1
|
Dabour MS, Abdelgawad IY, Sadaf B, Daniel MR, Grant MKO, Seelig D, Zordoky BN. Losmapimod ameliorates doxorubicin-induced cardiotoxicity through attenuating senescence and inflammatory pathways. Biomed Pharmacother 2024; 179:117288. [PMID: 39146767 PMCID: PMC11447837 DOI: 10.1016/j.biopha.2024.117288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
Irreversible cardiotoxicity limits the clinical application of doxorubicin (DOX). DOX-induced cardiotoxicity has been associated with induction of senescence and activation of the p38 MAPK pathway. Losmapimod (LOSM), an orally active p38 MAPK inhibitor, is an anti-inflammatory agent with cardioprotective effects. Nevertheless, the effect of LOSM against DOX-induced cardiotoxicity has not been reported. In this study, we determined the effects of LOSM on DOX-induced chronic cardiotoxicity in C57BL/6 N mice. Five-week-old C57BL/6 N mice were fed diet containing LOSM (estimated daily intake 12 mg/kg/day) or a control diet for four days. Thereafter, mice were randomized to receive six weekly intraperitoneal injections of either DOX (4 mg/kg) or saline. Three days after the last injection, cardiac function was assessed by trans-thoracic echocardiography. Activation of p38, JNK, and ERK1/2 MAPKs were assessed by immunoblotting in the heart and liver. Gene expressions of senescence, inflammatory, oxidative stress, and mitochondrial function markers were quantified using real-time PCR and serum inflammatory markers were assessed by Luminex. Our results demonstrated that LOSM attenuated p38 MAPK activation, ameliorated DOX-induced cardiac dysfunction, and abrogated DOX-induced expression of the senescence marker p21Cip1. Additionally, LOSM demonstrated anti-inflammatory effects, with reduced cardiac Il-1α and Il-6 gene expression in DOX-treated mice. Systemic inflammation, assessed by serum cytokine levels, showed decreased IL-6 and CXCL1 in both DOX-treated mice and mice on LOSM diet. LOSM significantly increased mitofusin2 gene expression, which may enhance mitochondrial fusion. These findings underscore the potential therapeutic efficacy of p38 MAPK inhibition, exemplified by LOSM, in ameliorating DOX-induced cardiotoxicity, senescence, and inflammation.
Collapse
Affiliation(s)
- Mohamed S Dabour
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Egypt.
| | - Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Bushra Sadaf
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA; Faculty of Pharmacy, the University of Lahore, Lahore, Pakistan.
| | - Mary R Daniel
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, College of Veterinary Medicine, Saint Paul, MN 55108, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Zhang YF, Yu D, Gong XR, Meng C, Lv J, Li Q. Tropisetron attenuates neuroinflammation and chronic neuropathic pain via α7nAChR activation in the spinal cord in rats. J Spinal Cord Med 2024; 47:277-285. [PMID: 35353023 PMCID: PMC10885756 DOI: 10.1080/10790268.2022.2046923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Tropisetron is an alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonist and is a commonly used antiemetic clinically. α7nAChRs activation modulating nociception transmissions and cholinergic anti-inflammation may decrease neuropathic pain. This study was set to investigate the effects of tropisetron on neuropathic pain and neuroinflammation as well as the underlying mechanisms in rats. METHODS Neuropathic pain behavior was assessed in rats using the paw mechanical withdrawal threshold and paw thermal withdrawal latency before and after the establishment of a spared nerve injury (SNI) pain model in rats treated with tropisetron treatment in the presence or absence of the α7nAChR antagonist methyllycaconitine (MLA) through intrathecal injection. Their spinal cords were then harvested for inflammatory cytokines, the α7nAChR, p38 mitogen-activated protein kinase (p-p38MAPK) and cAMP-response element binding protein (CREB) measurement. RESULTS Tropisetron effectively alleviated mechanical allodynia and thermal hyperalgesia; decreased IL-6, IL-1ß and TNF-a; and down-regulated the phosphorylation of p38MAPK and CREB. Pre-treatment with MLA abolished these effects of tropisetron. CONCLUSION Our data indicate that tropisetron alleviates neuropathic pain may through inhibition of the p38MAPK-CREB pathway via α7nAChR activation. Thus, tropisetron may be a potential new therapeutic strategy for chronic neuropathic pain.
