae-MΦNP-robots outperformed static counterparts by enhancing cytokine removal through continuous movement, better distribution, and extended retention in the colon. This system is encapsulated in an oral capsule, which shields it from gastric acidity and ensures functionality upon reaching the targeted disease site. The resulting algae-MΦNP-robot capsule effectively regulated cytokine levels, facilitating the healing of damaged epithelial barriers. It showed markedly improved prevention and treatment efficacy in a mouse model of IBD and demonstrated an excellent biosafety profile. Overall, our biohybrid algae-MΦNP-robot system offers a promising and efficient solution for IBD, addressing cytokine-related inflammation effectively.
Collapse
Affiliation(s)
- Zhengxing Li
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaou Duan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Fangyu Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Hao Luan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei-Ting Shen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yiyan Yu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nianfei Xian
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongyuan Guo
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Edward Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lu Yin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Zhang F, Guo Z, Li Z, Luan H, Yu Y, Zhu AT, Ding S, Gao W, Fang RH, Zhang L, Wang J. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. SCIENCE ADVANCES 2024; 10:eadn6157. [PMID: 38865468 PMCID: PMC11168470 DOI: 10.1126/sciadv.adn6157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Lung metastasis poses a formidable challenge in the realm of cancer treatment, with conventional chemotherapy often falling short due to limited targeting and low accumulation in the lungs. Here, we show a microrobot approach using motile algae for localized delivery of drug-loaded nanoparticles to address lung metastasis challenges. The biohybrid microrobot [denoted "algae-NP(DOX)-robot"] combines green microalgae with red blood cell membrane-coated nanoparticles containing doxorubicin, a representative chemotherapeutic drug. Microalgae provide autonomous propulsion in the lungs, leveraging controlled drug release and enhanced drug dispersion to exert antimetastatic effects. Upon intratracheal administration, algae-NP(DOX)-robots efficiently transport their drug payload deep into the lungs while maintaining continuous motility. This strategy leads to rapid drug distribution, improved tissue accumulation, and prolonged retention compared to passive drug-loaded nanoparticles and free drug controls. In a melanoma lung metastasis model, algae-NP(DOX)-robots exhibit substantial improvement in therapeutic efficacy, reducing metastatic burden and extending survival compared to control groups.
Collapse
Affiliation(s)
| | | | | | - Hao Luan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Audrey T. Zhu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Shichao Ding
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Wang J, Wu H, Zhu X, Zwolsman R, Hofstraat SRJ, Li Y, Luo Y, Joosten RRM, Friedrich H, Cao S, Abdelmohsen LKEA, Shao J, van Hest JCM. Ultrafast light-activated polymeric nanomotors. Nat Commun 2024; 15:4878. [PMID: 38849362 PMCID: PMC11161643 DOI: 10.1038/s41467-024-49217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
Synthetic micro/nanomotors have been extensively exploited over the past decade to achieve active transportation. This interest is a result of their broad range of potential applications, from environmental remediation to nanomedicine. Nevertheless, it still remains a challenge to build a fast-moving biodegradable polymeric nanomotor. Here we present a light-propelled nanomotor by introducing gold nanoparticles (Au NP) onto biodegradable bowl-shaped polymersomes (stomatocytes) via electrostatic and hydrogen bond interactions. These biodegradable nanomotors show controllable motion and remarkable velocities of up to 125 μm s-1. This unique behavior is explained via a thorough three-dimensional characterization of the nanomotor, particularly the size and the spatial distribution of Au NP, with cryogenic transmission electron microscopy (cryo-TEM) and cryo-electron tomography (cryo-ET). Our in-depth quantitative 3D analysis reveals that the motile features of these nanomotors are caused by the nonuniform distribution of Au NPs on the outer surface of the stomatocyte along the z-axial direction. Their excellent motile features are exploited for active cargo delivery into living cells. This study provides a new approach to develop robust, biodegradable soft nanomotors with application potential in biomedicine.
Collapse
Affiliation(s)
- Jianhong Wang
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Xiaowei Zhu
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Robby Zwolsman
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Stijn R J Hofstraat
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yudong Li
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Rick R M Joosten
- Laboratory of Physical Chemistry, Department of Chemical Engineering & Chemistry, Center for Multiscale Electron Microscopy and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering & Chemistry, Center for Multiscale Electron Microscopy and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
21
|
Zhang S, Mou F, Yu Z, Li L, Yang M, Zhang D, Ma H, Luo W, Li T, Guan J. Heterogeneous Sensor-Carrier Microswarms for Collaborative Precise Drug Delivery toward Unknown Targets with Localized Acidosis. NANO LETTERS 2024; 24:5958-5967. [PMID: 38738749 DOI: 10.1021/acs.nanolett.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Micro/nanorobots hold the potential to revolutionize biomedicine by executing diverse tasks in hard-to-reach biological environments. Nevertheless, achieving precise drug delivery to unknown disease sites using swarming micro/nanorobots remains a significant challenge. Here we develop a heterogeneous swarm comprising sensing microrobots (sensor-bots) and drug-carrying microrobots (carrier-bots) with collaborative tasking capabilities for precise drug delivery toward unknown sites. Leveraging robust interspecific hydrodynamic interactions, the sensor-bots and carrier-bots spontaneously synchronize and self-organize into stable heterogeneous microswarms. Given that the sensor-bots can create real-time pH maps employing pH-responsive structural-color changes and the doxorubicin-loaded carrier-bots exhibit selective adhesion to acidic targets via pH-responsive charge reversal, the sensor-carrier microswarm, when exploring unknown environments, can detect and localize uncharted acidic targets, guide itself to cover the area, and finally deploy therapeutic carrier-bots precisely there. This versatile platform holds promise for treating diseases with localized acidosis and inspires future theranostic microsystems with expandability, task flexibility, and high efficiency.
