1
|
Kuo FC, Chao CT, Lin SH. The Dynamics and Plasticity of Epigenetics in Diabetic Kidney Disease: Therapeutic Applications Vis-à-Vis. Int J Mol Sci 2022; 23:ijms23020843. [PMID: 35055027 PMCID: PMC8777872 DOI: 10.3390/ijms23020843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) refers to the phenomenon of progressive decline in the glomerular filtration rate accompanied by adverse consequences, including fluid retention, electrolyte imbalance, and an increased cardiovascular risk compared to those with normal renal function. The triggers for the irreversible renal function deterioration are multifactorial, and diabetes mellitus serves as a major contributor to the development of CKD, namely diabetic kidney disease (DKD). Recently, epigenetic dysregulation emerged as a pivotal player steering the progression of DKD, partly resulting from hyperglycemia-associated metabolic disturbances, rising oxidative stress, and/or uncontrolled inflammation. In this review, we describe the major epigenetic molecular mechanisms, followed by summarizing current understandings of the epigenetic alterations pertaining to DKD. We highlight the epigenetic regulatory processes involved in several crucial renal cell types: Mesangial cells, podocytes, tubular epithelia, and glomerular endothelial cells. Finally, we highlight epigenetic biomarkers and related therapeutic candidates that hold promising potential for the early detection of DKD and the amelioration of its progression.
Collapse
Affiliation(s)
- Feng-Chih Kuo
- National Defense Medical Center, Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Chia-Ter Chao
- Department of Internal Medicine, Nephrology Division, National Taiwan University Hospital, Taipei 100, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Internal Medicine, Nephrology Division, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Shih-Hua Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
- National Defense Medical Center, Department of Internal Medicine, Nephrology Division, Taipei 114, Taiwan
| |
Collapse
|
2
|
Transcription Factors Leading to High Expression of Neuropeptide L1CAM in Brain Metastases from Lung Adenocarcinoma and Clinical Prognostic Analysis. DISEASE MARKERS 2022; 2021:8585633. [PMID: 35003395 PMCID: PMC8739529 DOI: 10.1155/2021/8585633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
Background There is a lack of understanding of the development of metastasis in lung adenocarcinoma (LUAD). This study is aimed at exploring the upstream regulatory transcription factors of L1 cell adhesion molecule (L1CAM) and to construct a prognostic model to predict the risk of brain metastasis in LUAD. Methods Differences in gene expression between LUAD and brain metastatic LUAD were analyzed using the Wilcoxon rank-sum test. The GRNdb (http://www.grndb.com) was used to reveal the upstream regulatory transcription factors of L1CAM in LUAD. Single-cell expression profile data (GSE131907) were obtained from the transcriptome data of 10 metastatic brain tissue samples. LUAD prognostic nomogram prediction models were constructed based on the identified significant transcription factors and L1CAM. Results Survival analysis suggested that high L1CAM expression was negatively significantly associated with overall survival, disease-specific survival, and prognosis in the progression-free interval (p < 0.05). The box plot indicates that high expression of L1CAM was associated with distant metastases in LUAD, while ROC curves suggested that high expression of L1CAM was associated with poor prognosis. FOSL2, HOXA9, IRF4, IKZF1, STAT1, FLI1, ETS1, E2F7, and ADARB1 are potential upstream transcriptional regulators of L1CAM. Single-cell data analysis revealed that the expression of L1CAM was found significantly and positively correlated with the expression of ETS1, FOSL2, and STAT1 in brain metastases. L1CAM, ETS1, FOSL2, and STAT1 were used to construct the LUAD prognostic nomogram prediction model, and the ROC curves suggest that the constructed nomogram possesses good predictive power. Conclusion By bioinformatics methods, ETS1, FOSL2, and STAT1 were identified as potential transcriptional regulators of L1CAM in this study. This will help to facilitate the early identification of patients at high risk of metastasis.
