1
|
Chin HS, Ravi Varadharajulu N, Lin ZH, Hsu CC, Yu SSF. Phosphoproteomic analysis reveals distinctive responses in Mangrovibacter phragmatis under high-salinity condition. Biochem Biophys Res Commun 2024; 736:150514. [PMID: 39128267 DOI: 10.1016/j.bbrc.2024.150514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
We conducted a thorough genome-wide investigation of protein phosphorylation in the halotolerant bacterium Mangrovibacter phragmitis (MPH) ASIOC01, using the Fe-IMAC enrichment method combined with tandem mass spectrometry under low- and high-salinity conditions. The phosphoproteome comprises 86 unique phosphorylated proteins, crucially involving pathways such as glycolysis/gluconeogenesis, the citrate cycle, chaperones, ribosomal proteins, and cell division. This study represents the first and most extensive investigation to-date comparing the bacterial phosphoproteome under different osmotic conditions using a gel-free approach. We identified 45 unique phosphoproteins in MPH cultured in media containing 1 % NaCl, and 33 exclusive phosphoproteins in MPH cultured in media containing 5 % NaCl. Eight phosphoproteins were detected in both growth conditions. Analysis of high-confidence phosphosites reveals that phosphorylation predominantly occurs on serine residues (52.3 %), followed by threonine (35.1 %) and tyrosine (12.6 %) residues. Interestingly, 34 % of the phosphopeptides display multiple phosphosites. Currently, prokaryotic phosphorylation site prediction platforms like MPSite and NetPhosBac 1.0 demonstrate an average prediction accuracy of only 21 % when applied to our dataset. Fourteen phosphoproteins did not yield matches when compared against dbPSP 2.0 (database of Phosphorylation Sites in Prokaryotes), indicating that these proteins may be novel phosphoproteins. These unique proteins undergoing phosphorylation under high salinity growth conditions potentially enhance their adaptive capabilities to environmental challenges.
Collapse
Affiliation(s)
- Hong Soon Chin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Narendrakumar Ravi Varadharajulu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Zhi-Han Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Bhattacharjee P, Wang D, Anderson D, Buckler JN, de Geus E, Yan F, Polekhina G, Schittenhelm R, Creek DJ, Harris LD, Sadler AJ. The immune response to RNA suppresses nucleic acid synthesis by limiting ribose 5-phosphate. EMBO J 2024; 43:2636-2660. [PMID: 38778156 PMCID: PMC11217295 DOI: 10.1038/s44318-024-00100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
During infection viruses hijack host cell metabolism to promote their replication. Here, analysis of metabolite alterations in macrophages exposed to poly I:C recognises that the antiviral effector Protein Kinase RNA-activated (PKR) suppresses glucose breakdown within the pentose phosphate pathway (PPP). This pathway runs parallel to central glycolysis and is critical to producing NADPH and pentose precursors for nucleotides. Changes in metabolite levels between wild-type and PKR-ablated macrophages show that PKR controls the generation of ribose 5-phosphate, in a manner distinct from its established function in gene expression but dependent on its kinase activity. PKR phosphorylates and inhibits the Ribose 5-Phosphate Isomerase A (RPIA), thereby preventing interconversion of ribulose- to ribose 5-phosphate. This activity preserves redox control but decreases production of ribose 5-phosphate for nucleotide biosynthesis. Accordingly, the PKR-mediated immune response to RNA suppresses nucleic acid production. In line, pharmacological targeting of the PPP during infection decreases the replication of the Herpes simplex virus. These results identify an immune response-mediated control of host cell metabolism and suggest targeting the RPIA as a potential innovative antiviral treatment.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Die Wang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua N Buckler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Eveline de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Department of Clinical Hematology, Monash University, Clayton, VIC, 3004, Australia
| | - Galina Polekhina
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ralf Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Anthony J Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
3
|
Spitzer J. Physicochemical origins of prokaryotic and eukaryotic organisms. J Physiol 2024; 602:2383-2394. [PMID: 37226840 DOI: 10.1113/jp284428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023] Open
Abstract
Origins research currently rests on a vitalistic foundation and requires reconceptualization. From a cellular perspective, prokaryotic cells grow and divide in stable, colloidal processes, throughout which the cytoplasm remains crowded (concentrated) with closely interacting proteins and nucleic acids. Their functional stability is ensured by repulsive and attractive non-covalent forces, especially van der Waals forces, screened electrostatic forces, and hydrogen bonding (hydration and the hydrophobic effect). On average, biomacromolecules are crowded at above 15% volume fraction, surrounded by up to 3 nm layer of aqueous electrolyte at ionic strength above 0.01 molar; they are energized by biochemical reactions coupled to nutrient environments. During cellular growth, non-covalent molecular forces and biochemical reactions stabilize the cytoplasm as a two-phase, colloidal system comprising vectorially structured cytogel and dilute cytosol. From a geochemical perspective, Earth's rotation kept prebiotic molecules in continuous cyclic disequilibria in Usiglio-type intertidal pools, rich in potassium and magnesium ions, the last cations to precipitate from evaporatig seawater. These ions impart biochemical functionality to extant proteins and RNAs. The prebiotic molecules were repeatedly purified by phase separation in response to tidal drying and rewetting; they were chemically evolving as briny, carbonaceous inclusions in tidal sediments until the crowding transition allowed chemical evolution to proceeed toward Woesian progenotes, the Last Universal Common Ancestors (LUCAs) and the first prokaryotes. These cellular and geochemical processes are summarized as a jigsaw puzzle of the emerging and evolving prokaryotes. Their unavoidable cyclic fusions and rehydrations along Archaean coastlines initiated the emergence of complex Precambrian eukaryotes.