Collapse
Affiliation(s)
- Shuming Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Zheng Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Di Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Huiru Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| |
Collapse
|
22
|
Wang Y, Chen H, Xie L, Liu J, Zhang L, Yu J. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312956. [PMID: 38653192 DOI: 10.1002/adma.202312956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Swarm behaviors are common in nature, where individual organisms collaborate via perception, communication, and adaptation. Emulating these dynamics, large groups of active agents can self-organize through localized interactions, giving rise to complex swarm behaviors, which exhibit potential for applications across various domains. This review presents a comprehensive summary and perspective of synthetic swarms, to bridge the gap between the microscale individual agents and potential applications of synthetic swarms. It is begun by examining active agents, the fundamental units of synthetic swarms, to understand the origins of their motility and functionality in the presence of external stimuli. Then inter-agent communications and agent-environment communications that contribute to the swarm generation are summarized. Furthermore, the swarm behaviors reported to date and the emergence of machine intelligence within these behaviors are reviewed. Eventually, the applications enabled by distinct synthetic swarms are summarized. By discussing the emergent machine intelligence in swarm behaviors, insights are offered into the design and deployment of autonomous synthetic swarms for real-world applications.
Collapse
Affiliation(s)
- Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Leiming Xie
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Jinbo Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| |
Collapse
|
23
|
Zhang C, Han ZY, Chen KW, Wang YZ, Bao P, Ji P, Yan X, Rao ZY, Zeng X, Zhang XZ. In Situ Formed Microalgae-Integrated Living Hydrogel for Enhanced Tumor Starvation Therapy and Immunotherapy through Photosynthetic Oxygenation. NANO LETTERS 2024; 24:3801-3810. [PMID: 38477714 DOI: 10.1021/acs.nanolett.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ke-Wei Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Zhang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Peng Bao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Yong Rao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
24
|
Mayorga-Martinez CC, Zhang L, Pumera M. Chemical multiscale robotics for bacterial biofilm treatment. Chem Soc Rev 2024; 53:2284-2299. [PMID: 38324331 DOI: 10.1039/d3cs00564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A biofilm constitutes a bacterial community encased in a sticky matrix of extracellular polymeric substances. These intricate microbial communities adhere to various host surfaces such as hard and soft tissues as well as indwelling medical devices. These microbial aggregates form a robust matrix of extracellular polymeric substances (EPSs), leading to the majority of human infections. Such infections tend to exhibit high resistance to treatment, often progressing into chronic states. The matrix of EPS protects bacteria from a hostile environment and prevents the penetration of antibacterial agents. Modern robots at nano, micro, and millimeter scales are highly attractive candidates for biomedical applications due to their diverse functionalities, such as navigating in confined spaces and targeted multitasking. In this tutorial review, we describe key milestones in the strategies developed for the removal and eradication of biofilms using robots of different sizes and shapes. It can be seen that robots at different scales are useful and effective tools for treating bacterial biofilms, thus preventing persistent infections, the loss of costly implanted medical devices, and additional costs associated with hospitalization and therapies.
