1
|
Zhou B, Min B, Liu W, Li Y, Zhu F, Huang J, Fang J, Chen Q, Wu D. Construction of a five-gene-based prognostic model for relapsed/refractory acute lymphoblastic leukemia. Hematology 2024; 29:2412952. [PMID: 39453390 DOI: 10.1080/16078454.2024.2412952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Relapsed/refractory acute lymphoblastic leukemia (R/R ALL) continues to be a major cause of mortality in children worldwide, with around 15% of ALL patients experiencing relapse and approximately 10% eventually dying from the disease. Early identification of R/R ALL in children has posed a longstanding clinical challenge. METHOD Genetic analysis of survival outcomes in pediatric patients with ALL from the TARGET-ALL dataset revealed five risk score factors identified through the intersection of differential genes (relapse/non-relapse) from the GSE17703 and GSE6092 databases. A risk score equation was formulated using these factors and validated against prognostic data from 46 ALL cases at our institution. Patients from multiple datasets were stratified into high and low-score groups based on this equation. Protein-protein interaction networks (PPI) were then constructed using the intersecting differential genes from all three datasets to identify hub nodes and predict interacting transcription factors. Additionally, genes related to cell pyroptosis with varying expression across these datasets were screened, and a multifactorial ROC curve (incorporating risk score and differential expression of pyroptosis-related genes) was generated. Furthermore, relationships among variables in the predictive model were depicted using a nomogram, and model efficacy was assessed through decision curve analysis (DCA). RESULTS By analyzing the TARGET-ALL, GSE17703, and GSE6092 databases, we developed a prognostic risk assessment model for pediatric ALL incorporating BAG2, EPHA4, FBXO9, SNX10, and WNK1. Validation of this model was conducted using data from 46 pediatric ALL cases obtained from our institution. Following the identification of 27 differentially expressed genes, we constructed a PPI and identified the top 10 hub genes (PTPRC, BTK, LCK, PRKCQ, CD3D, CD27, CD3G, BLNK, RASGRP1, VPREB1). Using this network, we predicted the top 5 transcription factors (HOXB4, MYC, SOX2, E2F1, NANOG). ROC and DCA were conducted on pyroptosis-related genes exhibiting differential expression and risk scores. Subsequently, a nomogram was generated, demonstrating the effectiveness of the risk score in predicting prognosis for pediatric ALL patients. CONCLUSIONS We have developed a risk prediction model for pediatric R/R ALL utilizing the genes BAG2, EPHA4, FBXO9, SNX10, and WNK1. This model provides a scientific foundation for early identification of R/R ALL in children.
Collapse
Affiliation(s)
- Bi Zhou
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou City, People's Republic of China
| | - BoJie Min
- Department of Pediatrics, the First Affiliated Hospital of AnHui Medical University, Hefei City, People's Republic of China
| | - WenYuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of AnHui Medical University, Hefei City, People's Republic of China
| | - Ying Li
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou City, People's Republic of China
| | - Feng Zhu
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou City, People's Republic of China
| | - Jin Huang
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou City, People's Republic of China
| | - Jing Fang
- Graduate School, Bengbu Medical College, Bengbu City, People's Republic of China
| | - Qin Chen
- Department of Nursing, Suzhou Hospital of AnHui Medical University, Suzhou City, People's Republic of China
| | - De Wu
- Department of Pediatrics, the First Affiliated Hospital of AnHui Medical University, Hefei City, People's Republic of China
| |
Collapse
|
2
|
Zhang X, Liu Y, Yang R, Guo Y, Yan M, Xiao Y, Dong Y, Zhang R, Qin Y, Bu Y, Zhang Y, Gao H. Phosphorylation of RasGRP1 by Shc3 prevents RasGRP1 degradation and contributes to Ras/c-Jun activation in hepatocellular carcinoma. Mol Cell Biochem 2024; 479:2307-2321. [PMID: 37646951 DOI: 10.1007/s11010-023-04839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Ras guanine nucleotide-releasing protein 1 (RasGRP1), a Ras activator, is upregulated in hepatocellular carcinoma (HCC) and other kinds of cancer and is associated with the poor prognosis of patients. However, little is known about the underlying regulatory mechanisms of RasGRP1 in the context of cancer. Here, we report that RasGRP1 physically interacted with the adaptor protein Src homolog and collagen homolog 3 (Shc3). Moreover, RasGRP1 C-terminus domain (aa 607-797) bound to the central collagen-homology 1 (CH1) domain of Shc3. Subsequently, Shc3 enhanced the RasGRP1 tyrosine phosphorylation rate and stability by inhibiting its ubiquitination. Notably, the phosphorylation-mimicking mutants of RasGRP1, RasGRP1 Y704A, and Y748A, rescued the phosphorylation and ubiquitination levels of RasGRP1 in HCC cells. Further investigation showed that the RasGRP1 and Shc3 interaction induced activation of Ras and c-Jun, resulting in cell proliferation in vitro. Moreover, the regulation of Shc3/RasGRP1/Ras/c-Jun signal transduction was confirmed in vivo using the subcutaneous xenograft mouse model. Thus, we propose that continuous Shc3 overexpression may be a possible mechanism for maintaining RasGRP1 stability and that persistent activation of Ras/c-Jun signaling through the interaction of RasGRP1 and Shc3 is a key event increasing cell proliferation. Our findings suggest that the interaction of RasGRP1 and Shc3 plays an important role in HCC tumorigenesis and suggests the potential clinical usage of novel biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yun Liu
- Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Rui Yang
- Department of Critical Care Medicine, Tianjin First Central Hospital, Tianjin Institute of Emergency Medicine, Tianjin, 300192, China
| | - Yuanyuan Guo
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Meiling Yan
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Ying Xiao
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yunzhuo Dong
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Ruixia Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yinpeng Qin
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yishan Bu
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yi Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Huier Gao
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China.
| |
Collapse
|
3
|
Xiao L, Qiao J, Huang Y, Tan B, Hong L, Li Z, Cai G, Wu Z, Zheng E, Wang S, Gu T. RASGRP1 targeted by H3K27me3 regulates myoblast proliferation and differentiation in mice and pigs. Acta Biochim Biophys Sin (Shanghai) 2024; 56:452-461. [PMID: 38419500 PMCID: PMC10984873 DOI: 10.3724/abbs.2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 03/02/2024] Open
Abstract
Skeletal muscle is not only the largest organ in the body that is responsible for locomotion and exercise but also crucial for maintaining the body's energy metabolism and endocrine secretion. The trimethylation of histone H3 lysine 27 (H3K27me3) is one of the most important histone modifications that participates in muscle development regulation by repressing the transcription of genes. Previous studies indicate that the RASGRP1 gene is regulated by H3K27me3 in embryonic muscle development in pigs, but its function and regulatory role in myogenesis are still unclear. In this study, we verify the crucial role of H3K27me3 in RASGRP1 regulation. The gain/loss function of RASGRP1 in myogenesis regulation is performed using mouse myoblast C2C12 cells and primarily isolated porcine skeletal muscle satellite cells (PSCs). The results of qPCR, western blot analysis, EdU staining, CCK-8 assay and immunofluorescence staining show that overexpression of RASGRP1 promotes cell proliferation and differentiation in both skeletal muscle cell models, while knockdown of RASGRP1 leads to the opposite results. These findings indicate that RASGRP1 plays an important regulatory role in myogenesis in both mice and pigs.
Collapse
Affiliation(s)
- Liyao Xiao
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Jiaxin Qiao
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Yiyang Huang
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Baohua Tan
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesGuangzhou510000China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and TechnologyGuangzhou510000China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular BreedingGuangzhou510000China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- Guangdong Wens Breeding Swine Technology Co.Ltd.Yunfu527400China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesGuangzhou510000China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and TechnologyGuangzhou510000China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular BreedingGuangzhou510000China
- Guangdong Wens Breeding Swine Technology Co.Ltd.Yunfu527400China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Shanshan Wang
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- College of Life ScienceHubei UniversityWuhan430000China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| |
Collapse
|
4
|
He M, Zhang H, Zhang Y, Ding Y, Zhang F, Kang Y. Systematic Analysis to Identify the MIR99AHG-has-miR-21-5p- EHD1 CeRNA Regulatory Network as Potential Biomarkers in Lung Cancer. J Cancer 2024; 15:2391-2402. [PMID: 38495494 PMCID: PMC10937275 DOI: 10.7150/jca.93343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Lung cancer (LC) remains an extremely lethal disease worldwide, and effective prognostic biomarkers are at top priority. With the rapid development of high-throughput sequencing and bioinformatic analysis methods, the quest to characterize cancer transcriptomes continues to move forward. However, the integrated systematic analysis of lncRNA-miRNA-mRNA regulatory network in LC is lacking. In this study, we collected samples of cancer tissues and adjacent normal tissues from patients with lung cancer and conducted transcriptome and small RNA sequencing to identify differentially expressed genes (DEGs), miRNAs (DEMs), and lncRNAs (DELs). The regulatory roles of miRNAs in LC were explained by functional analysis on DEM-targeted genes. The lncRNA-miRNA pairs, miRNA-mRNA pairs, and lncRNA-mRNA pairs were identified and combined to construct the interplay of lncRNA-miRNA-mRNA. We evaluated the prognostic value of selected lncRNA-miRNA-mRNA by Kaplan-Meier analysis. Finally, we analyzed the expression levels of selected DEM, DELs, and DEGs in lung cancer patients and healthy people to verify our findings. A total of 1492 DEGs, 12 DEMs, and 604 DELs were identified in LC patients. Based on the bioinformatic analysis and the regulatory mechanism of ceRNAs, 3 lncRNAs (GATA2-AS1, LINC00632, MIR99AHG), 1 miRNA (hsa-miR-21-5p) and 5 targeted genes (RECK, TIMP3, EHD1, RASGRP1 and ERG) were figured out first. Through further Kaplan-Meier analysis screening the prognostic value, we finally found the hub subnetwork (MIR99AHG-hsa-miR-21-5p-EHD1) by collating lncRNA-miRNA pairs, miRNA-mRNA pairs and lncRNA-mRNA pairs. As the key of ceRNA regulatory network, the expression of miRNA-21-5p in lung cancer patients was significantly higher than that in healthy people (P < 0.01), and its high expression was significantly associated with poor prognosis (P = 0.0025). Our study successfully constructed a MIR99AHG-hsa-miR-21-5p-EHD1 mutually regulatory network, suggesting the potential efficient biomarkers in LC.