Collapse
|
3
|
Acetylation of ELF5 suppresses breast cancer progression by promoting its degradation and targeting CCND1. NPJ Precis Oncol 2021; 5:20. [PMID: 33742100 PMCID: PMC7979705 DOI: 10.1038/s41698-021-00158-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
E74-like ETS transcription factor 5 (ELF5) is involved in a wide spectrum of biological processes, e.g., mammogenesis and tumor progression. We have identified a list of p300-interacting proteins in human breast cancer cells. Among these, ELF5 was found to interact with p300 via acetylation, and the potential acetylation sites were identified as K130, K134, K143, K197, K228, and K245. Furthermore, an ELF5-specific deacetylase, SIRT6, was also identified. Acetylation of ELF5 promoted its ubiquitination and degradation, but was also essential for its antiproliferative effect against breast cancer, as overexpression of wild-type ELF5 and sustained acetylation-mimicking ELF5 mutant could inhibit the expression of its target gene CCND1. Taken together, the results demonstrated a novel regulation of ELF5 as well as shedding light on its important role in modulation of breast cancer progression.
Collapse
|
4
|
Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol Res 2021; 170:105520. [PMID: 33639232 DOI: 10.1016/j.phrs.2021.105520] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Diabetes is a metabolic disorder and its incidence is still increasing. Diabetic vascular complications cause major diabetic mobility and include accelerated atherosclerosis, nephropathy, retinopathy, and neuropathy. Hyperglycemia contributes to the pathogenesis of diabetic vascular complications via numerous mechanisms including the induction of oxidative stress, inflammation, metabolic alterations, and abnormal proliferation of EC and angiogenesis. In the past decade, epigenetic modifications have attracted more attention as they participate in the progression of diabetic vascular complications despite controlled glucose levels and regulate gene expression without altering the genomic sequence. DNA methylation and histone methylation, and acetylation are vital epigenetic modifications and their underlying mechanisms in diabetic vascular complication are still urgently needed to be investigated. Non-coding RNAs (nc RNAs) such as micro RNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circ RNAs) were found to exert transcriptional regulation in diabetic vascular complication. Although nc RNAs are not considered as epigenetic components, they are involved in epigenetic modifications. In this review, we summarized the investigations of non-coding RNAs involved in DNA methylation and histone methylation and acetylation. Their cross-talks might offer novel insights into the pathology of diabetic vascular complications.
Collapse
|
5
|
Nazir SU, Kumar R, Dil-Afroze, Rasool I, Bondhopadhyay B, Singh A, Tripathi R, Singh N, Khan A, Tanwar P, Agrawal U, Mehrotra R, Hussain S. Differential expression of Ets-1 in breast cancer among North Indian population. J Cell Biochem 2019; 120:14552-14561. [PMID: 31016780 DOI: 10.1002/jcb.28716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer is a highly aggressive disease contributing to high mortality rate among females across the globe owing to wide geographical variations, change in lifestyle along with rapid tumor growth, drug resistance, and high metastasis rate. To understand the molecular and genetic basis of breast cancer progression; we studied the role of E26 transformation-specific-1 (Ets-1) transcription factor which is implicated to have a role in carcinogenesis like invasion, metastasis, angiogenesis, etc. Our findings revealed an overexpression of Ets-1 gene in 75 breast cancer tumors as compared with their normal adjacent tissues. The findings significantly established a co-relation between Ets-1 expression in breast cancer tissue with hormonal receptor profiles and ductal-lobular histological subtypes in Indian population. In addition, a differential expression pattern of Ets-1 was observed between high, moderate, and low grades of breast cancer patients. The present study demonstrates a crucial role of Ets-1 transcription factor which may serve as a potential biomarker for breast carcinogenesis.