Collapse
Affiliation(s)
- Yu-fei Zhang
- Department of Anesthesiology, Taihe Hospital, Jinzhou Medical University Union Training Base, Shiyan, People’s Republic of China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| | - Di Yu
- Department of Anesthesiology, Taihe Hospital, Jinzhou Medical University Union Training Base, Shiyan, People’s Republic of China
- Department of Anesthesiology, Hubei No. 3 People’s Hospital of Jianghan University, Hubei University of Medicine, Wuhan, People’s Republic of China
| | - Xing-rui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, People’s Republic of China
| | - Chen Meng
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| | - Jing Lv
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| | - Qing Li
- Department of Anesthesiology, Taihe Hospital, Jinzhou Medical University Union Training Base, Shiyan, People’s Republic of China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| |
Collapse
|
3
|
Gordon D, Kivitz A, Singhal A, Burt D, Bangs MC, Huff EE, Hope HR, Monahan JB. Selective Inhibition of the MK2 Pathway: Data From a Phase IIa Randomized Clinical Trial in Rheumatoid Arthritis. ACR Open Rheumatol 2023; 5:63-70. [PMID: 36604812 PMCID: PMC9926068 DOI: 10.1002/acr2.11517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The study objective was to evaluate the safety, tolerability, pharmacodynamics, and preliminary efficacy of ATI-450 with methotrexate in patients with rheumatoid arthritis (RA). METHODS A parallel-assignment, placebo-controlled, investigator-blinded/patient-blinded multicenter study evaluated patients with moderate-to-severe RA aged 18 to 70 years. Eligible patients were randomized (1:1) to ATI-450 50-mg oral tablets twice daily or placebo with a stable weekly dose of methotrexate for 12 weeks. The primary objective was to assess ATI-450 safety and tolerability. The secondary objectives were to assess the median percentage change from baseline high-sensitivity C-reactive protein (hs-CRP) levels, the mean change from baseline in Disease Activity Score in 28 joints based on CRP level (DAS28-CRP) and Rheumatoid Arthritis Magnetic Resonance Imaging Score hand-wrist assessments of synovitis or bone erosion at week 12, and the proportion of patients with American College of Rheumatology 20/50/70 (ACR 20/50/70) and with DAS28-CRP scores of less than 2.6. The exploratory outcomes were change from baseline in endogenous and ex vivo-stimulated cytokine levels. RESULTS ATI-450 was well tolerated with no severe adverse events reported. ATI-450 reduced median hs-CRP levels by 42% or more at all posttreatment timepoints. In the ATI-450 group, a mean (median) decrease in DAS28-CRP score of 2.0 (2.1) was observed at week 12; proportions of patients with an ACR 20/50/70 response in the per-protocol population were 60%, 33%, and 20%, respectively, at week 12. Endogenous plasma levels of key inflammatory cytokines (tumor necrosis factor α, macrophage inflammatory protein 1β, interleukin 6, interleukin 8) were reduced across the 12 treatment weeks. CONCLUSION This is the first clinical study demonstrating that selective mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2) pathway blockade leads to a sustained antiinflammatory effect. This suggests that targeting the MK2 pathway mitigates the tachyphylaxis observed with p38 MAPK inhibitors in RA and supports further exploration.
Collapse
Affiliation(s)
- David Gordon
- (current address: Johnson & Johnson, Spring House, Pennsylvania), Aclaris Therapeutics, IncWaynePennsylvania
| | - Alan Kivitz
- Altoona Arthritis & Osteoporosis Center/Altoona Center for Clinical ResearchDuncansvillePennsylvania
| | | | - David Burt
- (current address: Johnson & Johnson, Spring House, Pennsylvania), Aclaris Therapeutics, IncWaynePennsylvania
| | | | - Emma E. Huff
- Aclaris Therapeutics, Inc., Wayne, Pennsylvania, and Confluence Discovery Technologies, IncSt. LouisMissouri
| | - Heidi Rath Hope
- Aclaris Therapeutics, Inc., Wayne, Pennsylvania, and Confluence Discovery Technologies, IncSt. LouisMissouri
| | - Joseph B. Monahan
- Aclaris Therapeutics, Inc., Wayne, Pennsylvania, and Confluence Discovery Technologies, IncSt. LouisMissouri
| |
Collapse
|
4
|
Sueda Y, Okazaki R, Funaki Y, Hasegawa Y, Ishikawa H, Hirayama Y, Inui G, Harada T, Takata M, Morita M, Yamasaki A. Specialized Pro-Resolving Mediators Do Not Inhibit the Synthesis of Inflammatory Mediators Induced by Tumor Necrosis Factor-α in Synovial Fibroblasts. Yonago Acta Med 2022; 65:111-125. [DOI: 10.33160/yam.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yuriko Sueda
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yoshihiro Funaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yasuyuki Hasegawa
- Rheumatology/ Collagen Disease Medicine, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Hiroki Ishikawa
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yuki Hirayama
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Genki Inui
- Respiratory Medicine, National Hospital Organization Yonago Medical Center, Yonago 683-0006, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Miki Takata
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Masato Morita
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
5
|
Cui H, Chen Y, Li K, Zhan R, Zhao M, Xu Y, Lin Z, Fu Y, He Q, Tang PC, Lei I, Zhang J, Li C, Sun Y, Zhang X, Horng T, Lu HS, Chen YE, Daugherty A, Wang D, Zheng L. Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection. Eur Heart J 2021; 42:4373-4385. [PMID: 34534287 PMCID: PMC11506060 DOI: 10.1093/eurheartj/ehab605] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
AIMS Aortic aneurysm and dissection (AAD) are high-risk cardiovascular diseases with no effective cure. Macrophages play an important role in the development of AAD. As succinate triggers inflammatory changes in macrophages, we investigated the significance of succinate in the pathogenesis of AAD and its clinical relevance. METHODS AND RESULTS We used untargeted metabolomics and mass spectrometry to determine plasma succinate concentrations in 40 and 1665 individuals of the discovery and validation cohorts, respectively. Three different murine AAD models were used to determine the role of succinate in AAD development. We further examined the role of oxoglutarate dehydrogenase (OGDH) and its transcription factor cyclic adenosine monophosphate-responsive element-binding protein 1 (CREB) in the context of macrophage-mediated inflammation and established p38αMKOApoe-/- mice. Succinate was the most upregulated metabolite in the discovery cohort; this was confirmed in the validation cohort. Plasma succinate concentrations were higher in patients with AAD compared with those in healthy controls, patients with acute myocardial infarction (AMI), and patients with pulmonary embolism (PE). Moreover, succinate administration aggravated angiotensin II-induced AAD and vascular inflammation in mice. In contrast, knockdown of OGDH reduced the expression of inflammatory factors in macrophages. The conditional deletion of p38α decreased CREB phosphorylation, OGDH expression, and succinate concentrations. Conditional deletion of p38α in macrophages reduced angiotensin II-induced AAD. CONCLUSION Plasma succinate concentrations allow to distinguish patients with AAD from both healthy controls and patients with AMI or PE. Succinate concentrations are regulated by the p38α-CREB-OGDH axis in macrophages.