Collapse
Affiliation(s)
- Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multicale Robotics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Advanced Nanorobots & Multicale Robotics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-616 00, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
25
|
Zhou H, Zhang S, Liu Z, Chi B, Li J, Wang Y. Untethered Microgrippers for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305805. [PMID: 37941516 DOI: 10.1002/smll.202305805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Indexed: 11/10/2023]
Abstract
Microgrippers, a branch of micro/nanorobots, refer to motile miniaturized machines that are of a size in the range of several to hundreds of micrometers. Compared with tethered grippers or other microscopic diagnostic and surgical equipment, untethered microgrippers play an indispensable role in biomedical applications because of their characteristics such as miniaturized size, dexterous shape tranformation, and controllable motion, which enables the microgrippers to enter hard-to-reach regions to execute specific medical tasks for disease diagnosis and treatment. To date, numerous medical microgrippers are developed, and their potential in cell manipulation, targeted drug delivery, biopsy, and minimally invasive surgery are explored. To achieve controlled locomotion and efficient target-oriented actions, the materials, size, microarchitecture, and morphology of microgrippers shall be deliberately designed. In this review, the authors summarizes the latest progress in untethered micrometer-scale grippers. The working mechanisms of shape-morphing and actuation methods for effective movement are first introduced. Then, the design principle and state-of-the-art fabrication techniques of microgrippers are discussed. Finally, their applications in the precise medicine are highlighted, followed by offering future perspectives for the development of untethered medical microgrippers.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Shengchang Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yilong Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
26
|
Wu J, Jiao N, Lin D, Li N, Ma T, Tung S, Cheng W, Wu A, Liu L. Dual-Responsive Nanorobot-Based Marsupial Robotic System for Intracranial Cross-Scale Targeting Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306876. [PMID: 37899660 DOI: 10.1002/adma.202306876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Indexed: 10/31/2023]
Abstract
Nanorobots capable of active movement are an exciting technology for targeted therapeutic intervention. However, the extensive motion range and hindrance of the blood-brain barrier impeded their clinical translation in glioblastoma therapy. Here, a marsupial robotic system constructed by integrating chemical/magnetic hybrid nanorobots (child robots) with a miniature magnetic continuum robot (mother robot) for intracranial cross-scale targeting drug delivery is reported. For primary targeting on macroscale, the continuum robot enters the cranial cavity through a minimally invasive channel (e.g., Ommaya device) in the skull and transports the nanorobots to pathogenic regions. Upon circumventing the blood-brain barrier, the released nanorobots perform secondary targeting on microscale to further enhance the spatial resolution of drug delivery. In vitro experiments against primary glioblastoma cells derived from different patients are conducted for personalized treatment guidance. The operation feasibility within organisms is shown in ex vivo swine brain experiments. The biosafety of the treatment system is suggested in in vivo experiments. Owing to the hierarchical targeting method, the targeting rate, targeting accuracy, and treatment efficacy have improved greatly. The marsupial robotic system offers a novel intracranial local therapeutic strategy and constitutes a key milestone in the development of glioblastoma treatment platforms.
Collapse
Affiliation(s)
- Junfeng Wu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyang Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Steve Tung
- Department of Mechanical Engineering, University of Arkansas, Arkansas, 72701, USA
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Anhua Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
27
|
Del Campo Fonseca A, Ahmed D. Ultrasound robotics for precision therapy. Adv Drug Deliv Rev 2024; 205:115164. [PMID: 38145721 DOI: 10.1016/j.addr.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
In recent years, the application of microrobots in precision therapy has gained significant attention. The small size and maneuverability of these micromachines enable them to potentially access regions that are difficult to reach using traditional methods; thus, reducing off-target toxicities and maximizing treatment effectiveness. Specifically, acoustic actuation has emerged as a promising method to exert control. By harnessing the power of acoustic energy, these small machines potentially navigate the body, assemble at the desired sites, and deliver therapies with enhanced precision and effectiveness. Amidst the enthusiasm surrounding these miniature agents, their translation to clinical environments has proven difficult. The primary objectives of this review are threefold: firstly, to offer an overview of the fundamental acoustic principles employed in the field of microrobots; secondly, to assess their current applications in medical therapies, encompassing tissue targeting, drug delivery or even cell infiltration; and lastly, to delve into the continuous efforts aimed at integrating acoustic microrobots into in vivo applications.
Collapse
Affiliation(s)
- Alexia Del Campo Fonseca
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | - Daniel Ahmed
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| |
Collapse
|
28
|
Karmacharya M, Kumar S, Choi YJ, Cho YK. Platelet Membrane-Enclosed Bioorthogonal Catalysis for Combating Dental Caries. Adv Healthc Mater 2024; 13:e2302121. [PMID: 37847511 DOI: 10.1002/adhm.202302121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Platelets have shown promise as a means to combat bacterial infections, fostering the development of innovative therapeutic approaches. However, several challenges persist, including cargo loading issues, limited efficacy against biofilms, and concerns regarding the impact of payloads on the platelet carriers. Here, human platelet membrane vesicles (h-PMVs) encapsulating supramolecular metal catalysts (SMCs) as "nanofactories" to convert prodrugs into antimicrobial compounds within close proximity to bacteria are introduced. Having established the feasibility and effectiveness of the SMCs within h-PMVs, referred to as the PLT-reactor, to activate pro-antibiotic drugs (pro-ciprofloxacin and pro-moxifloxacin) using model organisms (Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923), the investigation is subsequently extended to oral biofilms, with a particular emphasis on Streptococcus mutans 3065. This "bind and kill" strategy demonstrates the potent antimicrobial specificity of the PLT-reactor through localized antibiotic production. h-PMVs play a pivotal role by enabling precise targeting of pathogenic biofilms on natural teeth while minimizing potential hemolytic effects. The finding indicates that platelet membrane-cloaked surfaces exhibit robust, multifaceted, and pathogen-specific binding affinity with excellent biocompatibility, making them a promising alternative to antibody-based therapies for infectious diseases.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, South Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, South Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Yoon Jeong Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University, College of Dentistry, Seoul, 03722, South Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, South Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
29
|
Zhang F, Li Z, Chen C, Luan H, Fang RH, Zhang L, Wang J. Biohybrid Microalgae Robots: Design, Fabrication, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303714. [PMID: 37471001 PMCID: PMC10799182 DOI: 10.1002/adma.202303714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
The integration of microorganisms and engineered artificial components has shown considerable promise for creating biohybrid microrobots. The unique features of microalgae make them attractive candidates as natural actuation materials for the design of biohybrid microrobotic systems. In this review, microalgae-based biohybrid microrobots are introduced for diverse biomedical and environmental applications. The distinct propulsion and phototaxis behaviors of green microalgae, as well as important properties from other photosynthetic microalga systems (blue-green algae and diatom) that are crucial to constructing powerful biohybrid microrobots, will be described first. Then the focus is on chemical and physical routes for functionalizing the algae surface with diverse reactive materials toward the fabrication of advanced biohybrid microalgae robots. Finally, representative applications of such algae-driven microrobots are presented, including drug delivery, imaging, and water decontamination, highlighting the distinct advantages of these active biohybrid robots, along with future prospects and challenges.