Collapse
|
4
|
Frando A, Grundner C. More than two components: complexities in bacterial phosphosignaling. mSystems 2024; 9:e0028924. [PMID: 38591891 PMCID: PMC11097640 DOI: 10.1128/msystems.00289-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
For over 40 years, the two-component systems (TCSs) have taken front and center in our thinking about the signaling mechanisms by which bacteria sense and respond to their environment. In contrast, phosphorylation on Ser/Thr and Tyr (O-phosphorylation) was long thought to be mostly restricted to eukaryotes and a somewhat accessory signaling mechanism in bacteria. Several recent studies exploring systems aspects of bacterial O-phosphorylation, however, now show that it is in fact pervasive, with some bacterial proteomes as highly phosphorylated as those of eukaryotes. Labile, non-canonical protein phosphorylation sites on Asp, Arg, and His are now also being identified in large numbers in bacteria and first cellular functions are discovered. Other phosphomodifications on Cys, Glu, and Lys remain largely unexplored. The surprising breadth and complexity of bacterial phosphosignaling reveals a vast signaling capacity, the full scope of which we may only now be beginning to understand but whose functions are likely to affect all aspects of bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Andrew Frando
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Christoph Grundner
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Longin H, Broeckaert N, van Noort V, Lavigne R, Hendrix H. Posttranslational modifications in bacteria during phage infection. Curr Opin Microbiol 2024; 77:102425. [PMID: 38262273 DOI: 10.1016/j.mib.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
During phage infection, both virus and bacteria attempt to gain and/or maintain control over critical bacterial functions, through a plethora of strategies. These strategies include posttranslational modifications (PTMs, including phosphorylation, ribosylation, and acetylation), as rapid and dynamic regulators of protein behavior. However, to date, knowledge on the topic remains scarce and fragmented, while a more systematic investigation lies within reach. The release of AlphaFold, which advances PTM enzyme discovery and functional elucidation, and the increasing inclusivity and scale of mass spectrometry applications to new PTM types, could significantly accelerate research in the field. In this review, we highlight the current knowledge on PTMs during phage infection, and conceive a possible pipeline for future research, following an enzyme-target-function scheme.
Collapse
Affiliation(s)
- Hannelore Longin
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium; Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Nand Broeckaert
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium; Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Vera van Noort
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium; Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, the Netherlands
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium.
| |
Collapse
|
6
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
7
|
Lim S. A Review of the Bacterial Phosphoproteomes of Beneficial Microbes. Microorganisms 2023; 11:microorganisms11040931. [PMID: 37110354 PMCID: PMC10145908 DOI: 10.3390/microorganisms11040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The number and variety of protein post-translational modifications (PTMs) found and characterized in bacteria over the past ten years have increased dramatically. Compared to eukaryotic proteins, most post-translational protein changes in bacteria affect relatively few proteins because the majority of modified proteins exhibit substoichiometric modification levels, which makes structural and functional analyses challenging. In addition, the number of modified enzymes in bacterial species differs widely, and degrees of proteome modification depend on environmental conditions. Nevertheless, evidence suggests that protein PTMs play essential roles in various cellular processes, including nitrogen metabolism, protein synthesis and turnover, the cell cycle, dormancy, spore germination, sporulation, persistence, and virulence. Additional investigations on protein post-translational changes will undoubtedly close knowledge gaps in bacterial physiology and create new means of treating infectious diseases. Here, we describe the role of the post-translation phosphorylation of major bacterial proteins and review the progress of research on phosphorylated proteins depending on bacterial species.
Collapse
Affiliation(s)
- Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| |
Collapse
|
8
|
Pasquier C, Robichon A. Evolutionary Divergence of Phosphorylation to Regulate Interactive Protein Networks in Lower and Higher Species. Int J Mol Sci 2022; 23:ijms232214429. [PMID: 36430905 PMCID: PMC9697241 DOI: 10.3390/ijms232214429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The phosphorylation of proteins affects their functions in extensively documented circumstances. However, the role of phosphorylation in many interactive networks of proteins remains very elusive due to the experimental limits of exploring the transient interaction in a large complex of assembled proteins induced by stimulation. Previous studies have suggested that phosphorylation is a recent evolutionary process that differently regulates ortholog proteins in numerous lineages of living organisms to create new functions. Despite the fact that numerous phospho-proteins have been compared between species, little is known about the organization of the full phospho-proteome, the role of phosphorylation to orchestrate large interactive networks of proteins, and the intertwined phospho-landscape in these networks. In this report, we aimed to investigate the acquired role of phosphate addition in the phenomenon of protein networking in different orders of living organisms. Our data highlighted the acquired status of phosphorylation in organizing large, connected assemblages in Homo sapiens. The protein networking guided by phosphorylation turned out to be prominent in humans, chaotic in yeast, and weak in flies. Furthermore, the molecular functions of GO annotation enrichment regulated by phosphorylation were found to be drastically different between flies, yeast, and humans, suggesting an evolutionary drift specific to each species.