Collapse
Affiliation(s)
- Hongtu Cui
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100871, China
| | - Yanghui Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1095, Qiaokou District, Wuhan 430000, China
| | - Ke Li
- Beijing Tiantan Hospital, China National Clinical Research Center of Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Nan Si Huan Xi Lu NO.119, Fengtai District, Beijing 100050, China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100871, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100871, China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100871, China
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Xueyuan Road NO.38, Haidian District, Beijing 100191, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100191, China
| | - Paul C Tang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, The University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Donghu Road NO.169, Wuchang District, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1095, Qiaokou District, Wuhan 430000, China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Zhongshan East Road NO.361, Shijiazhuang, Shijiazhuang 050017, China
| | - Tiffany Horng
- ShanghaiTech University, Yueyang Road NO.319, Xuhui District, Shanghai 201210, China
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, South Limestone, Lexington, KY 40536-0298, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, The University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, South Limestone, Lexington, KY 40536-0298, USA
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1095, Qiaokou District, Wuhan 430000, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Xueyuan Road NO.38, Haidian District, Beijing 100871, China
- Beijing Tiantan Hospital, China National Clinical Research Center of Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Nan Si Huan Xi Lu NO.119, Fengtai District, Beijing 100050, China
| |
Collapse
|
6
|
Xu W, Ye L, Wu H. MicroRNA-4423-3p inhibits proliferation of fibroblast-like synoviocytes by targeting matrix metalloproteinase 13 in rheumatoid arthritis. Bioengineered 2021; 12:9411-9423. [PMID: 34696684 PMCID: PMC8809979 DOI: 10.1080/21655979.2021.1988372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that is increasing in incidence worldwide. RA is regulated by a variety of microRNAs (miRNAs/miR). Moreover, analysis of public data has revealed that miR-4423-3p is significantly downregulated in peripheral blood mononuclear cells of RA patients. This study investigated the role of miR-4423-3p in RA. The levels of miR-4423-3p and matrix metalloproteinase 13 (MMP13) in RA patients and the regulatory relationship between miR-4423-3p and MMP13 were analyzed using public data. A dual-luciferase reporter assay was performed to verify that miR-4423-3p targets MMP13 in human fibroblast-like synoviocyte (HFLS) RA cells (HFLS-RA). Following the overexpression of miR-4423-3p, miR-4423-3p inhibitor, and MMP13 in HFLS-RA, viability, proliferation, cell cycle, apoptosis, and invasion/migration assays were used to detect the effects of miR-4423-3p targeting MMP13 on cell biological processes. The results revealed that miR-4423-3p was downregulated in peripheral blood mononuclear cells of RA patients and MMP13 was upregulated in synovial tissue of RA patients. miR-4423-3p targets the 3' untranslated region of MMP13 and downregulates MMP13 expression. After overexpression of miR-4423-3p, cell proliferation, migration, and invasion were inhibited, the cell cycle was prevented and cell apoptosis was promoted. Overexpression of MMP13 promoted cell proliferation, migration, and invasion, while accelerating the cell cycle process and suppressing apoptosis. The findings indicate that in HFLS-RA cells, overexpression of miR-4423-3p inhibited proliferation, migration, and invasion, and promoted apoptosis by negatively regulating MMP13. The overexpression of miR-4423-3p might be a novel strategy for the treatment of RA.