Collapse
Affiliation(s)
- Fangyu Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Zhengxing Li
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Chuanrui Chen
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Hao Luan
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Yang M, Zhang Y, Mou F, Cao C, Yu L, Li Z, Guan J. Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. SCIENCE ADVANCES 2023; 9:eadk7251. [PMID: 38019908 PMCID: PMC10686566 DOI: 10.1126/sciadv.adk7251] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Biocompatible swarming magnetic nanorobots that work in blood vessels for safe and efficient targeted thrombolytic therapy in vivo are demonstrated. This is achieved by using magnetic beads elaborately grafted with heparinoid-polymer brushes (HPBs) upon the application of an alternating magnetic field B(t). Because of the dense surface charges bestowed by HPBs, the swarming nanorobots demonstrate reversible agglomeration-free reconfigurations, low hemolysis, anti-bioadhesion, and self-anticoagulation in high-ionic-strength blood environments. They are confirmed in vitro and in vivo to perform synergistic thrombolysis efficiently by "motile-targeting" drug delivery and mechanical destruction. Moreover, upon the completion of thrombolysis and removal of B(t), the nanorobots disassemble into dispersed particles in blood, allowing them to safely participate in circulation and be phagocytized by immune cells without apparent organ damage or inflammatory lesion. This work provides a rational multifaceted HPB biointerfacing design strategy for biomedical nanorobots and a general motile platform to deliver drugs for targeted therapies.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yaoyu Zhang
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Department of Orthopedics, General Hospital of Chinese PLA Central Theater Command, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Chuan Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Lingxia Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zhi Li
- Department of Orthopedics, General Hospital of Chinese PLA Central Theater Command, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, P. R. China
| |
Collapse
|
31
|
Tao F, Ye Q, Chen Y, Luo L, Xu H, Xu J, Feng Z, Wang C, Li T, Wen Y, Hu Y, Dong H, Zhao X, Wu J. Antigen-loaded flagellate bacteria for enhanced adaptive immune response by intradermal injection. J Control Release 2023; 364:562-575. [PMID: 37926245 DOI: 10.1016/j.jconrel.2023.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Since the skin limits the distribution of intradermal vaccines, a large number of dendritic cells in the skin cannot be fully utilized to elicit a more effective immune response. Here, we loaded the antigen to the surface of the flagellate bacteria that was modified by cationic polymer, thus creating antigen-loaded flagellate bacteria (denoted as 'FB-Ag') to overcome the skin barrier and perform the active delivery of antigen in the skin. The FB-Ag showed fast speed (∼0.2 μm s-1) and strong dendritic cell activation capabilities in the skin model in vitro. In vivo, the FB-Ag promoted the spread of antigen in the skin through active movement, increased the contact between Intradermal dendritic cells and antigen, and effectively activated the internal dendritic cells in the skin. In a mouse of pulmonary metastatic melanoma and in mice bearing subcutaneous melanoma tumor, the FB-Ag effectively increased antigen-specific therapeutic efficacy and produced long-lasting immune memory. More importantly, the FB-Ag also enhanced the level of COVID-19 specific antibodies in the serum and the number of memory B cells in the spleen of mice. The movement of antigen-loaded flagellate bacteria to overcome intradermal constraints may enhance the activation of intradermal dendritic cells, providing new ideas for developing intradermal vaccines.
Collapse
Affiliation(s)
- Feng Tao
- Department of Andrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China; State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Yimiao Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Lifeng Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Jialong Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Zhuo Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Tao Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Yuxuan Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China; Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China.