Collapse
Affiliation(s)
- Mengju He
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Zhang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,200030, China
| | - Yanfei Zhang
- Shanghai Starriver Bilingual School, Shanghai, 201108, China
| | - Yicen Ding
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Fan S, Kang B, Li S, Li W, Chen C, Chen J, Deng L, Chen D, Zhou J. Exploring the multifaceted role of RASGRP1 in disease: immune, neural, metabolic, and oncogenic perspectives. Cell Cycle 2024; 23:722-746. [PMID: 38865342 PMCID: PMC11229727 DOI: 10.1080/15384101.2024.2366009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/25/2023] [Indexed: 06/14/2024] Open
Abstract
RAS guanyl releasing protein 1 (RASGRP1) is a guanine nucleotide exchange factor (GEF) characterized by the presence of a RAS superfamily GEF domain. It functions as a diacylglycerol (DAG)-regulated nucleotide exchange factor, specifically activating RAS through the exchange of bound GDP for GTP. Activation of RAS by RASGRP1 has a wide range of downstream effects at the cellular level. Thus, it is not surprising that many diseases are associated with RASGRP1 disorders. Here, we present an overview of the structure and function of RASGRP1, its crucial role in the development, expression, and regulation of immune cells, and its involvement in various signaling pathways. This review comprehensively explores the relationship between RASGRP1 and various diseases, elucidates the underlying molecular mechanisms of RASGRP1 in each disease, and identifies potential therapeutic targets. This study provides novel insights into the role of RASGRP1 in insulin secretion and highlights its potential as a therapeutic target for diabetes. The limitations and challenges associated with studying RASGRP1 in disease are also discussed.
Collapse
Affiliation(s)
- Shangzhi Fan
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaoqian Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiyi Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Canyu Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jixiang Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijing Deng
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danjun Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiecan Zhou
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Martin-Salgado M, Ochoa-Echeverría A, Mérida I. Diacylglycerol kinases: A look into the future of immunotherapy. Adv Biol Regul 2024; 91:100999. [PMID: 37949728 DOI: 10.1016/j.jbior.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.
Collapse
Affiliation(s)
- Miguel Martin-Salgado
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Isabel Mérida
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain.
| |
Collapse
|
7
|
Melnick AF, Mullin C, Lin K, McCarter AC, Liang S, Liu YE, Wang Q, Jerome NA, Choe E, Kunnath N, Bodanapu G, Akter F, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. Blood 2023; 142:2159-2174. [PMID: 37616559 PMCID: PMC10733839 DOI: 10.1182/blood.2023020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL), but pan-Notch inhibitors showed excessive toxicity in clinical trials. To find alternative ways to target Notch signals, we investigated cell division cycle 73 (Cdc73), which is a Notch cofactor and key component of the RNA polymerase-associated transcriptional machinery, an emerging target in T-ALL. Although we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, chromatin and nascent gene expression profiling showed that Cdc73 intersects with Ets1 and Notch at chromatin within enhancers to activate expression of known T-ALL oncogenes through its enhancer functions. Cdc73 also intersects with these factors within promoters to activate transcription of genes that are important for DNA repair and oxidative phosphorylation through its gene body functions. Consistently, Cdc73 deletion induced DNA damage and apoptosis and impaired mitochondrial function. The CDC73-induced DNA repair expression program co-opted by NOTCH1 is more highly expressed in T-ALL than in any other cancer. These data suggest that Cdc73 might induce a gene expression program that was eventually intersected and hijacked by oncogenic Notch to augment proliferation and mitigate the genotoxic and metabolic stresses of elevated Notch signaling. Our report supports studying factors such as CDC73 that intersect with Notch to derive a basic scientific understanding on how to combat Notch-dependent cancers without directly targeting the Notch complex.
Collapse
Affiliation(s)
- Ashley F. Melnick
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Carea Mullin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Karena Lin
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Anna C. McCarter
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Shannon Liang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Yiran E. Liu
- Cancer Biology Program, Stanford University, Stanford, CA
| | - Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Nicole A. Jerome
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Elizabeth Choe
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Nicholas Kunnath
- Center for Healthcare Outcomes and Policy, University of Michigan School of Medicine, Ann Arbor, MI
| | - Geethika Bodanapu
- School of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Fatema Akter
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Surinder Kumar
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - David B. Lombard
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - Andrew G. Muntean
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mats Ljungman
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Radiology Oncology, University of Michigan School of Medicine, Ann Arbor, MI
| | - JoAnn Sekiguchi
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI
| | - Russell J. H. Ryan
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mark Y. Chiang
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
8
|
Karra L, Finger AM, Shechtman L, Krush M, Huang RMY, Prinz M, Tennvooren I, Bahl K, Hysienaj L, Gonzalez PG, Combes AJ, Gonzalez H, Argüello RJ, Spitzer MH, Roose JP. Single cell proteomics characterization of bone marrow hematopoiesis with distinct Ras pathway lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572584. [PMID: 38187679 PMCID: PMC10769276 DOI: 10.1101/2023.12.20.572584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Normal hematopoiesis requires constant prolific production of different blood cell lineages by multipotent hematopoietic stem cells (HSC). Stem- and progenitor- cells need to balance dormancy with proliferation. How genetic alterations impact frequency, lineage potential, and metabolism of HSC is largely unknown. Here, we compared induced expression of KRAS G12D or RasGRP1 to normal hematopoiesis. At low-resolution, both Ras pathway lesions result in skewing towards myeloid lineages. Single-cell resolution CyTOF proteomics unmasked an expansion of HSC- and progenitor- compartments for RasGRP1, contrasted by a depletion for KRAS G12D . SCENITH™ quantitates protein synthesis with single-cell precision and corroborated that immature cells display low metabolic SCENITH™ rates. Both RasGRP1 and KRAS G12D elevated mean SCENITH™ signals in immature cells. However, RasGRP1-overexpressing stem cells retain a metabolically quiescent cell-fraction, whereas this fraction diminishes for KRAS G12D . Our temporal single cell proteomics and metabolomics datasets provide a resource of mechanistic insights into altered hematopoiesis at single cell resolution.
Collapse
|
9
|
Zhu D, Jiang T, Ma D, Zhang H, Zhang J, Lv W, Gong M, Wang H, Liu Z, Su H, Zeng L, Liu S, Tang S, Yang B, Tshavuka FI, Fu G, Liu Z, Peng D, Liu H, Yan Z, Cao Z, Zhao H, He TC, Yu J, Shu Y, Zou L. S1P-S1PR3-RAS promotes the progression of S1PR3 hi TAL1 + T-cell acute lymphoblastic leukemia that can be effectively inhibited by an S1PR3 antagonist. Leukemia 2023; 37:1982-1993. [PMID: 37591940 DOI: 10.1038/s41375-023-02000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
TAL1+ T-cell acute lymphoblastic leukemia (T-ALL) is a distinct subtype of leukemia with poor outcomes. Through the cooperation of co-activators, including RUNX1, GATA3, and MYB, the TAL1 oncoprotein extends the immature thymocytes with autonomy and plays an important role in the development of T-ALL. However, this process is not yet well understood. Here, by investigating the transcriptome and prognosis of T-ALL from multiple cohorts, we found that S1PR3 was highly expressed in a subset of TAL1+ T-ALL (S1PR3hi TAL1+ T-ALL), which showed poor outcomes. Through pharmacological and genetic methods, we identified a specific survival-supporting role of S1P-S1PR3 in TAL1+ T-ALL cells. In T-ALL cells, TAL1-RUNX1 up-regulated the expression of S1PR3 by binding to the enhancer region of S1PR3 gene. With hyperactivated S1P-S1PR3, T-ALL cells grew rapidly, partly by activating the KRAS signal. Finally, we assessed S1PR3 inhibitor TY-52156 in T-ALL patient-derived xenografts (PDXs) mouse model. We found that TY-52156 attenuated leukemia progression efficiently and extended the lifespan of S1PR3hi TAL1+ T-ALL xenografts. Our findings demonstrate that S1PR3 plays an important oncogenic role in S1PR3hi TAL1+ T-ALL and may serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Dan Zhu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Jiang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Deyu Ma
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyang Zhang
- Clinical Research Unit of Children's Hospital, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Zhang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqiong Lv
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Maoyuan Gong
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haobiao Wang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyang Liu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyu Su
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lamei Zeng
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Liu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shi Tang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bijie Yang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Filippus I Tshavuka
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guo Fu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zidai Liu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Danyi Peng
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyan Liu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Hematology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Yan
- Clinical Research Unit of Children's Hospital, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Cao
- Clinical Research Unit of Children's Hospital, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jie Yu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China.