Collapse
Affiliation(s)
- Weihong Xu
- Department of Rheumatology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Lu Ye
- Department of Rheumatology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Targeting of Janus Kinases Limits Pro-Inflammatory but Also Immunosuppressive Circuits in the Crosstalk between Synovial Fibroblasts and Lymphocytes. Biomedicines 2021; 9:biomedicines9101413. [PMID: 34680530 PMCID: PMC8533088 DOI: 10.3390/biomedicines9101413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
Crosstalk between synovial fibroblasts (SF) and immune cells plays a central role in the development of rheumatoid arthritis (RA). Janus kinase inhibitors (JAKi) have proven efficacy in the treatment of RA, although clinical responses are heterogeneous. Currently, little is known regarding how JAKi affect pro- and anti-inflammatory circuits in the bidirectional interplay between SF and immune cells. Here, we examined the effects of tofacitinib, baricitinib and upadacitinib on crosstalk between SF and T or B lymphocytes in vitro and compared them with those of biologic disease modifying anti-rheumatic drugs (bDMARDs). JAKi dose-dependently suppressed cytokine secretion of T helper (Th) cells and decreased interleukin (IL)-6 and matrix metalloproteinase (MMP)3 secretion of SF stimulated by Th cells. Importantly, JAK inhibition attenuated the enhanced memory response of chronically stimulated SF. Vice versa, JAKi reduced the indoleamine-2,3-dioxygenase (IDO)1-mediated suppression of T cell-proliferation by SF. Remarkably, certain bDMARDs were as efficient as JAKi in suppressing the IL-6 and MMP3 secretion of SF stimulated by Th (adalimumab, secukinumab) or B cells (canakinumab) and combining bDMARDs with JAKi had synergistic effects. In conclusion, JAKi limit pro-inflammatory circuits in the crosstalk between SF and lymphocytes; however, they also weaken the immunosuppressive functions of SF. Both effects were dose-dependent and may contribute to heterogeneity in clinical response to treatment.
Collapse
|
8
|
Molecular characterization, expression analysis and function identification of Pf_TNF-α and its two receptors Pf_TNFR1 and Pf_TNFR2 in yellow catfish (Pelteobagrus fulvidraco). Int J Biol Macromol 2021; 185:176-193. [PMID: 34144067 DOI: 10.1016/j.ijbiomac.2021.06.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 06/12/2021] [Indexed: 01/24/2023]
Abstract
Inflammation is a common manifestation of body immunity and mediates a cascade of cytokines. Tumor necrosis factor-α (TNF-α), as a multi-effect cytokine, plays an important role in the inflammatory response by interacting with its receptor (TNFR). In this study, Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 genes were cloned from yellow catfish (Pelteobagrus fulvidraco), and bioinformatics analyses showed that the three genes were conserved and possessed similar sequence characteristics as those of other vertebrates. The qPCR results showed that Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 mRNAs were constitutively expressed in 14 tissues and the lymphocytes of four tissues from healthy adults. The mRNA expression levels of Pf_TNF-α and Pf_TNFR1 genes were significantly up-regulated in the spleen, liver, trunk kidney, head kidney and gill after Edwardsiella ictaluri infection, while the mRNA expression of Pf_TNFR2 was significantly up-regulated in the spleen, and down-regulated in the liver and gill. In the isolated peripheral blood leukocytes (PBLs) of yellow catfish, the expression of Pf_TNF-α mRNA was notably up-regulated and the two Pf_TNFR transcripts were distinctly down-regulated after stimulation with lipopolysaccharides (LPS), peptidoglycan (PGN), polyinosinic-polycytidylic acid (Poly I:C) and phytohaemagglutinin (PHA). After stimulated by recombinant (r) Pf_sTNF protein, the mRNA expressions of various inflammatory factors genes were up-regulated in the PBLs. Meanwhile, rPf_sTNF promoted the phagocytic activity of leukocytes, whereas the activity mediated by rPf_sTNF could be inhibited by rPf_TNFR1CRD2/3 and rPf_TNFR2CRD2/3. The up-regulation of TNF-α and IL-1β mRNAs expression triggered by rPf_sTNF could be inhibited by MAPK inhibitor (VX-702) and NF-κB inhibitor (PDTC). rPf_sTNF induced the expression of FADD mRNA in PBLs and increased the apoptotic rate of PBLs, and inhibiting the NF-κB and MAPK signal pathways could enhance the apoptosis of PBLs. The results indicate that Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 play important roles in the immune response of yellow catfish to bacterial invasion.