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Jinhui Wu
- Department of Andrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China; State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
32
|
Zhou M, Yin Y, Zhao J, Zhou M, Bai Y, Zhang P. Applications of microalga-powered microrobots in targeted drug delivery. Biomater Sci 2023; 11:7512-7530. [PMID: 37877241 DOI: 10.1039/d3bm01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Over the past decade, researchers have proposed a new class of drug delivery systems, bio-hybrid micro-robots, designed with a variety of living cell-driven micro-robots that utilize the unique mobility of natural organisms (bacteria, cells, exosomes, etc.) to transport effective drugs. Microalgae are considered potential drug delivery carriers. Recent studies have shown that microalga-based drug delivery systems exhibit excellent biocompatibility. In addition, microalgae have a large surfactant area, phototaxis, oxygen production, and other characteristics, so they are used as a carrier for the treatment of bacterial infections, cancer, etc. This review summarizes the modification of microalgae including click chemistry and electrostatic adsorption, and can improve the drug loading efficiency through dehydration and hydration strategies. The prepared microalgal drug delivery system can be targeted to different organs by different dosing methods or using external forces. Finally, it summarizes its antibacterial (gastritis, periodontitis, skin wound inflammation, etc.) and antitumor applications.
Collapse
Affiliation(s)
- Min Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mingyang Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Yanjie Bai
- Department of Stomatology, People's Hospital of Liaoning Province, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
33
|
Song Q, Liu Y, Ding X, Feng M, Li J, Liu W, Wang B, Gu Z. A drug co-delivery platform made of magnesium-based micromotors enhances combination therapy for hepatoma carcinoma cells. NANOSCALE 2023; 15:15573-15582. [PMID: 37641947 DOI: 10.1039/d3nr01548c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Combination therapy is an emerging strategy to overcome multidrug resistance (MDR) in hepatocellular carcinoma (HCC) chemotherapy treatment. However, the passive diffusion in traditional delivery systems greatly retards the approach and penetration of drugs into hepatocellular carcinoma cells and thus hinders the efficacy of combination therapy. Micro/nanomotors with autonomous locomotion in a tiny scale provide the possibility of tackling this issue. Herein, an active drug delivery micromotor platform delicately designed to load drugs with different physicochemical properties and enhance the drug permeability of cells is demonstrated for HCC chemotherapy treatment. The biocompatible micromotor platform Mg/PLGA/CHI comprised magnesium (Mg) coated with two polymer layers made of poly(lactic-co-glycolic acid) (PLGA) and chitosan (CHI), where the hydrophobic and hydrophilic drugs doxorubicin (Dox) and Curcumin (Cur) were loaded, respectively. The autonomous motion of the micromotors with velocity up to 45 μm s-1 greatly enhanced the diffusion of chemotherapeutic drugs and led to higher extracellular and intracellular drug distribution. Moreover, hydrogen produced during the motion eliminated the excess reactive oxygen species (ROS) in the human hepatocellular carcinoma (HepG2) cells. Compared with inert groups, the absorption of Dox and Cur from the active micromotors was about 2.9 and 1.5 times higher in human hepatocellular carcinoma (HepG2) cells. In addition, the anti-tumor activity also obviously improved at the micromotor concentration of 1 mg mL-1 (cell proliferation was reduced by almost 30%). Overall, this work proposes an approach based on loading different chemotherapy agents on an active delivery system to enhance drug permeability and overcome MDR and provides a potentially effective therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Qingtao Song
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing 211816, China
| | - Yilin Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyong Ding
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Miao Feng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenjuan Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing 211816, China
| | - Bohan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
34
|
Deng Y, Paskert A, Zhang Z, Wittkowski R, Ahmed D. An acoustically controlled helical microrobot. SCIENCE ADVANCES 2023; 9:eadh5260. [PMID: 37729400 PMCID: PMC10511192 DOI: 10.1126/sciadv.adh5260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
As a next-generation toolkit, microrobots can transform a wide range of fields, including micromanufacturing, electronics, microfluidics, tissue engineering, and medicine. While still in their infancy, acoustically actuated microrobots are becoming increasingly attractive. However, the interaction of acoustics with microstructure geometry is poorly understood, and its study is necessary for developing next-generation acoustically powered microrobots. We present an acoustically driven helical microrobot with a length of 350 μm and a diameter of 100 μm that is capable of locomotion using a fin-like double-helix microstructure. This microrobot responds to sound stimuli at ~12 to 19 kHz and mimics the spiral motion of natural microswimmers such as spirochetes. The asymmetric double helix interacts with the incident acoustic field, inducing a propulsion torque that causes the microrobot to rotate around its long axis. Moreover, our microrobot has the unique feature of its directionality being switchable by simply tuning the acoustic frequency. We demonstrate this locomotion in 2D and 3D artificial vasculatures using a single sound source.