- Division of Hematology, The Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yi Shu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Lin Zou
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, The Children's Hospital of Chongqing Medical University, Chongqing, China.
- Clinical Research Unit of Children's Hospital, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Mao Y, Ge H, Chen W, Wang Y, Liu H, Li Z, Bai Y, Wang D, Yu Y, Zhen Q, Li B, Sun L. RasGRP1 influences imiquimod-induced psoriatic inflammation via T-cell activation in mice. Int Immunopharmacol 2023; 122:110590. [PMID: 37429143 DOI: 10.1016/j.intimp.2023.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
The vascular endothelial growth factor (VEGF) signal transduction pathway has been shown to be a potential target for the treatment of psoriasis. Ras guanyl-releasing protein 1 (RasGRP1), a downstream target gene of VEGF, regulates the development, homeostasis, and differentiation of T cells, but the contribution of RasGRP1 to psoriasis is limited. In this manuscript, we aimed to investigate the role of RasGRP1 in psoriasis. The RNA-Seq transcriptome sequencing data from the mouse model of psoriasis treated with IMQ (imiquimod) were analyzed. The effect of RasGRP1 was investigated through in vivo injection of activators or small molecular inhibitors, as well as adeno-associated virus injections. Gene knockout and NB-UVB (narrow-band ultraviolet B) treatments were utilized to interfere with the psoriatic mouse model. By transfection of lentivirus in vitro, the effect of RasGRP1 gene function on the secretion of psoriasis-related cytokines by T cells was confirmed. We showed that cutaneous VEGF and RasGRP1 were strongly activated in human psoriatic lesions and the skin of mice with IMQ-induced psoriasis. RasGRP1 deficiency and overexpression influence IMQ-induced psoriasis-like manifestations and skin inflammation in mice. VEGF, secreted mainly by epidermal cells, mediates psoriatic inflammation through the RasGRP1-AKT-NF-κB pathway. RasGRP1 is required for psoriasis development mediated by VEGF. These results confirmed the role of RasGRP1 in the pathogenesis of psoriasis and provided potential targets for clinical psoriasis treatment.
Collapse
Affiliation(s)
- Yiwen Mao
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - YiRui Wang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Hao Liu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zhuo Li
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yuanming Bai
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Daiyue Wang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yafen Yu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qi Zhen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Bao Li
- Integrated Laboratory, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liangdan Sun
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Health Science Center, North China University of Science and Technology, Tangshan 063210, China; North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, China; School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
11
|
Melnick A, Liang S, Liu Y, Wang Q, Dean N, Choe E, Kunnath N, Bodanapu G, Mullin C, Akter F, Lin K, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525059. [PMID: 36711472 PMCID: PMC9882378 DOI: 10.1101/2023.01.22.525059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL) but pan-Notch inhibitors were toxic in clinical trials. To find alternative ways to target Notch signals, we investigated Cell division cycle 73 (Cdc73), which is a Notch cofactor and component of transcriptional machinery, a potential target in T-ALL. While we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the lymphoid transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, Cdc73, Ets1, and Notch intersect chromatin at promoters and enhancers to activate oncogenes and genes that are important for DNA repair and oxidative phosphorylation. Consistently, Cdc73 deletion in T-ALL cells induced DNA damage and impaired mitochondrial function. Our data suggests that Cdc73 might promote a gene expression program that was eventually intersected by Notch to mitigate the genotoxic and metabolic stresses of elevated Notch signaling. We also provide mechanistic support for testing inhibitors of DNA repair, oxidative phosphorylation, and transcriptional machinery. Inhibiting pathways like Cdc73 that intersect with Notch at chromatin might constitute a strategy to weaken Notch signals without directly targeting the Notch complex.
Collapse
|
12
|
A Focused Review of Ras Guanine Nucleotide-Releasing Protein 1 in Immune Cells and Cancer. Int J Mol Sci 2023; 24:ijms24021652. [PMID: 36675167 PMCID: PMC9864139 DOI: 10.3390/ijms24021652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.
Collapse
|
13
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients. Biomolecules 2022; 12:biom12020328. [PMID: 35204828 PMCID: PMC8869509 DOI: 10.3390/biom12020328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia (SCZ) is a polygenic severe mental illness. Genome-wide association studies (GWAS) have detected genomic variants associated with this psychiatric disorder and pathway analyses have indicated immune system and dopamine signaling as core components of risk in dorsolateral-prefrontal cortex (DLPFC) and hippocampus, but the mechanistic links remain unknown. The RasGRP1 gene, encoding for a guanine nucleotide exchange factor, is implicated in dopamine signaling and immune response. RasGRP1 has been identified as a candidate risk gene for SCZ and autoimmune disease, therefore representing a possible point of convergence between mechanisms involving the nervous and the immune system. Here, we investigated RasGRP1 mRNA and protein expression in post-mortem DLPFC and hippocampus of SCZ patients and healthy controls, along with RasGRP1 protein content in the serum of an independent cohort of SCZ patients and control subjects. Differences in RasGRP1 expression between SCZ patients and controls were detected both in DLPFC and peripheral blood of samples analyzed. Our results indicate RasGRP1 may mediate risk for SCZ by involving DLPFC and peripheral blood, thus encouraging further studies to explore its possible role as a biomarker of the disease and/or a target for new medication.
Collapse
|
15
|
Karra L, Roose JP. Investigating increased hematopoietic stem cell fitness in a novel mouse model. Small GTPases 2022; 13:7-13. [PMID: 33517841 PMCID: PMC9707538 DOI: 10.1080/21541248.2021.1882832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a bone marrow (BM) malignancy affecting children and adults. Typically treated with chemotherapy, leukaemia remains a major death cause in people under 20 years old. Understanding molecularly altered pathways in T-ALL may lead to new therapeutic avenues in the future. Ras pathway dysregulation is common in T-ALL. We have shown elevated expression levels of the Ras guanine nucleotide exchange factor RasGRP1 in T-ALL patients, which results in constant production of active Ras (RasGTP). When leukaemia cell lines are exposed to cytokines, RasGTP levels further increase in a RasGRP1-dependent manner. How overexpressed RasGRP1 may impact primary BM cells has remained unknown. We recently published a new RoLoRiG mouse model that allows for pIpC-induced overexpression of RasGRP1 in haematopoietic cells, which can be traced with an ires-EGFP cassette. This novel model revealed that RasGRP1 overexpression bestows a fitness advantage to haematopoietic stem cells (HSCs) over wild-type cells. Intriguingly, this increased fitness only manifests in native Hematopoiesis, and not in BM transplantation (BMT) assays. In this commentary, we summarize key features of our RoLoRiG model, elaborate on BM niche importance, and discuss differences between native Hematopoiesis and BMT in the context of stem cell metabolism.
Collapse
Affiliation(s)
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CaliforniaUSA,CONTACT Jeroen P. Roose Department of Anatomy, University of California San Francisco (UCSF) 513 Parnassus Avenue, Room HSW-1326, San Francisco, California94143-0452, USA
| |
Collapse
|
16
|
Regulation of the Small GTPase Ras and Its Relevance to Human Disease. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:19-43. [PMID: 33977469 DOI: 10.1007/978-1-0716-1190-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ras research has experienced a considerable boost in recent years, not least prompted by the Ras initiative launched by the NCI in 2013 ( https://www.cancer.gov/research/key-initiatives/ras ), accompanied and conditioned by a strongly reinvigorated determination within the Ras community to develop therapeutics attacking directly the Ras oncoproteins. As a member of the small G-protein superfamily, function and transforming activity of Ras all revolve about its GDP/GTP loading status. For one thing, the extent of GTP loading will determine the proportion of active Ras in the cell, with implications for intensity and quality of downstream signaling. But also the rate of nucleotide exchange, i.e., the Ras-GDP/GTP cycling rate, can have a major impact on Ras function, as illustrated perhaps most impressively by newly discovered fast-cycling oncogenic mutants of the Ras-related GTPase Rac1. Thus, while the last years have witnessed memorable new findings and technical developments in the Ras field, leading to an improved insight into many aspects of Ras biology, they have not jolted at the basics, but rather deepened our view of the fundamental regulatory principles of Ras activity control. In this brief review, we revisit the role and mechanisms of Ras nucleotide loading and its implications for cancer in the light of recent findings.