Collapse
Affiliation(s)
- Sheeraz Un Nazir
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India.,Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Dil-Afroze
- Department of Immunology and Molecular Medicine, Sher-I- Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India
| | - Ishrat Rasool
- Department of Immunology and Molecular Medicine, Sher-I- Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India
| | - Banashree Bondhopadhyay
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Ankita Singh
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Richa Tripathi
- Division of Cytopathology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Neha Singh
- Institute of Clinical Sciences, Sahlgrenska University Hospital, Gothenberg University, Gothenberg, Sweden
| | - Asiya Khan
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Usha Agrawal
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | - Ravi Mehrotra
- Division of Cytopathology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Showket Hussain
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| |
Collapse
|
6
|
miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1. Oncogene 2018; 37:1624-1636. [PMID: 29335523 DOI: 10.1038/s41388-017-0057-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
Cancer cells have metabolic features that allow them to preferentially metabolize glucose through aerobic glycolysis, providing them with a progression advantage. However, microRNA (miRNA) regulation of aerobic glycolysis in cancer cells has not been extensively investigated. We addressed this in the present study by examining the regulation of miR-139-5p on aerobic glycolysis of hepatocellular carcinoma (HCC) using clinical specimens, HCC cells, and a mouse xenograft model. We found that overexpressing miR-139-5p restrained aerobic glycolysis, suppressing proliferation, migration, and invasion in HCC cells. miR-139-5p regulated hexokinase 1 (HK1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression by directly targeting the transcription factor ETS1, which bound to the promoters of the HK1 and PFKFB3 genes. miR-139-5p-induced aerobic glycolysis, proliferation, migration, and invasion were reversed by ETS1 overexpression, while ETS1 silencing induced the expression of miR-139-5p via a post-transcriptional regulation mode involving Drosha. miR-139-5p expression was reduced in HCC compared to para-carcinoma tissue, which was confirmed in The Cancer Genome Atlas and GSE54751 HCC cohorts. Notably, the lower expression of mir-139 was correlated with worse prognosis. These outcomes indicate that reciprocal regulatory interactions between miR-139-5p and ETS1 modulate aerobic glycolysis, proliferation, and metastasis in HCC cells, suggesting new targets for HCC treatment.
Collapse
|
7
|
Dittmer J. The role of the transcription factor Ets1 in carcinoma. Semin Cancer Biol 2015; 35:20-38. [PMID: 26392377 DOI: 10.1016/j.semcancer.2015.09.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
Abstract
Ets1 belongs to the large family of the ETS domain family of transcription factors and is involved in cancer progression. In most carcinomas, Ets1 expression is linked to poor survival. In breast cancer, Ets1 is primarily expressed in the triple-negative subtype, which is associated with unfavorable prognosis. Ets1 contributes to the acquisition of cancer cell invasiveness, to EMT (epithelial-to-mesenchymal transition), to the development of drug resistance and neo-angiogenesis. The aim of this review is to summarize the current knowledge on the functions of Ets1 in carcinoma progression and on the mechanisms that regulate Ets1 activity in cancer.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
8
|
Haery L, Thompson RC, Gilmore TD. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer 2015; 6:184-213. [PMID: 26124919 PMCID: PMC4482241 DOI: 10.18632/genesandcancer.65] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
The development of B and T cells from hematopoietic precursors and the regulation of the functions of these immune cells are complex processes that involve highly regulated signaling pathways and transcriptional control. The signaling pathways and gene expression patterns that give rise to these developmental processes are coordinated, in part, by two opposing classes of broad-based enzymatic regulators: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs can modulate gene transcription by altering histone acetylation to modify chromatin structure, and by regulating the activity of non-histone substrates, including an array of immune-cell transcription factors. In addition to their role in normal B and T cells, dysregulation of HAT and HDAC activity is associated with a variety of B- and T-cell malignancies. In this review, we describe the roles of HATs and HDACs in normal B- and T-cell physiology, describe mutations and dysregulation of HATs and HDACs that are implicated lymphoma and leukemia, and discuss HAT and HDAC inhibitors that have been explored as treatment options for leukemias and lymphomas.
Collapse
Affiliation(s)
- Leila Haery
- Department of Biology, Boston University, Boston, MA, USA
| | | | | |
Collapse
|