Collapse
Affiliation(s)
- Yong Deng
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon CH-8803, Switzerland
| | - Adrian Paskert
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Zhiyuan Zhang
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon CH-8803, Switzerland
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon CH-8803, Switzerland
| |
Collapse
|
35
|
Wang Y, Chen J, Su G, Mei J, Li J. A Review of Single-Cell Microrobots: Classification, Driving Methods and Applications. MICROMACHINES 2023; 14:1710. [PMID: 37763873 PMCID: PMC10537272 DOI: 10.3390/mi14091710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Single-cell microrobots are new microartificial devices that use a combination of single cells and artificial devices, with the advantages of small size, easy degradation and ease of manufacture. With externally driven strategies such as light fields, sound fields and magnetic fields, microrobots are able to carry out precise micromanipulations and movements in complex microenvironments. Therefore, single-cell microrobots have received more and more attention and have been greatly developed in recent years. In this paper, we review the main classifications, control methods and recent advances in the field of single-cell microrobot applications. First, different types of robots, such as cell-based microrobots, bacteria-based microrobots, algae-based microrobots, etc., and their design strategies and fabrication processes are discussed separately. Next, three types of external field-driven technologies, optical, acoustic and magnetic, are presented and operations realized in vivo and in vitro by applying these three technologies are described. Subsequently, the results achieved by these robots in the fields of precise delivery, minimally invasive therapy are analyzed. Finally, a short summary is given and current challenges and future work on microbial-based robotics are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (Y.W.); (J.C.); (G.S.); (J.M.)
| |
Collapse
|
36
|
Zhang S, Zhu C, Huang W, Liu H, Yang M, Zeng X, Zhang Z, Liu J, Shi J, Hu Y, Shi X, Wang ZH. Recent progress of micro/nanomotors to overcome physiological barriers in the gastrointestinal tract. J Control Release 2023; 360:514-527. [PMID: 37429360 DOI: 10.1016/j.jconrel.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Oral administration is a convenient administration route for gastrointestinal disease therapy with good patient compliance. But the nonspecific distribution of the oral drugs may cause serious side effects. In recent years, oral drug delivery systems (ODDS) have been applied to deliver the drugs to the gastrointestinal disease sites with decreased side effects. However, the delivery efficiency of ODDS is tremendously limited by physiological barriers in the gastrointestinal sites, such as the long and complex gastrointestinal tract, mucus layer, and epithelial barrier. Micro/nanomotors (MNMs) are micro/nanoscale devices that transfer various energy sources into autonomous motion. The outstanding motion characteristics of MNMs inspired the development of targeted drug delivery, especially the oral drug delivery. However, a comprehensive review of oral MNMs for the gastrointestinal diseases therapy is still lacking. Herein, the physiological barriers of ODDS were comprehensively reviewed. Afterward, the applications of MNMs in ODDS for overcoming the physiological barriers in the past 5 years were highlighted. Finally, future perspectives and challenges of MNMs in ODDS are discussed as well. This review will provide inspiration and direction of MNMs for the therapy of gastrointestinal diseases, pushing forward the clinical application of MNMs in oral drug delivery.
Collapse
Affiliation(s)
- Shuhao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Chaoran Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Wanting Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Xiufang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| |
Collapse
|
37
|
Cai L, Wang Y, Luo Z, Wang J, Ren H, Zhao Y. Designing self-triggered micro/milli devices for gastrointestinal tract drug delivery. Expert Opin Drug Deliv 2023; 20:1415-1425. [PMID: 37817636 DOI: 10.1080/17425247.2023.2269092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Self-triggered micro-/milli-devices (STMDs), which are artificial devices capable of responding to the surrounding environment and transferring external energy into kinetic energy, thus realizing autonomous movement, have come to the forefront as a powerful tool in cargo delivery via gastrointestinal tract. Urgent needs have been raised to overview the development of this area. AREAS COVERED We summarize the advancement of designing STMDs for delivery via gastrointestinal tract. We first give a brief overview on the opportunities and challenges of delivery via gastrointestinal tract involving gastric barriers and intestinal barriers. Then, emphasis is laid on the design and applications of STMDs for delivery via gastrointestinal tract. We focus on their morphological characteristics and function design, expounding their working mechanisms in the complex gastrointestinal tract. EXPERT OPINION Although with much progress in STMDs, there is still a huge gap between laboratory researches and clinical applications due to some limitations including latent digestive burden, sophisticated fabrication, unstable delivery, and so on. We give a discussion on the potential, challenges, and prospects of developing STMDs for delivery via gastrointestinal tract.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | | | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | | | | | | |
Collapse
|
38
|
Zhang B, Zhu L, Pan H, Cai L. Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery. Expert Opin Drug Deliv 2023; 20:1427-1441. [PMID: 37840310 DOI: 10.1080/17425247.2023.2270915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Oral delivery is the most commonly used route of drug administration owing to good patient compliance. However, the gastrointestinal (GI) tract contains multiple physiological barriers that limit the absorption efficiency of conventional passive delivery systems resulting in a low drug concentration reaching the diseased sites. Micro/nanorobots can convert energy to self-propulsive force, providing a novel platform to actively overcome GI tract barriers for noninvasive drug delivery and treatment. AREAS COVERED In this review, we first describe the microenvironments and barriers in the different compartments of the GI tract. Afterward, the applications of micro/nanorobots to overcome GI tract barriers for active drug delivery are highlighted and discussed. Finally, we summarize and discuss the challenges and future prospects of micro/nanorobots for further clinical applications. EXPERT OPINION Micro/nanorobots with the ability to autonomously propel themselves and to load, transport, and release payloads on demand are ideal carriers for active oral drug delivery. Although there are many challenges to be addressed, micro/nanorobots have great potential to introduce a new era of drug delivery for precision therapy.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