Collapse
|
17
|
Bednarz-Misa I, Bromke MA, Krzystek-Korpacka M. Interleukin (IL)-7 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:9-49. [PMID: 33559853 DOI: 10.1007/978-3-030-55617-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-7 plays an important immunoregulatory role in different types of cells. Therefore, it attracts researcher's attention, but despite the fact, many aspects of its modulatory action, as well as other functionalities, are still poorly understood. The review summarizes current knowledge on the interleukin-7 and its signaling cascade in context of cancer development. Moreover, it provides a cancer-type focused description of the involvement of IL-7 in solid tumors, as well as hematological malignancies.The interleukin has been discovered as a growth factor crucial for the early lymphocyte development and supporting the growth of malignant cells in certain leukemias and lymphomas. Therefore, its targeting has been explored as a treatment modality in hematological malignancies, while the unique ability to expand lymphocyte populations selectively and without hyperinflammation has been used in experimental immunotherapies in patients with lymphopenia. Ever since the early research demonstrated a reduced growth of solid tumors in the presence of IL-7, the interleukin application in boosting up the anticancer immunity has been investigated. However, a growing body of evidence indicative of IL-7 upregulation in carcinomas, facilitating tumor growth and metastasis and aiding drug-resistance, is accumulating. It therefore becomes increasingly apparent that the response to the IL-7 stimulus strongly depends on cell type, their developmental stage, and microenvironmental context. The interleukin exerts its regulatory action mainly through phosphorylation events in JAK/STAT and PI3K/Akt pathways, while the significance of MAPK pathway seems to be limited to solid tumors. Given the unwavering interest in IL-7 application in immunotherapy, a better understanding of interleukin role, source in tumor microenvironment, and signaling pathways, as well as the identification of cells that are likely to respond should be a research priority.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
18
|
Baars MJ, Douma T, Simeonov DR, Myers DR, Kulhanek K, Banerjee S, Zwakenberg S, Baltissen MP, Amini M, de Roock S, van Wijk F, Vermeulen M, Marson A, Roose JP, Vercoulen Y. Dysregulated RASGRP1 expression through RUNX1 mediated transcription promotes autoimmunity. Eur J Immunol 2021; 51:471-482. [PMID: 33065764 PMCID: PMC7894479 DOI: 10.1002/eji.201948451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
RasGRP1 is a Ras guanine nucleotide exchange factor, and an essential regulator of lymphocyte receptor signaling. In mice, Rasgrp1 deletion results in defective T lymphocyte development. RASGRP1-deficient patients suffer from immune deficiency, and the RASGRP1 gene has been linked to autoimmunity. However, how RasGRP1 levels are regulated, and if RasGRP1 dosage alterations contribute to autoimmunity remains unknown. We demonstrate that diminished Rasgrp1 expression caused defective T lymphocyte selection in C57BL/6 mice, and that the severity of inflammatory disease inversely correlates with Rasgrp1 expression levels. In patients with autoimmunity, active inflammation correlated with decreased RASGRP1 levels in CD4+ T cells. By analyzing H3K27 acetylation profiles in human T cells, we identified a RASGRP1 enhancer that harbors autoimmunity-associated SNPs. CRISPR-Cas9 disruption of this enhancer caused lower RasGRP1 expression, and decreased binding of RUNX1 and CBFB transcription factors. Analyzing patients with autoimmunity, we detected reduced RUNX1 expression in CD4+ T cells. Lastly, we mechanistically link RUNX1 to transcriptional regulation of RASGRP1 to reveal a key circuit regulating RasGRP1 expression, which is vital to prevent inflammatory disease.
Collapse
Affiliation(s)
- Matthijs J.D. Baars
- Molecular Cancer Research, Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Thera Douma
- Center of Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Dimitre R. Simeonov
- Diabetes CenterUniversity of California San FranciscoSan FranciscoCAUSA
- Biomedical Sciences Graduate ProgramUniversity of California San FranciscoSan FranciscoCAUSA
| | - Darienne R. Myers
- Biomedical Sciences Graduate ProgramUniversity of California San FranciscoSan FranciscoCAUSA
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Kayla Kulhanek
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Saikat Banerjee
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Susan Zwakenberg
- Molecular Cancer Research, Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Marijke P. Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode InstituteRadboud University NijmegenNijmegenThe Netherlands
| | - Mojtaba Amini
- Molecular Cancer Research, Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sytze de Roock
- Pediatric Immunology and Rheumatology, Wilhelmina Children's HospitalUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Femke van Wijk
- Center of Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Pediatric Immunology and Rheumatology, Wilhelmina Children's HospitalUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode InstituteRadboud University NijmegenNijmegenThe Netherlands
| | - Alexander Marson
- Diabetes CenterUniversity of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
- Department of Microbiology and ImmunologyUniversity of CaliforniaSan FranciscoCAUSA
| | - Jeroen P. Roose
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Yvonne Vercoulen
- Molecular Cancer Research, Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
19
|
Nras Q61R/+ and Kras-/- cooperate to downregulate Rasgrp1 and promote lympho-myeloid leukemia in early T-cell precursors. Blood 2021; 137:3259-3271. [PMID: 33512434 PMCID: PMC8351901 DOI: 10.1182/blood.2020009082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Kras−/−; NrasQ61R/+ mice develop early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. We identify Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of T-cell ALL. Although genetic mutations hyperactivating cytokine receptor/Ras signaling are prevalent in ETP-ALL, it remains unknown how activated Ras signaling contributes to ETP-ALL. Here, we find that in addition to the frequent oncogenic RAS mutations, wild-type (WT) KRAS transcript level was significantly downregulated in human ETP-ALL cells. Similarly, loss of WT Kras in NrasQ61R/+ mice promoted hyperactivation of extracellular signal-regulated kinase (ERK) signaling, thymocyte hyperproliferation, and expansion of the ETP compartment. Kras−/−; NrasQ61R/+ mice developed early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. Mechanistically, RNA-sequencing analysis and quantitative proteomics study identified that Rasgrp1, a Ras guanine nucleotide exchange factor, was greatly downregulated in mouse and human ETP-ALL. Unexpectedly, hyperactivated Nras/ERK signaling suppressed Rasgrp1 expression and reduced Rasgrp1 level led to increased ERK signaling, thereby establishing a positive feedback loop to augment Nras/ERK signaling and promote cell proliferation. Corroborating our cell line data, Rasgrp1 haploinsufficiency induced Rasgrp1 downregulation and increased phosphorylated ERK level and ETP expansion in NrasQ61R/+ mice. Our study identifies Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Collapse
|
20
|
Increased baseline RASGRP1 signals enhance stem cell fitness during native hematopoiesis. Oncogene 2020; 39:6920-6934. [PMID: 32989257 PMCID: PMC7655557 DOI: 10.1038/s41388-020-01469-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in RAS genes, like KRASG12D or NRASG12D, trap Ras in the active state and cause myeloproliferative disorder and T cell leukemia (T-ALL) when induced in the bone marrow via Mx1CRE. The RAS exchange factor RASGRP1 is frequently overexpressed in T-ALL patients. In T-ALL cell lines overexpression of RASGRP1 increases flux through the RASGTP/RasGDP cycle. Here we expanded RASGRP1 expression surveys in pediatric T-ALL and generated a RoLoRiG mouse model crossed to Mx1CRE to determine the consequences of induced RASGRP1 overexpression in primary hematopoietic cells. RASGRP1-overexpressing, GFP-positive cells outcompeted wild type cells and dominated the peripheral blood compartment over time. RASGRP1 overexpression bestows gain-of-function colony formation properties to bone marrow progenitors in medium containing limited growth factors. RASGRP1 overexpression enhances baseline mTOR-S6 signaling in the bone marrow, but not in vitro cytokine-induced signals. In agreement with these mechanistic findings, hRASGRP1-ires-EGFP enhances fitness of stem- and progenitor- cells, but only in the context of native hematopoiesis. RASGRP1 overexpression is distinct from KRASG12D or NRASG12D, does not cause acute leukemia on its own, and leukemia virus insertion frequencies predict that RASGRP1 overexpression can effectively cooperate with lesions in many other genes to cause acute T cell leukemia.