Collapse
Affiliation(s)
- Claude Pasquier
- I3S, Université Côte d’Azur, Campus SophiaTech, CNRS, 06903 Nice, France
- Correspondence:
| | - Alain Robichon
- INRAE, ISA, Université Côte d’Azur, Campus SophiaTech, CNRS, 06903 Nice, France
| |
Collapse
|
9
|
Garcia-Garcia T, Douché T, Giai Gianetto Q, Poncet S, El Omrani N, Smits WK, Cuenot E, Matondo M, Martin-Verstraete I. In-Depth Characterization of the Clostridioides difficile Phosphoproteome to Identify Ser/Thr Kinase Substrates. Mol Cell Proteomics 2022; 21:100428. [PMID: 36252736 PMCID: PMC9674922 DOI: 10.1016/j.mcpro.2022.100428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Clostridioides difficile is the leading cause of postantibiotic diarrhea in adults. During infection, the bacterium must rapidly adapt to the host environment by using survival strategies. Protein phosphorylation is a reversible post-translational modification employed ubiquitously for signal transduction and cellular regulation. Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases have emerged as important players in bacterial cell signaling and pathogenicity. C. difficile encodes two STKs (PrkC and CD2148) and one phosphatase. We optimized a titanium dioxide phosphopeptide enrichment approach to determine the phosphoproteome of C. difficile. We identified and quantified 2500 proteins representing 63% of the theoretical proteome. To identify STK and serine/threonine phosphatase targets, we then performed comparative large-scale phosphoproteomics of the WT strain and isogenic ΔprkC, CD2148, Δstp, and prkC CD2148 mutants. We detected 635 proteins containing phosphorylated peptides. We showed that PrkC is phosphorylated on multiple sites in vivo and autophosphorylates in vitro. We were unable to detect a phosphorylation for CD2148 in vivo, whereas this kinase was phosphorylated in vitro only in the presence of PrkC. Forty-one phosphoproteins were identified as phosphorylated under the control of CD2148, whereas 114 proteins were phosphorylated under the control of PrkC including 27 phosphoproteins more phosphorylated in the ∆stp mutant. We also observed enrichment for phosphothreonine among the phosphopeptides more phosphorylated in the Δstp mutant. Both kinases targeted pathways required for metabolism, translation, and stress response, whereas cell division and peptidoglycan metabolism were more specifically controlled by PrkC-dependent phosphorylation in agreement with the phenotypes of the ΔprkC mutant. Using a combination of approaches, we confirmed that FtsK was phosphorylated in vivo under the control of PrkC and that Spo0A was a substrate of PrkC in vitro. This study provides a detailed mapping of kinase-substrate relationships in C. difficile, paving the way for the identification of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Transito Garcia-Garcia
- Laboratoire Pathogénese des Bactéries Anaérobies, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France
| | - Quentin Giai Gianetto
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France,Hub de bioinformatique et biostatistiques, Departement de Biologie computationelle, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sandrine Poncet
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nesrine El Omrani
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elodie Cuenot
- Laboratoire Pathogénese des Bactéries Anaérobies, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France,For correspondence: Isabelle Martin-Verstraete; Mariette Matondo
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogénese des Bactéries Anaérobies, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France,Institut Universitaire de France, Paris, France,For correspondence: Isabelle Martin-Verstraete; Mariette Matondo
| |
Collapse
|
10
|
Iannetta AA, Minton NE, Uitenbroek AA, Little JL, Stanton CR, Kristich CJ, Hicks LM. IreK-Mediated, Cell Wall-Protective Phosphorylation in Enterococcus faecalis. J Proteome Res 2021; 20:5131-5144. [PMID: 34672600 PMCID: PMC10037947 DOI: 10.1021/acs.jproteome.1c00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Enterococcus faecalis is a Gram-positive bacterium that is a major cause of hospital-acquired infections due, in part, to its intrinsic resistance to cell wall-active antimicrobials. One critical determinant of this resistance is the transmembrane kinase IreK, which belongs to the penicillin-binding protein and serine/threonine kinase-associated kinase family of bacterial signaling proteins involved with the regulation of cell wall homeostasis. The activity of IreK is enhanced in response to cell wall stress, but direct substrates of IreK phosphorylation, leading to antimicrobial resistance, are largely unknown. To better understand stress-modulated phosphorylation events contributing to antimicrobial resistance, wild type E. faecalis cells treated with cell wall-active antimicrobials, chlorhexidine or ceftriaxone, were examined via phosphoproteomics. Among the most prominent changes was increased phosphorylation of divisome components after both treatments, suggesting that E. faecalis modulates cell division in response to cell wall stress. Phosphorylation mediated by IreK was then determined via a similar analysis with a E. faecalis ΔireK mutant strain, revealing potential IreK substrates involved with the regulation of peptidoglycan biosynthesis and within the E. faecalis CroS/R two-component system, another signal transduction pathway that promotes antimicrobial resistance. These results reveal critical insights into the biological functions of IreK.
Collapse
Affiliation(s)
- Anthony A. Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicole E. Minton
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexis A. Uitenbroek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jaime L. Little
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Caroline R. Stanton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
11
|
Schastnaya E, Raguz Nakic Z, Gruber CH, Doubleday PF, Krishnan A, Johns NI, Park J, Wang HH, Sauer U. Extensive regulation of enzyme activity by phosphorylation in Escherichia coli. Nat Commun 2021; 12:5650. [PMID: 34561442 PMCID: PMC8463566 DOI: 10.1038/s41467-021-25988-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Protein serine/threonine/tyrosine (S/T/Y) phosphorylation is an essential and frequent post-translational modification in eukaryotes, but historically has been considered less prevalent in bacteria because fewer proteins were found to be phosphorylated and most proteins were modified to a lower degree. Recent proteomics studies greatly expanded the phosphoproteome of Escherichia coli to more than 2000 phosphorylation sites (phosphosites), yet mechanisms of action were proposed for only six phosphosites and fitness effects were described for 38 phosphosites upon perturbation. By systematically characterizing functional relevance of S/T/Y phosphorylation in E. coli metabolism, we found 44 of the 52 mutated phosphosites to be functional based on growth phenotypes and intracellular metabolome profiles. By effectively doubling the number of known functional phosphosites, we provide evidence that protein phosphorylation is a major regulation process in bacterial metabolism. Combining in vitro and in vivo experiments, we demonstrate how single phosphosites modulate enzymatic activity and regulate metabolic fluxes in glycolysis, methylglyoxal bypass, acetate metabolism and the split between pentose phosphate and Entner-Doudoroff pathways through mechanisms that include shielding the substrate binding site, limiting structural dynamics, and disrupting interactions relevant for activity in vivo.
Collapse
Affiliation(s)
- Evgeniya Schastnaya
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Zrinka Raguz Nakic
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
- Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Christoph H Gruber
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | | | - Aarti Krishnan
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Nathan I Johns
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Jimin Park
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021; 49:1905-1926. [PMID: 34374408 DOI: 10.1042/bst20191088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.