39
|
Mayorga-Martinez CC, Zelenka J, Klima K, Kubanova M, Ruml T, Pumera M. Multimodal-Driven Magnetic Microrobots with Enhanced Bactericidal Activity for Biofilm Eradication and Removal from Titanium Mesh. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300191. [PMID: 36995927 DOI: 10.1002/adma.202300191] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/12/2023] [Indexed: 06/09/2023]
Abstract
Modern micro/nanorobots can perform multiple tasks for biomedical and environmental applications. Particularly, magnetic microrobots can be completely controlled by a rotating magnetic field and their motion powered and controlled without the use of toxic fuels, which makes them most promising for biomedical application. Moreover, they are able to form swarms, allowing them to perform specific tasks at a larger scale than a single microrobot. In this work, they developed magnetic microrobots composed of halloysite nanotubes as backbone and iron oxide (Fe3 O4 ) nanoparticles as magnetic material allowing magnetic propulsion and covered these with polyethylenimine to load ampicillin and prevent the microrobots from disassembling. These microrobots exhibit multimodal motion as single robots as well as in swarms. In addition, they can transform from tumbling to spinning motion and vice-versa, and when in swarm mode they can change their motion from vortex to ribbon and back again. Finally, the vortex motion mode is used to penetrate and disrupt the extracellular matrix of Staphylococcus aureus biofilm colonized on titanium mesh used for bone restoration, which improves the effect of the antibiotic's activity. Such magnetic microrobots for biofilm removal from medical implants could reduce implant rejection and improve patients' well-being.
Collapse
Affiliation(s)
- Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic
| | - Karel Klima
- Department of Stomatology - Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, Prague, 12808, Czech Republic
| | - Michaela Kubanova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic
- Faculty of Electrical Engineering and, Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
40
|
Straker MA, Levy JA, Stine JM, Borbash V, Beardslee LA, Ghodssi R. Freestanding region-responsive bilayer for functional packaging of ingestible devices. MICROSYSTEMS & NANOENGINEERING 2023; 9:61. [PMID: 37206701 PMCID: PMC10188515 DOI: 10.1038/s41378-023-00536-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 04/08/2023] [Indexed: 05/21/2023]
Abstract
Ingestible capsules have the potential to become an attractive alternative to traditional means of treating and detecting gastrointestinal (GI) disease. As device complexity increases, so too does the demand for more effective capsule packaging technologies to elegantly target specific GI locations. While pH-responsive coatings have been traditionally used for the passive targeting of specific GI regions, their application is limited due to the geometric restrictions imposed by standard coating methods. Dip, pan, and spray coating methods only enable the protection of microscale unsupported openings against the harsh GI environment. However, some emerging technologies have millimeter-scale components for performing functions such as sensing and drug delivery. To this end, we present the freestanding region-responsive bilayer (FRRB), a packaging technology for ingestible capsules that can be readily applied for various functional ingestible capsule components. The bilayer is composed of rigid polyethylene glycol (PEG) under a flexible pH-responsive Eudragit® FL 30 D 55, which protects the contents of the capsule until it arrives in the targeted intestinal environment. The FRRB can be fabricated in a multitude of shapes that facilitate various functional packaging mechanisms, some of which are demonstrated here. In this paper, we characterize and validate the use of this technology in a simulated intestinal environment, confirming that the FRRB can be tuned for small intestinal release. We also show a case example where the FRRB is used to protect and expose a thermomechanical actuator for targeted drug delivery.
Collapse
Affiliation(s)
- Michael A. Straker
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
- Institute for Systems Research, University of Maryland, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20850 USA
| | - Joshua A. Levy
- Institute for Systems Research, University of Maryland, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20850 USA
- Department of Material Science and Engineering, University of Maryland, College Park, MD 20740 USA
| | - Justin M. Stine
- Institute for Systems Research, University of Maryland, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20850 USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 USA
| | - Vivian Borbash
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 USA
| | - Luke A. Beardslee
- Institute for Systems Research, University of Maryland, College Park, MD 20740 USA
| | - Reza Ghodssi
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
- Institute for Systems Research, University of Maryland, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20850 USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
41
|
Abstract
Untethered robots in the size range of micro/nano-scale offer unprecedented access to hard-to-reach areas of the body. In these challenging environments, autonomous task completion capabilities of micro/nanorobots have been the subject of research in recent years. However, most of the studies have presented preliminary in vitro results that can significantly differ under in vivo settings. Here, we focus on the studies conducted with animal models to reveal the current status of micro/nanorobotic applications in real-world conditions. By a categorization based on target locations, we highlight the main strategies employed in organs and other body parts. We also discuss key challenges that require interest before the successful translation of micro/nanorobots to the clinic.
Collapse
Affiliation(s)
- Cagatay M Oral
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic.
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic.