Collapse
|
21
|
Eshraghi M, Ramírez-Jarquín UN, Shahani N, Nuzzo T, De Rosa A, Swarnkar S, Galli N, Rivera O, Tsaprailis G, Scharager-Tapia C, Crynen G, Li Q, Thiolat ML, Bezard E, Usiello A, Subramaniam S. RasGRP1 is a causal factor in the development of l-DOPA-induced dyskinesia in Parkinson's disease. SCIENCE ADVANCES 2020; 6:eaaz7001. [PMID: 32426479 PMCID: PMC7195186 DOI: 10.1126/sciadv.aaz7001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/12/2020] [Indexed: 05/10/2023]
Abstract
The therapeutic effects of l-3,4-dihydroxyphenylalanine (l-DOPA) in patients with Parkinson's disease (PD) severely diminishes with the onset of abnormal involuntary movement, l-DOPA-induced dyskinesia (LID). However, the molecular mechanisms that promote LID remain unclear. Here, we demonstrated that RasGRP1 [(guanine nucleotide exchange factor (GEF)] controls the development of LID. l-DOPA treatment rapidly up-regulated RasGRP1 in the striatum of mouse and macaque model of PD. The lack of RasGRP1 in mice (RasGRP1-/- ) dramatically diminished LID without interfering with the therapeutic effects of l-DOPA. Besides acting as a GEF for Ras homolog enriched in the brain (Rheb), the activator of the mammalian target of rapamycin kinase (mTOR), RasGRP1 promotes l-DOPA-induced extracellular signal-regulated kinase (ERK) and the mTOR signaling in the striatum. High-resolution tandem mass spectrometry analysis revealed multiple RasGRP1 downstream targets linked to LID vulnerability. Collectively, the study demonstrated that RasGRP1 is a critical striatal regulator of LID.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
| | | | - Neelam Shahani
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
| | - Tommaso Nuzzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
- Laboratory of Behavioral Neuroscience, Ceinge Biotecnologie Avanzate, 80145 Naples, Italy
| | - Arianna De Rosa
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
- Laboratory of Behavioral Neuroscience, Ceinge Biotecnologie Avanzate, 80145 Naples, Italy
| | - Supriya Swarnkar
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
| | - Nicole Galli
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
| | - Oscar Rivera
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
| | - George Tsaprailis
- The Scripps Research Institute, Proteomics Core, Jupiter, FL 33458, USA
| | | | - Gogce Crynen
- The Scripps Research Institute, Center for Computational Biology and Bioinformatics, Jupiter, FL 33458, USA
| | - Qin Li
- Motac Neuroscience, UK-M15 6WE Manchester, UK
- Institute of Lab Animal Sciences China Academy of Medical Sciences, Beijing, China
| | - Marie-Laure Thiolat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Motac Neuroscience, UK-M15 6WE Manchester, UK
- Institute of Lab Animal Sciences China Academy of Medical Sciences, Beijing, China
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Alessandro Usiello
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
- Laboratory of Behavioral Neuroscience, Ceinge Biotecnologie Avanzate, 80145 Naples, Italy
- Corresponding author. (A.U.); (S.S.)
| | - Srinivasa Subramaniam
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
- Corresponding author. (A.U.); (S.S.)
| |
Collapse
|
22
|
Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev 2020; 291:134-153. [PMID: 31402496 DOI: 10.1111/imr.12796] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 12/27/2022]
Abstract
T cells play important roles in autoimmune diseases and cancer. Following the cloning of the T cell receptor (TCR), the race was on to map signaling proteins that contributed to T cell activation downstream of the TCR as well as co-stimulatory molecules such as CD28. We term this "canonical TCR signaling" here. More recently, it has been appreciated that T cells need to accommodate increased metabolic needs that stem from T cell activation in order to function properly. A central role herein has emerged for mechanistic/mammalian target of rapamycin (mTOR). In this review we briefly cover canonical TCR signaling to set the stage for discussion on mTOR signaling, mRNA translation, and metabolic adaptation in T cells. We also discuss the role of mTOR in follicular helper T cells, regulatory T cells, and other T cell subsets. Our lab recently uncovered that "tonic signals", which pass through proximal TCR signaling components, are robustly and selectively transduced to mTOR to promote baseline translation of various mRNA targets. We discuss insights on (tonic) mTOR signaling in the context of T cell function in autoimmune diseases such as lupus as well as in cancer immunotherapy through CAR-T cell or checkpoint blockade approaches.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Wheeler
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Paganelli F, Lonetti A, Anselmi L, Martelli AM, Evangelisti C, Chiarini F. New advances in targeting aberrant signaling pathways in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100649. [PMID: 31523031 DOI: 10.1016/j.jbior.2019.100649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disorder characterized by malignant transformation of immature progenitors primed towards T-cell development. Over the past 15 years, advances in the molecular characterization of T-ALL have uncovered oncogenic key drivers and crucial signaling pathways of this disease, opening new chances for the development of novel therapeutic strategies. Currently, T-ALL patients are still treated with aggressive therapies, consisting of high dose multiagent chemotherapy. To minimize and overcome the unfavorable effects of these regimens, it is critical to identify innovative targets and test selective inhibitors of such targets. Major efforts are being made to develop small molecules against deregulated signaling pathways, which sustain T-ALL cell growth, survival, metabolism, and drug-resistance. This review will focus on recent improvements in the understanding of the signaling pathways involved in the pathogenesis of T-ALL and on the challenging opportunities for T-ALL targeted therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Lonetti
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Laura Anselmi
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
24
|
Mues M, Karra L, Romero-Moya D, Wandler A, Hangauer MJ, Ksionda O, Thus Y, Lindenbergh M, Shannon K, McManus MT, Roose JP. High-Complexity shRNA Libraries and PI3 Kinase Inhibition in Cancer: High-Fidelity Synthetic Lethality Predictions. Cell Rep 2019; 27:631-647.e5. [PMID: 30970263 PMCID: PMC6690758 DOI: 10.1016/j.celrep.2019.03.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2018] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Deregulated signal transduction is a cancer hallmark, and its complexity and interconnectivity imply that combination therapy should be considered, but large data volumes that cover the complexity are required in user-friendly ways. Here, we present a searchable database resource of synthetic lethality with a PI3 kinase signal transduction inhibitor by performing a saturation screen with an ultra-complex shRNA library containing 30 independent shRNAs per gene target. We focus on Ras-PI3 kinase signaling with T cell leukemia as a screening platform for multiple clinical and experimental reasons. Our resource predicts multiple combination-based therapies with high fidelity, ten of which we confirmed with small molecule inhibitors. Included are biochemical assays, as well as the IPI145 (duvelisib) inhibitor. We uncover the mechanism of synergy between the PI3 kinase inhibitor GDC0941 (pictilisib) and the tubulin inhibitor vincristine and demonstrate broad synergy in 28 cell lines of 5 cancer types and efficacy in preclinical leukemia mouse trials.
Collapse
Affiliation(s)
- Marsilius Mues
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laila Karra
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Damia Romero-Moya
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anica Wandler
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew J Hangauer
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yvonne Thus
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marthe Lindenbergh
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin Shannon
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael T McManus
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Zhang X, Zhuang H, Han F, Shao X, Liu Y, Ma X, Wang Z, Qiang Z, Li Y. Sp1-regulated transcription of RasGRP1 promotes hepatocellular carcinoma (HCC) proliferation. Liver Int 2018; 38:2006-2017. [PMID: 29655291 DOI: 10.1111/liv.13757] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/30/2018] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS The role of Ras guanine nucleotide-releasing protein 1 (RasGRP1) in tumourigenesis has been a subject of debate, and its functions and clinical significance in hepatocellular carcinoma (HCC) remain unknown. Here, we evaluated the expression of RasGRP1 in HCC and determined how it contributes to HCC cell proliferation. METHODS RasGRP1 expression was measured by quantitative polymerase chain reaction (qPCR) and Western blotting of 24 paired HCC tissues and para-tumour tissues. RasGRP1 expression was confirmed by immunohistochemical analysis of a tissue microarray from 1 independent cohort. Overall survival (OS) and disease-free survival (DFS) were estimated using the Kaplan-Meier method, and risk factors that contributed to OS or DFS were identified using Cox regression analysis. The biologic relevance of RasGRP1 was examined by small interfering RNAs and an exogenous plasmid construct. Chromatin immunoprecipitation assays were performed to examine the binding of Sp1 to the RasGRP1 promoter. RESULTS Increased RasGRP1 expression was associated with tumour size (P = .004), tumour-node-metastasis stage (P = .032), and Barcelona Clinic Liver Cancer stage (P = .002). RasGRP1 overexpression was an independent prognostic factor in HCC patients. RasGRP1 downregulation inhibited cell proliferation, whereas RasGRP1 overexpression promoted cell proliferation. Moreover, specificity protein 1 bound to the RasGRP1 promoter and promoted RasGRP1 transcription. In addition, RasGRP1 overexpression enhanced activation of the c-Raf pathway. CONCLUSIONS RasGRP1 is upregulated in HCC and promotes HCC cell proliferation. Thus, RasGRP1 may be a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hao Zhuang
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaowen Shao
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yun Liu
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuda Ma
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zun Wang
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhaoyan Qiang
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yongmei Li
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Therapeutic Targeting of mTOR in T-Cell Acute Lymphoblastic Leukemia: An Update. Int J Mol Sci 2018; 19:ijms19071878. [PMID: 29949919 PMCID: PMC6073309 DOI: 10.3390/ijms19071878] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood malignancy that arises from the clonal expansion of transformed T-cell precursors. Although T-ALL prognosis has significantly improved due to the development of intensive chemotherapeutic protocols, primary drug-resistant and relapsed patients still display a dismal outcome. In addition, lifelong irreversible late effects from conventional therapy are a growing problem for leukemia survivors. Therefore, novel targeted therapies are required to improve the prognosis of high-risk patients. The mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct multiprotein complexes, which are referred to as mTOR complex 1 (mTORC1) and mTORC2. These two complexes regulate a variety of physiological cellular processes including protein, lipid, and nucleotide synthesis, as well as autophagy in response to external cues. However, mTOR activity is frequently deregulated in cancer, where it plays a key oncogenetic role driving tumor cell proliferation, survival, metabolic transformation, and metastatic potential. Promising preclinical studies using mTOR inhibitors have demonstrated efficacy in many human cancer types, including T-ALL. Here, we highlight our current knowledge of mTOR signaling and inhibitors in T-ALL, with an emphasis on emerging evidence of the superior efficacy of combinations consisting of mTOR inhibitors and either traditional or targeted therapeutics.