Collapse
|
9
|
Gordon D, Hellriegel ET, Hope HR, Burt D, Monahan JB. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the MK2 Inhibitor ATI-450 in Healthy Subjects: A Placebo-Controlled, Randomized Phase 1 Study. Clin Pharmacol 2021; 13:123-134. [PMID: 34140814 PMCID: PMC8203602 DOI: 10.2147/cpaa.s305308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose ATI-450 is an oral, small-molecule inhibitor of the p38α mitogen-activated protein kinase (MAPK)/MAPK-activated protein kinase 2 (MK2) inflammatory signaling pathway. This phase 1, single and multiple ascending dose (SAD, MAD) study evaluated ATI-450 safety, tolerability, pharmacokinetics, and pharmacodynamics. Patients and Methods Healthy adults were randomly assigned to SAD (10, 30, 50, 100 mg; n=24) and MAD (10, 30, 50 mg twice daily [BID] for 7 days; n=24) cohorts of ATI-450 or placebo (n=14). Safety and tolerability were evaluated through clinical and laboratory assessments. Pharmacokinetic parameters were evaluated in plasma samples; pharmacodynamic assessments included quantification of cytokine levels (tumor necrosis factor α [TNF-α], interleukin [IL]-1β, IL-6, IL-8) and phosphorylation of the MK2 downstream substrate, heat shock protein 27 (p-HSP27). Results The most common adverse events were headache (10/48, 20.8%), dizziness (6/48, 12.5%), upper respiratory tract infection (3/48, 6.3%), and constipation (3/48, 6.3%). Pharmacokinetics were dose-proportional, with a terminal half-life of 9‒12 hours in the MAD cohorts on day 7. Dose- and concentration-dependent inhibition of ex vivo stimulated cytokines and target biomarker was observed. On day 7, patients in the 50 mg BID dose cohort recorded mean trough drug levels that were 1.4, 2.2, 2.3, and 2.4 times greater than the IC80 for TNF-α, IL-1β, IL-8, and p-HSP27, respectively. Mean Cmax was 3.5, 5.4, 5.6, and 6.0 times greater than the IC80 for TNF-α, IL-1β, IL-8, and p-HSP27, respectively. IL-6 inhibition >50% was noted for part of the dosing interval. Conclusion ATI-450 was well tolerated at the doses investigated, exhibited dose- and time-independent (ie, linear) pharmacokinetics, and dose-related pharmacodynamic effects. These results support further study of ATI-450 in immunoinflammatory diseases in phase 2 trials.
Collapse
Affiliation(s)
- David Gordon
- Research and Development, Aclaris Therapeutics, Inc., Wayne, PA, USA
| | | | - Heidi Rath Hope
- Research and Development, Aclaris Therapeutics, Inc., and Confluence Discovery Technologies, Inc., St. Louis, MO, USA
| | - David Burt
- Research and Development, Aclaris Therapeutics, Inc., Wayne, PA, USA
| | - Joseph B Monahan
- Research and Development, Aclaris Therapeutics, Inc., and Confluence Discovery Technologies, Inc., St. Louis, MO, USA
| |
Collapse
|
10
|
Starchenko A, Graves-Deal R, Brubaker D, Li C, Yang Y, Singh B, Coffey RJ, Lauffenburger DA. Cell surface integrin α5ß1 clustering negatively regulates receptor tyrosine kinase signaling in colorectal cancer cells via glycogen synthase kinase 3. Integr Biol (Camb) 2021; 13:153-166. [PMID: 34037774 PMCID: PMC8204629 DOI: 10.1093/intbio/zyab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
As a key process within the tissue microenvironment, integrin signaling can influence cell functional responses to growth factor stimuli. We show here that clustering of integrin α5ß1 at the plasma membrane of colorectal cancer-derived epithelial cells modulates their ability to respond to stimulation by receptor tyrosine kinase (RTK)-activating growth factors EGF, NRG and HGF, through GSK3-mediated suppression of Akt pathway. We observed that integrin α5ß1 is lost from the membrane of poorly organized human colorectal tumors and that treatment with the integrin-clustering antibody P4G11 is sufficient to induce polarity in a mouse tumor xenograft model. While adding RTK growth factors (EGF, NRG and HGF) to polarized colorectal cancer cells induced invasion and loss of monolayer formation in 2D and 3D, this pathological behavior could be blocked by P4G11. Phosphorylation of ErbB family members as well as MET following EGF, NRG and HGF treatment was diminished in cells pretreated with P4G11. Focusing on EGFR, we found that blockade of integrin α5ß1 increased EGFR phosphorylation. Since activity of multiple downstream kinase pathways were altered by these various treatments, we employed computational machine learning techniques to ascertain the most important effects. Partial least-squares discriminant analysis identified GSK3 as a major regulator of EGFR pathway activities influenced by integrin α5ß1. Moreover, we used partial correlation analysis to examine signaling pathway crosstalk downstream of EGF stimulation and found that integrin α5ß1 acts as a negative regulator of the AKT signaling cascade downstream of EGFR, with GSK3 acting as a key mediator. We experimentally validated these computational inferences by confirming that blockade of GSK3 activity is sufficient to induce loss of polarity and increase of oncogenic signaling in the colonic epithelial cells.