Collapse
|
13
|
Protein acetyltransferases mediate bacterial adaptation to a diverse environment. J Bacteriol 2021; 203:e0023121. [PMID: 34251868 DOI: 10.1128/jb.00231-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Protein lysine acetylation is a conserved post-translational modification that modulates several cellular processes. Protein acetylation and its physiological implications are well understood in eukaryotes; however, its role is emerging in bacteria. Lysine acetylation in bacteria is fine-tuned by the concerted action of lysine acetyltransferases (KATs), protein deacetylases (KDACs), metabolic intermediates- acetyl-coenzyme A (Ac-CoA) and acetyl phosphate (AcP). AcP mediated nonenzymatic acetylation is predominant in bacteria due to its high acetyl transfer potential whereas, enzymatic acetylation by bacterial KATs (bKAT) are considered less abundant. SePat, the first bKAT discovered in Salmonella enterica, regulates the activity of the central metabolic enzyme- acetyl-CoA synthetase, through its acetylation. Recent studies have highlighted the role of bKATs in stress responses like pH tolerance, nutrient stress, persister cell formation, antibiotic resistance and pathogenesis. Bacterial genomes encode many putative bKATs of unknown biological function and significance. Detailed characterization of putative and partially characterized bKATs is important to decipher the acetylation mediated regulation in bacteria. Proper synthesis of information about the diverse roles of bKATs is missing to date, which can lead to the discovery of new antimicrobial targets in future. In this review, we provide an overview of the diverse physiological roles of known bKATs, and their mode of regulation in different bacteria. We also highlight existing gaps in the literature and present questions that may help understand the regulatory mechanisms mediated by bKATs in adaptation to a diverse habitat.
Collapse
|
14
|
Bolduc J, Koruza K, Luo T, Malo Pueyo J, Vo TN, Ezeriņa D, Messens J. Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities. Redox Biol 2021; 42:101959. [PMID: 33895094 PMCID: PMC8113037 DOI: 10.1016/j.redox.2021.101959] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/07/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Peroxiredoxins (Prdxs) sense and assess peroxide levels, and signal through protein interactions. Understanding the role of the multiple structural and post-translational modification (PTM) layers that tunes the peroxiredoxin specificities is still a challenge. In this review, we give a tabulated overview on what is known about human and bacterial peroxiredoxins with a focus on structure, PTMs, and protein-protein interactions. Armed with numerous cellular and atomic level experimental techniques, we look at the future and ask ourselves what is still needed to give us a clearer view on the cellular operating power of Prdxs in both stress and non-stress conditions.
Collapse
Affiliation(s)
- Jesalyn Bolduc
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Katarina Koruza
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Ting Luo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Julia Malo Pueyo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Trung Nghia Vo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.
| |
Collapse
|
15
|
Ahn S, Jung H, Kee JM. Quest for the Crypto-phosphoproteome. Chembiochem 2020; 22:319-325. [PMID: 33094900 DOI: 10.1002/cbic.202000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Indexed: 11/05/2022]
Abstract
Protein phosphorylation is one of the most studied post-translational modifications (PTMs). Despite the remarkable advances in phosphoproteomics, a chemically less-stable subset of the phosphosites, which we call the crypto-phosphoproteome, has remained underexplored due to technological challenges. In this Viewpoint, we briefly summarize the current understanding of these elusive protein phosphorylations and identify the missing pieces for future studies.
Collapse
Affiliation(s)
- Seungmin Ahn
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| |
Collapse
|
16
|
Phosphoproteomics and Bioinformatics Analyses Reveal Key Roles of GSK-3 and AKAP4 in Mouse Sperm Capacitation. Int J Mol Sci 2020; 21:ijms21197283. [PMID: 33023073 PMCID: PMC7582274 DOI: 10.3390/ijms21197283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Protein phosphorylation can induce signal transduction to change sperm motility patterns during sperm capacitation. However, changes in the phosphorylation of sperm proteins in mice are still incompletely understood. Here, capacitation-related phosphorylation in mouse sperms were firstly investigated by label-free quantitative (LFQ) phosphoproteomics coupled with bioinformatics analysis using ingenuity pathway analysis (IPA) methods such as canonical pathway, upstream regulator, and network analysis. Among 1632 phosphopeptides identified at serine, threonine, and tyrosine residues, 1050 novel phosphosites, corresponding to 402 proteins, were reported. Gene heatmaps for IPA canonical pathways showed a novel role for GSK-3 in GP6 signaling pathways associated with capacitation for 60 min. At the same time, the reduction of the abundant isoform-specific GSK-3α expression was shown by western blot (WB) while the LFQ pY of this isoform slightly decreased and then increased. The combined results from WB and LFQ methods explain the less inhibitory phosphorylation of GSK-3α during capacitation and also support the predicted increases in its activity. In addition, pAKAP4 increased at the Y156 site but decreased at the Y811 site in a capacitated state, even though IPA network analysis and WB analysis for overall pAKAP revealed upregulated trends. The potential roles of GSK-3 and AKAP4 in fertility are discussed.
Collapse
|
17
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
18
|
Ogata K, Ishihama Y. Extending the Separation Space with Trapped Ion Mobility Spectrometry Improves the Accuracy of Isobaric Tag-Based Quantitation in Proteomic LC/MS/MS. Anal Chem 2020; 92:8037-8040. [DOI: 10.1021/acs.analchem.0c01695] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kosuke Ogata
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Hentschker C, Maaß S, Junker S, Hecker M, Hammerschmidt S, Otto A, Becher D. Comprehensive Spectral Library from the Pathogenic Bacterium Streptococcus pneumoniae with Focus on Phosphoproteins. J Proteome Res 2020; 19:1435-1446. [DOI: 10.1021/acs.jproteome.9b00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christian Hentschker
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sabryna Junker
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Michael Hecker
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Andreas Otto
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| |
Collapse
|
20
|
Tatli M, Hebert AS, Coon JJ, Amador-Noguez D. Genome Wide Phosphoproteome Analysis of Zymomonas mobilis Under Anaerobic, Aerobic, and N 2-Fixing Conditions. Front Microbiol 2019; 10:1986. [PMID: 31551951 PMCID: PMC6737584 DOI: 10.3389/fmicb.2019.01986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022] Open
Abstract
Protein phosphorylation is a post-translational modification with widespread regulatory roles in both eukaryotes and prokaryotes. Using mass spectrometry, we performed a genome wide investigation of protein phosphorylation in the non-model organism and biofuel producer Zymomonas mobilis under anaerobic, aerobic, and N2-fixing conditions. Our phosphoproteome analysis revealed 125 unique phosphorylated proteins, belonging to major pathways such as glycolysis, TCA cycle, electron transport, nitrogen metabolism, and protein synthesis. Quantitative analysis revealed significant and widespread changes in protein phosphorylation across growth conditions. For example, we observed increased phosphorylation of nearly all glycolytic enzymes and a large fraction of ribosomal proteins during aerobic and N2-fixing conditions. We also observed substantial changes in the phosphorylation status of enzymes and regulatory proteins involved in nitrogen fixation and ammonia assimilation during N2-fixing conditions, including nitrogenase, the Rnf electron transport complex, the transcription factor NifA, GS-GOGAT cycle enzymes, and the PII regulatory protein. This suggested that protein phosphorylation may play an important role at regulating all aspects of nitrogen metabolism in Z. mobilis. This study provides new knowledge regarding the specific pathways and cellular processes that may be regulated by protein phosphorylation in this important industrial organism and provides a useful road map for future experiments that investigate the physiological role of specific phosphorylation events in Z. mobilis.