Collapse
|
27
|
Ksionda O, Mues M, Wandler AM, Donker L, Tenhagen M, Jun J, Ducker GS, Matlawska-Wasowska K, Shannon K, Shokat KM, Roose JP. Comprehensive analysis of T cell leukemia signals reveals heterogeneity in the PI3 kinase-Akt pathway and limitations of PI3 kinase inhibitors as monotherapy. PLoS One 2018; 13:e0193849. [PMID: 29799846 PMCID: PMC5969748 DOI: 10.1371/journal.pone.0193849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/19/2018] [Indexed: 11/22/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer. Poly-chemotherapy with cytotoxic and genotoxic drugs causes substantial toxicity and more specific therapies targeting the underlying molecular lesions are highly desired. Perturbed Ras signaling is prevalent in T-ALL and occurs via oncogenic RAS mutations or through overexpression of the Ras activator RasGRP1 in ~65% of T-ALL patients. Effective small molecule inhibitors for either target do not currently exist. Genetic and biochemical evidence link phosphoinositide 3-kinase (PI3K) signals to T-ALL, PI3Ks are activated by Ras-dependent and Ras-independent mechanisms, and potent PI3K inhibitors exist. Here we performed comprehensive analyses of PI3K-Akt signaling in T-ALL with a focus on class I PI3K. We developed a multiplex, multiparameter flow cytometry platform with pan- and isoform-specific PI3K inhibitors. We find that pan-PI3K and PI3K γ-specific inhibitors effectively block basal and cytokine-induced PI3K-Akt signals. Despite such inhibition, GDC0941 (pan-PI3K) or AS-605240 (PI3Kγ-specific) as single agents did not efficiently induce death in T-ALL cell lines. Combination of GDC0941 with AS-605240, maximally targeting all p110 isoforms, exhibited potent synergistic activity for clonal T-ALL lines in vitro, which motivated us to perform preclinical trials in mice. In contrast to clonal T-ALL lines, we used a T-ALL cancer model that recapitulates the multi-step pathogenesis and inter- and intra-tumoral genetic heterogeneity, a hallmark of advanced human cancers. We found that the combination of GDC0941 with AS-605240 fails in such trials. Our results reveal that PI3K inhibitors are a promising avenue for molecular therapy in T-ALL, but predict the requirement for methods that can resolve biochemical signals in heterogeneous cell populations so that combination therapy can be designed in a rational manner.
Collapse
Affiliation(s)
- Olga Ksionda
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Marsilius Mues
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Anica M Wandler
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Lisa Donker
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Milou Tenhagen
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Jesse Jun
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Gregory S Ducker
- Department of Molecular Pharmacology, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Ksenia Matlawska-Wasowska
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico, Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Kevin Shannon
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Kevan M Shokat
- Department of Molecular Pharmacology, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Jeroen P Roose
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
28
|
Vercoulen Y, Kondo Y, Iwig JS, Janssen AB, White KA, Amini M, Barber DL, Kuriyan J, Roose JP. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1. eLife 2017; 6:29002. [PMID: 28952923 PMCID: PMC5643099 DOI: 10.7554/elife.29002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.
Collapse
Affiliation(s)
- Yvonne Vercoulen
- Department of Anatomy, University of California, San Francisco, San Francisco, United States.,Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, Utrecht University, Utrecht, Netherlands
| | - Yasushi Kondo
- Department of Molecular and Cell Biology and Chemistry, University of California, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, United States
| | - Jeffrey S Iwig
- Department of Molecular and Cell Biology and Chemistry, University of California, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, United States
| | - Axel B Janssen
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Katharine A White
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Mojtaba Amini
- Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, Utrecht University, Utrecht, Netherlands
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology and Chemistry, University of California, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, United States.,Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
29
|
Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, Serafim TL, Barata JT. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal 2017. [PMID: 28645565 DOI: 10.1016/j.cellsig.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso R Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Teresa L Serafim
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
30
|
Andrada E, Liébana R, Merida I. Diacylglycerol Kinase ζ Limits Cytokine-dependent Expansion of CD8 + T Cells with Broad Antitumor Capacity. EBioMedicine 2017; 19:39-48. [PMID: 28438506 PMCID: PMC5440620 DOI: 10.1016/j.ebiom.2017.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/03/2017] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Interleukin-2 and -15 drive expansion/differentiation of cytotoxic CD8+ T cells that eliminate targets via antigen-independent killing. This property is clinically relevant for the improvement of T cell-based antitumor therapies. Diacylglycerol kinase α and ζ (DGKα/ζ) metabolize the diacylglycerol generated following antigen recognition by T lymphocytes. Enhanced expression of these two lipid kinases in tumor-infiltrating CD8+ T cells promotes a hyporesponsive state that contributes to tumor immune escape. Inhibition of these two enzymes might thus be of interest for potentiating conventional antigen-directed tumor elimination. In this study, we sought to characterize the contribution of DGKα and ζ to antigen-independent cytotoxic functions of CD8+ T cells. Analysis of DGKζ-deficient mice showed an increase in bystander memory-like CD8+ T cell populations not observed in DGKα-deficient mice. We demonstrate that DGKζ limits cytokine responses in an antigen-independent manner. Cytokine-specific expansion of DGKζ-deficient CD8+ T cells promoted enhanced differentiation of innate-like cytotoxic cells in vitro, and correlated with the more potent in vivo anti-tumor responses of DGKζ-deficient mice engrafted with the murine A20 lymphoma. Our studies reveal a isoform-specific function for DGKζ downstream of IL-2/IL-15-mediated expansion of innate-like cytotoxic T cells, Pharmacological manipulation of DGKζ activity is of therapeutic interest for cytokine-directed anti-tumor treatments. DGKζ, a well-characterized negative regulator of TCR signals, also limits IL-2/15 function. DGKζ impairs cytokine-induced differentiation of cytotoxic T cell populations with innate-like ability to kill targets. As a result, DGKζ-deficient mice demonstrate enhanced rejection of implanted B cell lymphoma compared to wild type mice. Targeting DGKζ activity might be of interest to enhance cytokine-mediated antitumor therapies.
The immune system defends the body from foreign invaders. In cancer, tumors disguise as self-body cells and evade immune attack. For this reason it is important to identify the mechanism that stop T lymphocytes from recognize and destroy tumors. In this study we investigate the role of Diacylglycerol kinase zeta (DGKζ) as an inhibitor of antitumor T cell functions. We demonstrate that lymphoma cells injected in mice genetically modified to lack DGKζ expression develop smaller tumors that resolve more rapidly than those grown in normal mice. Our studies suggest that inhibition of DGKζ could help to reinforce the antitumor capacity of immune T lymphocytes.
Collapse
Affiliation(s)
- Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain.
| |
Collapse
|
31
|
Cooke M, Magimaidas A, Casado-Medrano V, Kazanietz MG. Protein kinase C in cancer: The top five unanswered questions. Mol Carcinog 2017; 56:1531-1542. [PMID: 28112438 DOI: 10.1002/mc.22617] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 12/29/2022]
Abstract
Few kinases have been studied as extensively as protein kinase C (PKC), particularly in the context of cancer. As major cellular targets for the phorbol ester tumor promoters and diacylglycerol (DAG), a second messenger generated by stimulation of membrane receptors, PKC isozymes play major roles in the control of signaling pathways associated with proliferation, migration, invasion, tumorigenesis, and metastasis. However, despite decades of research, fundamental questions remain to be answered or are the subject of intense controversy. Primary among these unresolved issues are the role of PKC isozymes as either tumor promoter or tumor suppressor kinases and the incomplete understanding on isozyme-specific substrates and effectors. The involvement of PKC isozymes in cancer progression needs to be reassessed in the context of specific oncogenic and tumor suppressing alterations. In addition, there are still major hurdles in addressing isozyme-specific function due to the limited specificity of most pharmacological PKC modulators and the lack of validated predictive biomarkers for response, which impacts the translation of these agents to the clinic. In this review we focus on key controversial issues and upcoming challenges, with the expectation that understanding the intricacies of PKC function will help fulfill the yet unsuccessful promise of targeting PKCs for cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Magimaidas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn LM, Scharager-Tapia C, Pascal B, Martinez-Acedo P, Khare K, Subramaniam S. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal 2016; 9:ra111. [PMID: 27902448 PMCID: PMC5142824 DOI: 10.1126/scisignal.aaf6670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The striatum of the brain coordinates motor function. Dopamine-related drugs may be therapeutic to patients with striatal neurodegeneration, such as Huntington's disease (HD) and Parkinson's disease (PD), but these drugs have unwanted side effects. In addition to stimulating the release of norepinephrine, amphetamines, which are used for narcolepsy and attention-deficit/hyperactivity disorder (ADHD), trigger dopamine release in the striatum. The guanosine triphosphatase Ras homolog enriched in the striatum (Rhes) inhibits dopaminergic signaling in the striatum, is implicated in HD and L-dopa-induced dyskinesia, and has a role in striatal motor control. We found that the guanine nucleotide exchange factor RasGRP1 inhibited Rhes-mediated control of striatal motor activity in mice. RasGRP1 stabilized Rhes, increasing its synaptic accumulation in the striatum. Whereas partially Rhes-deficient (Rhes+/-) mice had an enhanced locomotor response to amphetamine, this phenotype was attenuated by coincident depletion of RasGRP1. By proteomic analysis of striatal lysates from Rhes-heterozygous mice with wild-type or partial or complete knockout of Rasgrp1, we identified a diverse set of Rhes-interacting proteins, the "Rhesactome," and determined that RasGRP1 affected the composition of the amphetamine-induced Rhesactome, which included PDE2A (phosphodiesterase 2A; a protein associated with major depressive disorder), LRRC7 (leucine-rich repeat-containing 7; a protein associated with bipolar disorder and ADHD), and DLG2 (discs large homolog 2; a protein associated with chronic pain). Thus, this Rhes network provides insight into striatal effects of amphetamine and may aid the development of strategies to treat various neurological and psychological disorders associated with the striatal dysfunction.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Vincenzo Giovinazzo
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Jenny Morgenweck
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Bruce Pascal
- Informatics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Kshitij Khare
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
33
|
Riese MJ, Moon EK, Johnson BD, Albelda SM. Diacylglycerol Kinases (DGKs): Novel Targets for Improving T Cell Activity in Cancer. Front Cell Dev Biol 2016; 4:108. [PMID: 27800476 PMCID: PMC5065962 DOI: 10.3389/fcell.2016.00108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/14/2016] [Indexed: 01/23/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the metabolism of diacylglycerol (DAG). Two isoforms of DGK, DGKα, and DGKζ, specifically regulate the pool of DAG that is generated as a second messenger after stimulation of the T cell receptor (TCR). Deletion of either isoform in mouse models results in T cells bearing a hyperresponsive phenotype and enhanced T cell activity against malignancy. Whereas, DGKζ appears to be the dominant isoform in T cells, rationale exists for targeting both isoforms individually or coordinately. Additional work is needed to rigorously identify the molecular changes that result from deletion of DGKs in order to understand how DAG contributes to T cell activation, the effect of DGK inhibition in human T cells, and to rationally develop combined immunotherapeutic strategies that target DGKs.