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, 70800, Ostrava, Czech Republic
| |
Collapse
|
42
|
Zhang B, Pan H, Chen Z, Yin T, Zheng M, Cai L. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. SCIENCE ADVANCES 2023; 9:eadc8978. [PMID: 36812317 PMCID: PMC9946363 DOI: 10.1126/sciadv.adc8978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/26/2023] [Indexed: 05/28/2023]
Abstract
A wide array of biocompatible micro/nanorobots are designed for targeted drug delivery and precision therapy largely depending on their self-adaptive ability overcoming complex barriers in vivo. Here, we report a twin-bioengine yeast micro/nanorobot (TBY-robot) with self-propelling and self-adaptive capabilities that can autonomously navigate to inflamed sites for gastrointestinal inflammation therapy via enzyme-macrophage switching (EMS). Asymmetrical TBY-robots effectively penetrated the mucus barrier and notably enhanced their intestinal retention using a dual enzyme-driven engine toward enteral glucose gradient. Thereafter, the TBY-robot was transferred to Peyer's patch, where the enzyme-driven engine switched in situ to macrophage bioengine and was subsequently relayed to inflamed sites along a chemokine gradient. Encouragingly, EMS-based delivery increased drug accumulation at the diseased site by approximately 1000-fold, markedly attenuating inflammation and ameliorating disease pathology in mouse models of colitis and gastric ulcers. These self-adaptive TBY-robots represent a safe and promising strategy for the precision treatment of gastrointestinal inflammation and other inflammatory diseases.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Huang H, Lyu Y, Nan K. Soft robot-enabled controlled release of oral drug formulations. SOFT MATTER 2023; 19:1269-1281. [PMID: 36723379 DOI: 10.1039/d2sm01624a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The creation of highly effective oral drug delivery systems (ODDSs) has long been the main objective of pharmaceutical research. Multidisciplinary efforts involving materials, electronics, control, and pharmaceutical sciences encourage the development of robot-enabled ODDSs. Compared with conventional rigid robots, soft robots potentially offer better mechanical compliance and biocompatibility with biological tissues, more versatile shape control and maneuverability, and multifunctionality. In this paper, we first describe and highlight the importance of manipulating drug release kinetics, i.e. pharmaceutical kinetics. We then introduce an overview of state-of-the-art soft robot-based ODDSs comprising resident, shape-programming, locomotive, and integrated soft robots. Finally, the challenges and outlook regarding future soft robot-based ODDS development are discussed.
Collapse
Affiliation(s)
- Hao Huang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yidan Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S, Wang B. Microrobots for Targeted Delivery and Therapy in Digestive System. ACS NANO 2023; 17:27-50. [PMID: 36534488 DOI: 10.1021/acsnano.2c04716] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Untethered miniature robots enable targeted delivery and therapy deep inside the gastrointestinal tract in a minimally invasive manner. By combining actuation systems and imaging tools, significant progress has been made toward the development of functional microrobots. These robots can be actuated by external fields and fuels while featuring real-time tracking feedback toward certain regions and can perform the therapeutic process by rational exertion of the local environment of the gastrointestinal tract (e.g., pH, enzyme). Compared with conventional surgical tools, such as endoscopic devices and catheters, miniature robots feature minimally invasive diagnosis and treatment, multifunctionality, high safety and adaptivity, embodied intelligence, and easy access to tortuous and narrow lumens. In addition, the active motion of microrobots enhances local penetration and retention of drugs in tissues compared to common passive oral drug delivery. Based on the dissimilar microenvironments in the various sections of the gastrointestinal tract, this review introduces the advances of miniature robots for minimally invasive targeted delivery and therapy of diseases along the gastrointestinal tract. The imaging modalities for the tracking and their application scenarios are also discussed. We finally evaluate the challenges and barriers that retard their applications and hint on future research directions in this field.
Collapse
Affiliation(s)
- Yun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen518036, P.R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| |
Collapse
|
45
|
Zhang F, Li Z, Duan Y, Luan H, Yin L, Guo Z, Chen C, Xu M, Gao W, Fang RH, Zhang L, Wang J. Extremophile-based biohybrid micromotors for biomedical operations in harsh acidic environments. SCIENCE ADVANCES 2022; 8:eade6455. [PMID: 36563149 PMCID: PMC9788783 DOI: 10.1126/sciadv.ade6455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 05/28/2023]
Abstract
The function of robots in extreme environments is regarded as one of the major challenges facing robotics. Here, we demonstrate that acidophilic microalgae biomotors can maintain their swimming behavior over long periods of time in the harsh acidic environment of the stomach, thus enabling them to be applied for gastrointestinal (GI) delivery applications. The biomotors can also be functionalized with a wide range of cargos, ranging from small molecules to nanoparticles, without compromising their ability to self-propel under extreme conditions. Successful GI delivery of model payloads after oral administration of the acidophilic algae motors is confirmed using a murine model. By tuning the surface properties of cargos, it is possible to modulate their precise GI localization. Overall, our findings indicate that multifunctional acidophilic algae-based biomotors offer distinct advantages compared to traditional biohybrid platforms and hold great potential for GI-related biomedical applications.
Collapse
|