Collapse
Affiliation(s)
- Mehmet Tatli
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander S Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Genome Center of Wisconsin, Madison, WI, United States
| | - Joshua J Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,Morgridge Institute for Research, Madison, WI, United States
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
21
|
Qiao Y, Leng C, Liu G, Zhang Y, Lv X, Chen H, Sun J, Feng Z. Transcriptomic and proteomic profiling revealed global changes in Streptococcus thermophilus during pH-controlled batch fermentations. J Microbiol 2019; 57:769-780. [PMID: 31201725 DOI: 10.1007/s12275-019-8604-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/11/2019] [Accepted: 04/19/2019] [Indexed: 12/26/2022]
Abstract
Understanding global changes of physiological processes at the molecular level during the growth of Streptococcus thermophilus is essential for the rational design of cultivation media and the optimization of bioprocesses. Transcriptomics and proteomics were combined to investigate the global changes at the transcript and protein level during the growth of S. thermophilus. The expression of 1396 genes (FDR ≤ 0.001) and 876 proteins (P < 0.05) changed significantly over time. The most remarkable growth phase dependent changes occurred in the late-lag phase and were related to heterofermentation, glycolysis, peptidoglycan biosynthesis, conversion between amino acids and stress response. The present results could provide theoretical guidance for high-cell-density culture, help design cultivation media, and help attain a high biomass of S. thermophilus.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Cong Leng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Yanjiao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Xuepeng Lv
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Hongyu Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Jiahui Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China.
| |
Collapse
|
22
|
Bradley D, Beltrao P. Evolution of protein kinase substrate recognition at the active site. PLoS Biol 2019; 17:e3000341. [PMID: 31233486 PMCID: PMC6611643 DOI: 10.1371/journal.pbio.3000341] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/05/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023] Open
Abstract
Protein kinases catalyse the phosphorylation of target proteins, controlling most cellular processes. The specificity of serine/threonine kinases is partly determined by interactions with a few residues near the phospho-acceptor residue, forming the so-called kinase-substrate motif. Kinases have been extensively duplicated throughout evolution, but little is known about when in time new target motifs have arisen. Here, we show that sequence variation occurring early in the evolution of kinases is dominated by changes in specificity-determining residues. We then analysed kinase specificity models, based on known target sites, observing that specificity has remained mostly unchanged for recent kinase duplications. Finally, analysis of phosphorylation data from a taxonomically broad set of 48 eukaryotic species indicates that most phosphorylation motifs are broadly distributed in eukaryotes but are not present in prokaryotes. Overall, our results suggest that the set of eukaryotes kinase motifs present today was acquired around the time of the eukaryotic last common ancestor and that early expansions of the protein kinase fold rapidly explored the space of possible target motifs.
Collapse
Affiliation(s)
- David Bradley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
| |
Collapse
|
23
|
Araújo DS, Pereira M, Portis IG, dos Santos Junior ADCM, Fontes W, de Sousa MV, Assunção LDP, Baeza LC, Bailão AM, Ricart CAO, Brock M, Soares CMDA. Metabolic Peculiarities of Paracoccidioides brasiliensis Dimorphism as Demonstrated by iTRAQ Labeling Proteomics. Front Microbiol 2019; 10:555. [PMID: 30949151 PMCID: PMC6436475 DOI: 10.3389/fmicb.2019.00555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/04/2019] [Indexed: 01/29/2023] Open
Abstract
Paracoccidioidomycosis (PCM), a systemic mycosis with a high incidence in Latin America, is caused by thermodimorphic fungi of the Paracoccidioides genus. The contact with host occurs by the inhalation of conidia or mycelial propagules which once reaching the pulmonary alveoli differentiate into yeast cells. This transition process is vital in the pathogenesis of PCM allowing the fungus survival in the host. Thus, the present work performed a comparative proteome analysis of mycelia, mycelia-to-yeast transition, and yeast cells of Paracoccidioides brasiliensis. For that, tryptic peptides were labeled with iTRAQ and identified by LC-MS/MS and computational data analysis, which allowed the identification of 312 proteins differentially expressed in different morphological stages. Data showed that P. brasiliensis yeast cells preferentially employ aerobic beta-oxidation and the tricarboxylic acid cycle accompanied by oxidative phosphorylation for ATP production, in comparison to mycelia and the transition from mycelia-to-yeast cells. Furthermore, yeast cells show a metabolic reprogramming in amino acid metabolism and in the induction of virulence determinants and heat shock proteins allowing adaptation to environmental conditions during the increase of the temperature. In opposite of that, the alcoholic fermentation found to P. lutzii, at least under laboratory conditions, is strongly favored in mycelium compared to yeast cells. Thereby, the data strongly support substantial metabolic differences among members of the Paracoccidioides complex, when comparing the saprobiotic mycelia and the yeast parasitic phases.