Collapse
Affiliation(s)
- Matthew J. Riese
- Division of Hematology/Oncology, Department of Medicine, Medical College of WisconsinMilwaukee, WI, USA
- Blood Center of Wisconsin, Blood Research InstituteMilwaukee, WI, USA
| | - Edmund K. Moon
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Bryon D. Johnson
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of WisconsinMilwaukee, WI, USA
| | - Steven M. Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
34
|
Ksionda O, Melton AA, Bache J, Tenhagen M, Bakker J, Harvey R, Winter SS, Rubio I, Roose JP. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene 2016; 35:3658-68. [PMID: 26549032 PMCID: PMC4868787 DOI: 10.1038/onc.2015.431] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Ras GTPases are activated by RasGEFs and inactivated by RasGAPs, which stimulate the hydrolysis of RasGTP to inactive RasGDP. GTPase-impairing somatic mutations in RAS genes, such as KRAS(G12D), are among the most common oncogenic events in metastatic cancer. A different type of cancer Ras signal, driven by overexpression of the RasGEF RasGRP1 (Ras guanine nucleotide-releasing protein 1), was recently implicated in pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients and murine models, in which RasGRP1 T-ALLs expand in response to treatment with interleukins (ILs) 2, 7 and 9. Here, we demonstrate that IL-2/7/9 stimulation activates Erk and Akt pathways downstream of Ras in RasGRP1 T-ALL but not in normal thymocytes. In normal lymphocytes, RasGRP1 is recruited to the membrane by diacylglycerol (DAG) in a phospholipase C-γ (PLCγ)-dependent manner. Surprisingly, we find that leukemic RasGRP1-triggered Ras-Akt signals do not depend on acute activation of PLCγ to generate DAG but rely on baseline DAG levels instead. In agreement, using three distinct assays that measure different aspects of the RasGTP/GDP cycle, we established that overexpression of RasGRP1 in T-ALLs results in a constitutively high GTP-loading rate of Ras, which is constantly counterbalanced by hydrolysis of RasGTP. KRAS(G12D) T-ALLs do not show constitutive GTP loading of Ras. Thus, we reveal an entirely novel type of leukemogenic Ras signals that is based on a RasGRP1-driven increased in flux through the RasGTP/GDP cycle, which is mechanistically very different from KRAS(G12D) signals. Our studies highlight the dynamic balance between RasGEF and RasGAP in these T-ALLs and put forth a new model in which IL-2/7/9 decrease RasGAP activity.
Collapse
Affiliation(s)
- O Ksionda
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| | - AA Melton
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - J Bache
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - M Tenhagen
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| | - J Bakker
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| | - R Harvey
- Department of Pediatrics, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - SS Winter
- Department of Pediatrics, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - I Rubio
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Friedrich-Schiller-University, Jena, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - JP Roose
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Mues M, Roose JP. Distinct oncogenic Ras signals characterized by profound differences in flux through the RasGDP/RasGTP cycle. Small GTPases 2016; 8:20-25. [PMID: 27159504 DOI: 10.1080/21541248.2016.1187323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
T cell acute lymphoblastic leukemia/lymphoma (T-ALL) is an aggressive bone marrow cancer in children and adults, and chemotherapy often fails for relapsing patients. Molecularly targeted therapy is hindered by heterogeneity in T-ALL and mechanistic details of the affected pathways in T-ALL are needed. Deregulation of Ras signals is common in T-ALL. Ras is genetically mutated to a constitutively active form in about 15% of all haematopoietic malignancies, but there is a range of other ways to augment signaling through the Ras pathway. Several groups including our own uncovered that RasGRP1 overexpression leads to T-ALL in mouse models and in pediatric T-ALL patients, and we reported that this Ras guanine nucleotide exchange factor, RasGRP1, cooperates with cytokines to drive leukemogenesis. In our recent study by Ksionda et al. we analyzed the molecular details of cytokine receptor-RasGRP1-Ras signals in T-ALL and compared these to signals from mutated Ras alleles, which yielded several surprising results. Examples are the striking differences in flux through the RasGDP/RasGTP cycle in distinct T-ALL or unexpected differences in wiring of the Ras signaling pathway between T-ALL and normal developing T cells, which we will discuss here.
Collapse
Affiliation(s)
- Marsilius Mues
- a Department of Anatomy , University of California San Francisco , San Francisco , CA , USA
| | - Jeroen P Roose
- a Department of Anatomy , University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
36
|
Maxfield KE, Taus PJ, Corcoran K, Wooten J, Macion J, Zhou Y, Borromeo M, Kollipara RK, Yan J, Xie Y, Xie XJ, Whitehurst AW. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun 2015; 6:8840. [PMID: 26567849 PMCID: PMC4660212 DOI: 10.1038/ncomms9840] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/08/2015] [Indexed: 01/18/2023] Open
Abstract
Tumours frequently activate genes whose expression is otherwise biased to the testis,
collectively known as cancer–testis antigens (CTAs). The extent to which
CTA expression represents epiphenomena or confers tumorigenic traits is unknown. In
this study, to address this, we implemented a multidimensional functional genomics
approach that incorporates 7 different phenotypic assays in 11 distinct disease
settings. We identify 26 CTAs that are essential for tumor cell viability and/or are
pathological drivers of HIF, WNT or TGFβ signalling. In particular, we
discover that Foetal and Adult Testis Expressed 1 (FATE1) is a key survival factor
in multiple oncogenic backgrounds. FATE1 prevents the accumulation of the
stress-sensing BH3-only protein, BCL-2-Interacting Killer (BIK), thereby permitting
viability in the presence of toxic stimuli. Furthermore, ZNF165 promotes
TGFβ signalling by directly suppressing the expression of negative feedback
regulatory pathways. This action is essential for the survival of triple negative
breast cancer cells in vitro and in vivo. Thus, CTAs make significant
direct contributions to tumour biology. Proteins usually expressed solely in the testes are often found
over-expressed in cancer and are termed cancer testis antigens. Here, the authors use a
comprehensive screening strategy to identify 26 cancer-testis antigens that promote
tumorigenic behaviour.
Collapse
Affiliation(s)
- Kimberly E Maxfield
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Patrick J Taus
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kathleen Corcoran
- Department of Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joshua Wooten
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jennifer Macion
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yunyun Zhou
- Department of Clinical Science, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mark Borromeo
- Department of Neuroscience, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jingsheng Yan
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yang Xie
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Science, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xian-Jin Xie
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Science, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Angelique W Whitehurst
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
37
|
Depeille P, Henricks LM, van de Ven RAH, Lemmens E, Wang CY, Matli M, Werb Z, Haigis KM, Donner D, Warren R, Roose JP. RasGRP1 opposes proliferative EGFR-SOS1-Ras signals and restricts intestinal epithelial cell growth. Nat Cell Biol 2015; 17:804-15. [PMID: 26005835 PMCID: PMC4652934 DOI: 10.1038/ncb3175] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/08/2015] [Indexed: 02/08/2023]
Abstract
The character of EGFR signals can influence cell fate but mechanistic insights into intestinal EGFR-Ras signalling are limited. Here we show that two distinct Ras nucleotide exchange factors, RasGRP1 and SOS1, lie downstream of EGFR but act in functional opposition. RasGRP1 is expressed in intestinal crypts where it restricts epithelial growth. High RasGRP1 expression in colorectal cancer (CRC) patient samples correlates with a better clinical outcome. Biochemically, we find that RasGRP1 creates a negative feedback loop that limits proliferative EGFR-SOS1-Ras signals in CRC cells. Genetic Rasgrp1 depletion from mice with either an activating mutation in KRas or with aberrant Wnt signalling due to a mutation in Apc resulted in both cases in exacerbated Ras-ERK signalling and cell proliferation. The unexpected opposing cell biological effects of EGFR-RasGRP1 and EGFR-SOS1 signals in the same cell shed light on the intricacy of EGFR-Ras signalling in normal epithelium and carcinoma.