Collapse
Affiliation(s)
- Alina Starchenko
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Ramona Graves-Deal
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Douglas Brubaker
- Purdue University, Department of Biomedical Engineering, West Lafayette, IN, USA
| | - Cunxi Li
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Yuping Yang
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Bhuminder Singh
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Robert J Coffey
- Vanderbilt University Medical Center, Department of Cell & Developmental Biology, Nashville, TN, USA
| | - Douglas A Lauffenburger
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| |
Collapse
|
11
|
Kholodenko BN, Rauch N, Kolch W, Rukhlenko OS. A systematic analysis of signaling reactivation and drug resistance. Cell Rep 2021; 35:109157. [PMID: 34038718 PMCID: PMC8202068 DOI: 10.1016/j.celrep.2021.109157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/24/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence suggests that the reactivation of initially inhibited signaling pathways causes drug resistance. Here, we analyze how network topologies affect signaling responses to drug treatment. Network-dependent drug resistance is commonly attributed to negative and positive feedback loops. However, feedback loops by themselves cannot completely reactivate steady-state signaling. Newly synthesized negative feedback regulators can induce a transient overshoot but cannot fully restore output signaling. Complete signaling reactivation can only occur when at least two routes, an activating and inhibitory, connect an inhibited upstream protein to a downstream output. Irrespective of the network topology, drug-induced overexpression or increase in target dimerization can restore or even paradoxically increase downstream pathway activity. Kinase dimerization cooperates with inhibitor-mediated alleviation of negative feedback. Our findings inform drug development by considering network context and optimizing the design drug combinations. As an example, we predict and experimentally confirm specific combinations of RAF inhibitors that block mutant NRAS signaling. Kholodenko et al. uncover signaling network circuitries and molecular mechanisms necessary and sufficient for complete reactivation or overshoot of steady-state signaling after kinase inhibitor treatment. The two means to revive signaling output fully are through network topology or reactivation of the kinase activity of the primary drug target. Blocking RAF dimer activity by a combination of type I½ and type II RAF inhibitors efficiently blocks mutant NRAS-driven ERK signaling.
Collapse
Affiliation(s)
- Boris N Kholodenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Nora Rauch
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Canovas B, Nebreda AR. Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 2021; 22:346-366. [PMID: 33504982 PMCID: PMC7838852 DOI: 10.1038/s41580-020-00322-w] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The ability of cells to deal with different types of stressful situations in a precise and coordinated manner is key for survival and involves various signalling networks. Over the past 25 years, p38 kinases — in particular, p38α — have been implicated in the cellular response to stress at many levels. These span from environmental and intracellular stresses, such as hyperosmolarity, oxidative stress or DNA damage, to physiological situations that involve important cellular changes such as differentiation. Given that p38α controls a plethora of functions, dysregulation of this pathway has been linked to diseases such as inflammation, immune disorders or cancer, suggesting the possibility that targeting p38α could be of therapeutic interest. In this Review, we discuss the organization of this signalling pathway focusing on the diversity of p38α substrates, their mechanisms and their links to particular cellular functions. We then address how the different cellular responses can be generated depending on the signal received and the cell type, and highlight the roles of this kinase in human physiology and in pathological contexts. p38α — the best-characterized member of the p38 kinase family — is a key mediator of cellular stress responses. p38α is activated by a plethora of signals and functions through a multitude of substrates to regulate different cellular behaviours. Understanding context-dependent p38α signalling provides important insights into p38α roles in physiology and pathology.
Collapse
Affiliation(s)
- Begoña Canovas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
13
|
Yang Y, Wen J, Zheng B, Wu S, Mao Q, Liang L, Li Z, Bachmann T, Bekker A, Tao YX. CREB Participates in Paclitaxel-Induced Neuropathic Pain Genesis Through Transcriptional Activation of Dnmt3a in Primary Sensory Neurons. Neurotherapeutics 2021; 18:586-600. [PMID: 33051852 PMCID: PMC8116406 DOI: 10.1007/s13311-020-00931-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathic pain (CIPNP) often occurs in cancer patients treated with antineoplastic drugs. Therapeutic management of CIPNP is very limited, at least in part due to the largely unknown mechanisms that underlie CIPNP genesis. Here, we showed that systemic administration of the chemotherapeutic drug paclitaxel significantly and time-dependently increased the levels of cyclic AMP response element-binding protein (CREB) in dorsal root ganglion (DRG) neurons. Blocking this increase through DRG microinjection of Creb siRNA attenuated paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities. Mimicking this increase through DRG microinjection of the adeno-associated virus 5 expressing full-length Creb mRNA led to enhanced responses to basal mechanical, heat, and cold stimuli in mice in absence of paclitaxel treatment. Mechanically, paclitaxel-induced increase of DRG CREB protein augmented Dnmt3a promoter activity and participated in the paclitaxel-induced upregulation of DNMT3a protein in the DRG. CREB overexpression also elevated the expression of DNMT3a in in vivo and in vitro DRG neurons of naïve mice. Given that DNMT3a is an endogenous instigator of CIPNP and that CREB co-expresses with DNMT3a in DRG neurons, CREB may be a key player in CIPNP through transcriptional activation of the Dnmt3a gene in primary sensory neurons. CREB is thus a likely potential target for the therapeutic management of this disorder.
Collapse
Affiliation(s)
- Yong Yang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Jing Wen
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Bixin Zheng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Qingxiang Mao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Zhisong Li
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Thomas Bachmann
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA.