Collapse
Affiliation(s)
- Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Faculdade Unida de Campinas, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Wagner Fontes
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Marcelo Valle de Sousa
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Mello Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carlos André Ornelas Ricart
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Matthias Brock
- Fungal Biology and Genetics Group, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
24
|
Sugiyama N, Miyake S, Lin MH, Wakabayashi M, Marusawa H, Nishiumi S, Yoshida M, Ishihama Y. Comparative proteomics of Helicobacter pylori strains reveals geographical features rather than genomic variations. Genes Cells 2019; 24:139-150. [PMID: 30548729 DOI: 10.1111/gtc.12662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/01/2018] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori, a pathogen of various gastric diseases, has many genome sequence variants. Thus, the pathogenesis and infection mechanisms of the H. pylori-driven gastric diseases have not been elucidated. Here, we carried out a large-scale proteome analysis to profile the heterogeneity of the proteome expression of 7 H. pylori strains by using an LC/MS/MS-based proteomics approach combined with a customized database consisting of nonredundant tryptic peptide sequences derived from full genome sequences of 52 H. pylori strains. The nonredundant peptide database enabled us to identify more peptides in the database search of MS/MS data compared with a simply merged protein database. Using this approach, we carried out proteome analysis of genome-unknown strains of H. pylori at as large a scale as genome-known ones. Clustering of the H. pylori strains using proteome profiling slightly differed from the genome profiling and more clearly divided the strains into two groups based on the isolated area. Furthermore, we identified phosphorylated proteins and sites of the H. pylori strains and obtained the phosphorylation motifs located in the N-terminus that are commonly observed in bacteria.
Collapse
Affiliation(s)
- Naoyuki Sugiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Satomi Miyake
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Miao-Hsia Lin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masaki Wakabayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan.,AMED-CREST, AMED, Kobe, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
In-depth analysis of Bacillus subtilis proteome identifies new ORFs and traces the evolutionary history of modified proteins. Sci Rep 2018; 8:17246. [PMID: 30467398 PMCID: PMC6250715 DOI: 10.1038/s41598-018-35589-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 01/05/2023] Open
Abstract
Bacillus subtilis is a sporulating Gram-positive bacterium widely used in basic research and biotechnology. Despite being one of the best-characterized bacterial model organism, recent proteomics studies identified only about 50% of its theoretical protein count. Here we combined several hundred MS measurements to obtain a comprehensive map of the proteome, phosphoproteome and acetylome of B. subtilis grown at 37 °C in minimal medium. We covered 75% of the theoretical proteome (3,159 proteins), detected 1,085 phosphorylation and 4,893 lysine acetylation sites and performed a systematic bioinformatic characterization of the obtained data. A subset of analyzed MS files allowed us to reconstruct a network of Hanks-type protein kinases, Ser/Thr/Tyr phosphatases and their substrates. We applied genomic phylostratigraphy to gauge the evolutionary age of B. subtilis protein classes and revealed that protein modifications were present on the oldest bacterial proteins. Finally, we performed a proteogenomic analysis by mapping all MS spectra onto a six-frame translation of B. subtilis genome and found evidence for 19 novel ORFs. We provide the most extensive overview of the proteome and post-translational modifications for B. subtilis to date, with insights into functional annotation and evolutionary aspects of the B. subtilis genome.
Collapse
|
26
|
Post-translational modification of nucleoid-associated proteins: an extra layer of functional modulation in bacteria? Biochem Soc Trans 2018; 46:1381-1392. [PMID: 30287510 DOI: 10.1042/bst20180488] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Post-translational modification (PTM) of histones has been investigated in eukaryotes for years, revealing its widespread occurrence and functional importance. Many PTMs affect chromatin folding and gene activity. Only recently the occurrence of such modifications has been recognized in bacteria. However, it is unclear whether PTM of the bacterial counterparts of eukaryotic histones, nucleoid-associated proteins (NAPs), bears a comparable significance. Here, we scrutinize proteome mass spectrometry data for PTMs of the four most abundantly present NAPs in Escherichia coli (H-NS, HU, IHF and FIS). This approach allowed us to identify a total of 101 unique PTMs in the 11 independent proteomic studies covered in this review. Combined with structural and genetic information on these proteins, we describe potential effects of these modifications (perturbed DNA-binding, structural integrity or interaction with other proteins) on their function.
Collapse
|
27
|
Lin MH, Potel CM, Tehrani KHME, Heck AJR, Martin NI, Lemeer S. A New Tool to Reveal Bacterial Signaling Mechanisms in Antibiotic Treatment and Resistance. Mol Cell Proteomics 2018; 17:2496-2507. [PMID: 30232125 DOI: 10.1074/mcp.ra118.000880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/12/2018] [Indexed: 11/06/2022] Open
Abstract
The rapid emergence of antimicrobial resistance is a major threat to human health. Antibiotics modulate a wide range of biological processes in bacteria and as such, the study of bacterial cellular signaling could aid the development of urgently needed new antibiotic agents. Due to the advances in bacterial phosphoproteomics, such a systemwide analysis of bacterial signaling in response to antibiotics has recently become feasible. Here we present a dynamic view of differential protein phosphorylation upon antibiotic treatment and antibiotic resistance. Most strikingly, differential phosphorylation was observed on highly conserved residues of resistance regulating transcription factors, implying a previously unanticipated role of phosphorylation mediated regulation. Using the comprehensive phosphoproteomics data presented here as a resource, future research can now focus on deciphering the precise signaling mechanisms contributing to resistance, eventually leading to alternative strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Miao-Hsia Lin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, University of Utrecht, Utrecht, The Netherlands
| | - Clement M Potel
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, University of Utrecht, Utrecht, The Netherlands
| | - Kamaleddin H M E Tehrani
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, University of Utrecht, Utrecht, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Semanjski M, Germain E, Bratl K, Kiessling A, Gerdes K, Macek B. The kinases HipA and HipA7 phosphorylate different substrate pools in
Escherichia coli
to promote multidrug tolerance. Sci Signal 2018; 11. [DOI: 10.1126/scisignal.aat5750] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Differences in the targets of HipA and its variant HipA7 may explain why these kinases have different effects on bacterial persistence.