Collapse
Affiliation(s)
- Philippe Depeille
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| | - Linda M. Henricks
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| | - Robert A. H. van de Ven
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| | - Ed Lemmens
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| | - Chih-Yang Wang
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Mary Matli
- Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| | - Kevin M. Haigis
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - David Donner
- Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | - Robert Warren
- Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
38
|
Lubeck BA, Lapinski PE, Oliver JA, Ksionda O, Parada LF, Zhu Y, Maillard I, Chiang M, Roose J, King PD. Cutting Edge: Codeletion of the Ras GTPase-Activating Proteins (RasGAPs) Neurofibromin 1 and p120 RasGAP in T Cells Results in the Development of T Cell Acute Lymphoblastic Leukemia. THE JOURNAL OF IMMUNOLOGY 2015; 195:31-5. [PMID: 26002977 DOI: 10.4049/jimmunol.1402639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
Ras GTPase-activating proteins (RasGAPs) inhibit signal transduction initiated through the Ras small GTP-binding protein. However, which members of the RasGAP family act as negative regulators of T cell responses is not completely understood. In this study, we investigated potential roles for the RasGAPs RASA1 and neurofibromin 1 (NF1) in T cells through the generation and analysis of T cell-specific RASA1 and NF1 double-deficient mice. In contrast to mice lacking either RasGAP alone in T cells, double-deficient mice developed T cell acute lymphoblastic leukemia/lymphoma, which originated at an early point in T cell development and was dependent on activating mutations in the Notch1 gene. These findings highlight RASA1 and NF1 as cotumor suppressors in the T cell lineage.
Collapse
Affiliation(s)
- Beth A Lubeck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jennifer A Oliver
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
| | - Luis F Parada
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yuan Zhu
- Division of Molecular Medicine and Genetics, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Ivan Maillard
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mark Chiang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jeroen Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109;
| |
Collapse
|
39
|
Diaz-Flores E, Goldschmidt H, Depeille P, Ng V, Akutagawa J, Krisman K, Crone M, Burgess MR, Williams O, Houseman B, Shokat K, Sampath D, Bollag G, Roose JP, Braun BS, Shannon K. PLC-γ and PI3K link cytokines to ERK activation in hematopoietic cells with normal and oncogenic Kras. Sci Signal 2013; 6:ra105. [PMID: 24300897 DOI: 10.1126/scisignal.2004125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Oncogenic K-Ras proteins, such as K-Ras(G12D), accumulate in the active, guanosine triphosphate (GTP)-bound conformation and stimulate signaling through effector kinases. The presence of the K-Ras(G12D) oncoprotein at a similar abundance to that of endogenous wild-type K-Ras results in only minimal phosphorylation and activation of the canonical Raf-mitogen-activated or extracellular signal-regulated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling cascades in primary hematopoietic cells, and these pathways remain dependent on growth factors for efficient activation. We showed that phospholipase C-γ (PLC-γ), PI3K, and their generated second messengers link activated cytokine receptors to Ras and ERK signaling in differentiated bone marrow cells and in a cell population enriched for leukemia stem cells. Cells expressing endogenous oncogenic K-Ras(G12D) remained dependent on the second messenger diacylglycerol for the efficient activation of Ras-ERK signaling. These data raise the unexpected possibility of therapeutically targeting proteins that function upstream of oncogenic Ras in cancer.
Collapse
Affiliation(s)
- Ernesto Diaz-Flores
- 1Department of Pediatrics and Benniof Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ksionda O, Limnander A, Roose JP. RasGRP Ras guanine nucleotide exchange factors in cancer. FRONTIERS IN BIOLOGY 2013; 8:508-532. [PMID: 24744772 PMCID: PMC3987922 DOI: 10.1007/s11515-013-1276-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.
Collapse
Affiliation(s)
- Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andre Limnander
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
41
|
Abdallah BY, Horne SD, Stevens JB, Liu G, Ying AY, Vanderhyden B, Krawetz SA, Gorelick R, Heng HH. Single cell heterogeneity: why unstable genomes are incompatible with average profiles. Cell Cycle 2013; 12:3640-9. [PMID: 24091732 DOI: 10.4161/cc.26580] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multi-level heterogeneity is a fundamental but underappreciated feature of cancer. Most technical and analytical methods either completely ignore heterogeneity or do not fully account for it, as heterogeneity has been considered noise that needs to be eliminated. We have used single-cell and population-based assays to describe an instability-mediated mechanism where genome heterogeneity drastically affects cell growth and cannot be accurately measured using conventional averages. First, we show that most unstable cancer cell populations exhibit high levels of karyotype heterogeneity, where it is difficult, if not impossible, to karyotypically clone cells. Second, by comparing stable and unstable cell populations, we show that instability-mediated karyotype heterogeneity leads to growth heterogeneity, where outliers dominantly contribute to population growth and exhibit shorter cell cycles. Predictability of population growth is more difficult for heterogeneous cell populations than for homogenous cell populations. Since "outliers" play an important role in cancer evolution, where genome instability is the key feature, averaging methods used to characterize cell populations are misleading. Variances quantify heterogeneity; means (averages) smooth heterogeneity, invariably hiding it. Cell populations of pathological conditions with high genome instability, like cancer, behave differently than karyotypically homogeneous cell populations. Single-cell analysis is thus needed when cells are not genomically identical. Despite increased attention given to single-cell variation mediated heterogeneity of cancer cells, continued use of average-based methods is not only inaccurate but deceptive, as the "average" cancer cell clearly does not exist. Genome-level heterogeneity also may explain population heterogeneity, drug resistance, and cancer evolution.
Collapse
Affiliation(s)
- Batoul Y Abdallah
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol 2013; 4:239. [PMID: 24027568 PMCID: PMC3762125 DOI: 10.3389/fimmu.2013.00239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California San Francisco , San Francisco, CA , USA
| | | | | |
Collapse
|
43
|
Iwig JS, Vercoulen Y, Das R, Barros T, Limnander A, Che Y, Pelton JG, Wemmer DE, Roose JP, Kuriyan J. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. eLife 2013; 2:e00813. [PMID: 23908768 PMCID: PMC3728621 DOI: 10.7554/elife.00813] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/18/2013] [Indexed: 11/13/2022] Open
Abstract
RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI:http://dx.doi.org/10.7554/eLife.00813.001 Individual cells within the human body must grow, divide or specialize to perform the tasks required of them. The fates of these cells are often directed by proteins in the Ras family, which detect signals from elsewhere in the body and orchestrate responses within each cell. The activities of these proteins must be tightly controlled, because cancers and developmental diseases can result if Ras proteins are not properly regulated. Binding to the small molecule GTP activates Ras and causes conformational changes that allow it to interact with other proteins in various signaling pathways in the cell. GTP is loaded into Ras by proteins called nucleotide exchange factors, which can replace ‘used’ nucleotides with ‘fresh’ ones to activate Ras. These nucleotide exchange factors are also tightly regulated. For example, the genes for many exchange factors are only switched on after particular signals are received, which can restrict their presence to defined times and locations (e.g., cells or tissues). Also, when activating signals are absent, nucleotide exchange factors commonly reside in the cytoplasm, whereas the Ras proteins remain bound to lipid membranes inside the cell. RasGRP1 is a nucleotide exchange factor that controls the development of immune cells, and leukemia and lupus can result if it is not regulated correctly. However, many questions about RasGRP1 remain unanswered, including how it is able to remain inactive, and how it is activated by various different signals. Iwig et al. have now revealed the mechanisms through which RasGRP1 suppresses Ras signaling in immune cells by solving the structures of two fragments of RasGRP1 and then using a combination of structural, biochemical and cell-based methods to explore how it is activated. These analyses revealed that inactive RasGRP1 adopts a conformation in which one of its regulatory elements blocks access to the Ras binding site. Surprisingly, RasGRP1 can form dimers; this hides the portions of the protein that associate with the membrane and thereby keeps RasGRP1 away from Ras. Iwig et al. also found that two signals, calcium ions and a lipid called diacylglycerol, overcome these inhibitory mechanisms by changing the conformation of RasGRP1 and recruiting it to the membrane. These studies provide a framework for understanding how disease-associated mutations in RasGRP1 bypass the regulatory mechanisms that insure proper immune cell development, and will be critical for developing therapeutic agents that inhibit RasGRP1 activity. DOI:http://dx.doi.org/10.7554/eLife.00813.002
Collapse
Affiliation(s)
- Jeffrey S Iwig
- Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , United States ; California Institute for Quantitative Biosciences , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chakraborty AK, Roose JP. Biochemical heterogeneity and developmental varieties in T-cell leukemia. Cell Cycle 2013; 12:1480-1. [PMID: 23652920 PMCID: PMC3680523 DOI: 10.4161/cc.24858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|