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
14
|
Zeigler AC, Nelson AR, Chandrabhatla AS, Brazhkina O, Holmes JW, Saucerman JJ. Computational model predicts paracrine and intracellular drivers of fibroblast phenotype after myocardial infarction. Matrix Biol 2020; 91-92:136-151. [PMID: 32209358 PMCID: PMC7434705 DOI: 10.1016/j.matbio.2020.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
The fibroblast is a key mediator of wound healing in the heart and other organs, yet how it integrates multiple time-dependent paracrine signals to control extracellular matrix synthesis has been difficult to study in vivo. Here, we extended a computational model to simulate the dynamics of fibroblast signaling and fibrosis after myocardial infarction (MI) in response to time-dependent data for nine paracrine stimuli. This computational model was validated against dynamic collagen expression and collagen area fraction data from post-infarction rat hearts. The model predicted that while many features of the fibroblast phenotype at inflammatory or maturation phases of healing could be recapitulated by single static paracrine stimuli (interleukin-1 and angiotensin-II, respectively), mimicking the reparative phase required paired stimuli (e.g. TGFβ and endothelin-1). Virtual overexpression screens simulated with either static cytokine pairs or post-MI paracrine dynamic predicted phase-specific regulators of collagen expression. Several regulators increased (Smad3) or decreased (Smad7, protein kinase G) collagen expression specifically in the reparative phase. NADPH oxidase (NOX) overexpression sustained collagen expression from reparative to maturation phases, driven by TGFβ and endothelin positive feedback loops. Interleukin-1 overexpression had mixed effects, both enhancing collagen via the TGFβ positive feedback loop and suppressing collagen via NFκB and BAMBI (BMP and activin membrane-bound inhibitor) incoherent feed-forward loops. These model-based predictions reveal network mechanisms by which the dynamics of paracrine stimuli and interacting signaling pathways drive the progression of fibroblast phenotypes and fibrosis after myocardial infarction.
Collapse
Affiliation(s)
- Angela C Zeigler
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908-0759, USA
| | - Anders R Nelson
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Anirudha S Chandrabhatla
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908-0759, USA
| | - Olga Brazhkina
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908-0759, USA; Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908-0759, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA; Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908-0759, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Lambert WS, Pasini S, Collyer JW, Formichella CR, Ghose P, Carlson BJ, Calkins DJ. Of Mice and Monkeys: Neuroprotective Efficacy of the p38 Inhibitor BIRB 796 Depends on Model Duration in Experimental Glaucoma. Sci Rep 2020; 10:8535. [PMID: 32444682 PMCID: PMC7244559 DOI: 10.1038/s41598-020-65374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 01/23/2023] Open
Abstract
Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). Early progression involves retinal ganglion cell (RGC) axon dysfunction that precedes frank degeneration. Previously we demonstrated that p38 MAPK inhibition abates axonal dysfunction and slows degeneration in the inducible microbead occlusion model of glaucoma in rat. Here, we assessed the neuroprotective effect of topical eye delivery of the p38 MAPK inhibitor BIRB 796 in three models of glaucoma (microbead occlusion in rat and squirrel monkey and the genetic DBA/2 J mouse model) with distinct durations of IOP elevation. While BIRB 796 did not influence IOP, treatment over four weeks in rats prevented degradation of anterograde axonal transport to the superior colliculus and degeneration in the optic nerve. Treatment over months in the chronic DBA/2 J model and in the squirrel monkey model reduced expression and activation of p38 downstream targets in the retina and brain but did not rescue RGC axon transport or degeneration, suggesting the efficacy of BIRB 796 in preventing associated degeneration of the RGC projection depends on the duration of the experimental model. These results emphasize the importance of evaluating potential therapeutic compounds for neuroprotection in multiple models using elongated treatment paradigms for an accurate assessment of efficacy.
Collapse
Affiliation(s)
- Wendi S Lambert
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Silvia Pasini
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - John W Collyer
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Cathryn R Formichella
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Purnima Ghose
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Brian J Carlson
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - David J Calkins
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA.
| |
Collapse
|
16
|
Burja B, Mertelj T, Frank-Bertoncelj M. Hi- JAKi-ng Synovial Fibroblasts in Inflammatory Arthritis With JAK Inhibitors. Front Med (Lausanne) 2020; 7:124. [PMID: 32432116 PMCID: PMC7214667 DOI: 10.3389/fmed.2020.00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022] Open
Abstract
The Janus kinase (JAK)-Signal transducer and activator of transcription (STAT) pathway is one of the central signaling hubs in inflammatory, immune and cancer cells. Inhibiting the JAK-STAT pathway with JAK inhibitors (jakinibs) constitutes an important therapeutic strategy in cancer and chronic inflammatory diseases like rheumatoid arthritis (RA). FDA has approved different jakinibs for the treatment of RA, including tofacitinib, baricitinib and upadacitinib, and several jakinibs are being tested in clinical trials. Here, we reviewed published studies of jakinib effects on resolving synovial pathology in inflammatory arthritis. We discussed the results of jakinibs on structural joint damage in clinical trials and explored the effects of jakinibs across different in vitro, ex vivo, and in vivo synovial experimental models. We delved rigorously into experimental designs of in vitro fibroblast studies, deconvoluted jakinib efficacy in synovial fibroblasts across diverse experimental conditions and discussed their translatability in vivo. Synovial fibroblasts can readily activate the JAK-STAT signaling pathway in response to cytokine stimulation. We highlighted rather limited effects of jakinibs on the in vitro cultured synovial fibroblasts and inferred that direct and indirect (immune cell-dependent) actions of jakinibs are required to curb the fibroblast pathology in vivo. These actions have not been mimicked optimally in current in vitro experimental designs, where inflammatory stimuli do not naturally clear out with treatment as they do in vivo. While summarizing the broad knowledge of synovial jakinib effects, our review uniquely challenges future study designs to better mimick the jakinib actions in broader cell communities, as occurring in vivo in the inflamed synovium. This can deepen our understanding of collective synovial activities of jakinibs and their therapeutic limitations, thereby fostering jakinib development in arthritis.