Collapse
Affiliation(s)
- Maja Semanjski
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Elsa Germain
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Katrin Bratl
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Andreas Kiessling
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Kenn Gerdes
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| |
Collapse
|
29
|
Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements. J Proteomics 2018; 189:60-66. [PMID: 29605292 DOI: 10.1016/j.jprot.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Increasing number of studies report the relevance of protein Ser/Thr/Tyr phosphorylation in bacterial physiology, yet the analysis of this type of modification in bacteria still presents a considerable challenge. Unlike in eukaryotes, where tens of thousands of phosphorylation events likely occupy more than two thirds of the proteome, the abundance of protein phosphorylation is much lower in bacteria. Even the state-of-the-art phosphopeptide enrichment protocols fail to remove the high background of abundant unmodified peptides, leading to low signal intensity and undersampling of phosphopeptide precursor ions in consecutive data-dependent MS runs. Consequently, large-scale bacterial phosphoproteomic datasets often suffer from poor reproducibility and a high number of missing values. Here we explore the application of parallel reaction monitoring (PRM) on a Q Exactive mass spectrometer in bacterial phosphoproteome analysis, focusing especially on run-to-run sampling reproducibility. In multiple measurements of identical phosphopeptide-enriched samples, we show that PRM outperforms data-dependent acquisition (DDA) in terms of detection frequency, reaching almost complete sampling efficiency, compared to 20% in DDA. We observe a similar trend over multiple heterogeneous phosphopeptide-enriched samples and conclude that PRM shows a great promise in bacterial phosphoproteomics analyses where reproducible detection and quantification of a relatively small set of phosphopeptides is desired. SIGNIFICANCE: Bacterial phosphorylated peptides occur in low abundance compared to their unmodified counterparts, and are therefore rarely reproducibly detected in shotgun (DDA) proteomics measurements. Here we show that parallel reaction monitoring complements DDA analyses and makes detection of known, targeted phosphopeptides more reproducible. This will be of significance in replicated MS measurements that have a goal to reproducibly detect and quantify phosphopeptides of interest.
Collapse
|
30
|
Junker S, Maaβ S, Otto A, Michalik S, Morgenroth F, Gerth U, Hecker M, Becher D. Spectral Library Based Analysis of Arginine Phosphorylations in Staphylococcus aureus. Mol Cell Proteomics 2018; 17:335-348. [PMID: 29183913 PMCID: PMC5795395 DOI: 10.1074/mcp.ra117.000378] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/19/2022] Open
Abstract
Reversible protein phosphorylation is one of the major mechanisms in the regulation of protein expression and protein activity, controlling physiological functions of the important human pathogen Staphylococcus aureus Phosphorylations at serine, threonine and tyrosine are known to influence for example protein activity in central metabolic pathways and the more energy-rich phosphorylations at histidine, aspartate or cysteine can be found as part of two component system sensor domains or mediating bacterial virulence. In addition to these well-known phosphorylations, the phosphorylation at arginine residues plays an essential role. Hence, the deletion mutant S. aureus COL ΔptpB (protein tyrosine phosphatase B) was studied because the protein PtpB is assumed to be an arginine phosphatase. A gel-free approach was applied to analyze the changes in the phosphoproteome of the deletion mutant ΔptpB and the wild type in growing cells, thereby focusing on the occurrence of phosphorylation on arginine residues. In order to enhance the reliability of identified phosphorylation sites at arginine residues, a subset of arginine phosphorylated peptides was chemically synthesized. Combined spectral libraries based on phosphoenriched samples, synthetic arginine phosphorylated peptides and classical proteome samples provide a sophisticated tool for the analysis of arginine phosphorylations. This way, 212 proteins phosphorylated on serine, threonine, tyrosine or arginine residues were identified within the mutant ΔptpB and 102 in wild type samples. Among them, 207 arginine phosphosites were identified exclusively within the mutant ΔptpB, widely distributed along the whole bacterial metabolism. This identification of putative targets of PtpB allows further investigation of the physiological relevance of arginine phosphorylations and provides the basis for reliable quantification of arginine phosphorylations in bacteria.
Collapse
Affiliation(s)
- Sabryna Junker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Sandra Maaβ
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Andreas Otto
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Stephan Michalik
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | | | - Ulf Gerth
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Michael Hecker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Dörte Becher
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| |
Collapse
|
31
|
Widespread bacterial protein histidine phosphorylation revealed by mass spectrometry-based proteomics. Nat Methods 2018; 15:187-190. [DOI: 10.1038/nmeth.4580] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023]
|
32
|
Junker S, Maaβ S, Otto A, Michalik S, Morgenroth F, Gerth U, Hecker M, Becher D. Spectral Library Based Analysis of Arginine Phosphorylations in Staphylococcus aureus. MOLECULAR & CELLULAR PROTEOMICS : MCP 2017. [PMID: 29183913 DOI: 10.1074/mcp.ra117.000378.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reversible protein phosphorylation is one of the major mechanisms in the regulation of protein expression and protein activity, controlling physiological functions of the important human pathogen Staphylococcus aureus Phosphorylations at serine, threonine and tyrosine are known to influence for example protein activity in central metabolic pathways and the more energy-rich phosphorylations at histidine, aspartate or cysteine can be found as part of two component system sensor domains or mediating bacterial virulence. In addition to these well-known phosphorylations, the phosphorylation at arginine residues plays an essential role. Hence, the deletion mutant S. aureus COL ΔptpB (protein tyrosine phosphatase B) was studied because the protein PtpB is assumed to be an arginine phosphatase. A gel-free approach was applied to analyze the changes in the phosphoproteome of the deletion mutant ΔptpB and the wild type in growing cells, thereby focusing on the occurrence of phosphorylation on arginine residues. In order to enhance the reliability of identified phosphorylation sites at arginine residues, a subset of arginine phosphorylated peptides was chemically synthesized. Combined spectral libraries based on phosphoenriched samples, synthetic arginine phosphorylated peptides and classical proteome samples provide a sophisticated tool for the analysis of arginine phosphorylations. This way, 212 proteins phosphorylated on serine, threonine, tyrosine or arginine residues were identified within the mutant ΔptpB and 102 in wild type samples. Among them, 207 arginine phosphosites were identified exclusively within the mutant ΔptpB, widely distributed along the whole bacterial metabolism. This identification of putative targets of PtpB allows further investigation of the physiological relevance of arginine phosphorylations and provides the basis for reliable quantification of arginine phosphorylations in bacteria.
Collapse
Affiliation(s)
- Sabryna Junker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Sandra Maaβ
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Andreas Otto
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Stephan Michalik
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | | | - Ulf Gerth
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Michael Hecker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Dörte Becher
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| |
Collapse
|
33
|
Sun X, Jiang X. Automated platform of μLC-MS/MS using SAX trap column for highly efficient phosphopeptide analysis. Anal Bioanal Chem 2017; 409:2489-2493. [DOI: 10.1007/s00216-017-0198-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/23/2022]
|
34
|
Pontes AH, de Sousa MV. Mass Spectrometry-Based Approaches to Understand the Molecular Basis of Memory. Front Chem 2016; 4:40. [PMID: 27790611 PMCID: PMC5064248 DOI: 10.3389/fchem.2016.00040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/27/2016] [Indexed: 01/15/2023] Open
Abstract
The central nervous system is responsible for an array of cognitive functions such as memory, learning, language, and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS) have enabled the identification and quantification of thousands of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS)-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.
Collapse
Affiliation(s)
- Arthur H Pontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| | - Marcelo V de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| |
Collapse
|
35
|
Suriyanarayanan T, Periasamy S, Lin MH, Ishihama Y, Swarup S. Flagellin FliC Phosphorylation Affects Type 2 Protease Secretion and Biofilm Dispersal in Pseudomonas aeruginosa PAO1. PLoS One 2016; 11:e0164155. [PMID: 27701473 PMCID: PMC5049796 DOI: 10.1371/journal.pone.0164155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/20/2016] [Indexed: 12/02/2022] Open
Abstract
Protein phosphorylation has a major role in controlling the life-cycle and infection stages of bacteria. Proteome-wide occurrence of S/T/Y phosphorylation has been reported for many prokaryotic systems. Previously, we reported the phosphoproteome of Pseudomonas aeruginosa and Pseudomonas putida. In this study, we show the role of S/T phosphorylation of one motility protein, FliC, in regulating multiple surface-associated phenomena of P. aeruginosa PAO1. This is the first report of occurrence of phosphorylation in the flagellar protein, flagellin FliC in its highly conserved N-terminal NDO domain across several Gram negative bacteria. This phosphorylation is likely a well-regulated phenomenon as it is growth phase dependent in planktonic cells. The absence of phosphorylation in the conserved T27 and S28 residues of FliC, interestingly, did not affect swimming motility, but affected the secretome of type 2 secretion system (T2SS) and biofilm formation of PAO1. FliC phosphomutants had increased levels and activities of type 2 secretome proteins. The secretion efficiency of T2SS machinery is associated with flagellin phosphorylation. FliC phosphomutants also formed reduced biofilms at 24 h under static conditions and had delayed biofilm dispersal under dynamic flow conditions, respectively. The levels of type 2 secretome and biofilm formation under static conditions had an inverse correlation. Hence, increase in type 2 secretome levels was accompanied by reduced biofilm formation in the FliC phosphomutants. As T2SS is involved in nutrient acquisition and biofilm dispersal during survival and spread of P. aeruginosa, we propose that FliC phosphorylation has a role in ecological adaptation of this opportunistic environmental pathogen. Altogether, we found a system of phosphorylation that affects key surface related processes such as proteases secretion by T2SS, biofilm formation and dispersal.
Collapse
Affiliation(s)
- Tanujaa Suriyanarayanan
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Microbiology Lab, Faculty of Dentistry, National University of Singapore, Singapore, Sinagpore
| | - Saravanan Periasamy
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- Rajalakshmi Engineering College, Chennai, Tamil Nadu, India
| | - Miao-Hsia Lin
- Department of Molecular and Cellular Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Sanjay Swarup
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
36
|
Sugiyama N, Ishihama Y. Large-scale profiling of protein kinases for cellular signaling studies by mass spectrometry and other techniques. J Pharm Biomed Anal 2016; 130:264-272. [DOI: 10.1016/j.jpba.2016.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/26/2023]
|
37
|
Ohta S, Kimura M, Takagi S, Toramoto I, Ishihama Y. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins. J Proteome Res 2016; 15:3331-41. [PMID: 27504668 DOI: 10.1021/acs.jproteome.6b00512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.
Collapse
Affiliation(s)
- Shinya Ohta
- Center for Innovative and Translational Medicine Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Michiko Kimura
- Graduate School of Pharmaceutical Sciences, Kyoto University 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shunsuke Takagi
- Graduate School of Pharmaceutical Sciences, Kyoto University 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Iyo Toramoto
- Center for Innovative and Translational Medicine Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
38
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev 2016; 40:398-417. [PMID: 26926353 DOI: 10.1093/femsre/fuw003] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein modification and homeostasis in all cellular life.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Christophe Grangeasse
- Unité Microbiologie Moléculaire et Biochimie Structurale, UMR 5086-CNRS/ Université Lyon 1, Lyon 69367, France
| | - Kürşad Turgay
- Institut für Mikrobiologie, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
40
|
Semanjski M, Macek B. Shotgun proteomics of bacterial pathogens: advances, challenges and clinical implications. Expert Rev Proteomics 2016; 13:139-56. [PMID: 26653908 DOI: 10.1586/14789450.2016.1132168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry-based proteomics is increasingly used in analysis of bacterial pathogens. Simple experimental set-ups based on high accuracy mass spectrometry and powerful biochemical and bioinformatics tools are capable of reliably quantifying levels of several thousand bacterial proteins in a single experiment, reaching the analytical capacity to completely map whole proteomes. Here the authors present the state-of-the-art in bacterial pathogen proteomics and discuss challenges that the field is facing, especially in analysis of low abundant, modified proteins from organisms that are difficult to culture. Constant improvements in speed and sensitivity of mass spectrometers, as well as in bioinformatic and biochemical workflows will soon allow for comprehensive analysis of regulatory mechanisms of pathogenicity and enable routine application of proteomics in the clinical setting.
Collapse
Affiliation(s)
- Maja Semanjski
- a Quantitative Proteomics and Proteome Center Tuebingen, Interfaculty Institute for Cell Biology , University of Tuebingen , Tuebingen , Germany
| | - Boris Macek
- a Quantitative Proteomics and Proteome Center Tuebingen, Interfaculty Institute for Cell Biology , University of Tuebingen , Tuebingen , Germany
| |
Collapse
|