Collapse
Affiliation(s)
- Blaž Burja
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland.,Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tonja Mertelj
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | | |
Collapse
|
17
|
Strasser SD, Ghazi PC, Starchenko A, Boukhali M, Edwards A, Suarez-Lopez L, Lyons J, Changelian PS, Monahan JB, Jacobsen J, Brubaker DK, Joughin BA, Yaffe MB, Haas W, Lauffenburger DA, Haigis KM. Substrate-based kinase activity inference identifies MK2 as driver of colitis. Integr Biol (Camb) 2020; 11:301-314. [PMID: 31617572 DOI: 10.1093/intbio/zyz025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 12/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating disorder that has few treatment options due to a lack of comprehensive understanding of its molecular pathogenesis. We used multiplexed mass spectrometry to collect high-content information on protein phosphorylation in two different mouse models of IBD. Because the biological function of the vast majority of phosphorylation sites remains unknown, we developed Substrate-based Kinase Activity Inference (SKAI), a methodology to infer kinase activity from phosphoproteomic data. This approach draws upon prior knowledge of kinase-substrate interactions to construct custom lists of kinases and their respective substrate sites, termed kinase-substrate sets that employ prior knowledge across organisms. This expansion as much as triples the amount of prior knowledge available. We then used these sets within the Gene Set Enrichment Analysis framework to infer kinase activity based on increased or decreased phosphorylation of its substrates in a dataset. When applied to the phosphoproteomic datasets from the two mouse models, SKAI predicted largely non-overlapping kinase activation profiles. These results suggest that chronic inflammation may arise through activation of largely divergent signaling networks. However, the one kinase inferred to be activated in both mouse models was mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2 or MK2), a serine/threonine kinase that functions downstream of p38 stress-activated mitogen-activated protein kinase. Treatment of mice with active colitis with ATI450, an orally bioavailable small molecule inhibitor of the MK2 pathway, reduced inflammatory signaling in the colon and alleviated the clinical and histological features of inflammation. These studies establish MK2 as a therapeutic target in IBD and identify ATI450 as a potential therapy for the disease.
Collapse
Affiliation(s)
- Samantha Dale Strasser
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Phaedra C Ghazi
- Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Myriam Boukhali
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,Center for Cancer Research, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Amanda Edwards
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,Center for Cancer Research, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Lucia Suarez-Lopez
- Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jesse Lyons
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Paul S Changelian
- Aclaris Therapeutics, Inc., 4320 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Joseph B Monahan
- Aclaris Therapeutics, Inc., 4320 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Jon Jacobsen
- Aclaris Therapeutics, Inc., 4320 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Douglas K Brubaker
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Wilhelm Haas
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,Center for Cancer Research, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kevin M Haigis
- Cancer Research Institute and Division of Genetics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,Harvard Digestive Disease Center, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
18
|
Miura H, Kondo Y, Matsuda M, Aoki K. Cell-to-Cell Heterogeneity in p38-Mediated Cross-Inhibition of JNK Causes Stochastic Cell Death. Cell Rep 2019; 24:2658-2668. [PMID: 30184500 DOI: 10.1016/j.celrep.2018.08.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
The stress-activated protein kinases c-Jun N-terminal kinase (JNK) and p38 are important players in cell-fate decisions in response to environmental stress signals. Crosstalk signaling between JNK and p38 is emerging as an important regulatory mechanism in inflammatory and stress responses. However, it is unknown how this crosstalk affects signaling dynamics, cell-to-cell variation, and cellular responses at the single-cell level. We established a multiplexed live-cell imaging system based on kinase translocation reporters to simultaneously monitor JNK and p38 activities with high specificity and sensitivity at single-cell resolution. Various stresses activated JNK and p38 with various dynamics. In all cases, p38 suppressed JNK activity in a cross-inhibitory manner. We demonstrate that p38 antagonizes JNK through both transcriptional and post-translational mechanisms. This cross-inhibition generates cellular heterogeneity in JNK activity after stress exposure. Our data indicate that this heterogeneity in JNK activity plays a role in fractional killing in response to UV stress.
Collapse
Affiliation(s)
- Haruko Miura
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
19
|
CXCL4 is a driver of cytokine mRNA stability in monocyte-derived dendritic cells. Mol Immunol 2019; 114:524-534. [DOI: 10.1016/j.molimm.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
|
20
|
Losartan suppresses the inflammatory response in collagen-induced arthritis by inhibiting the MAPK and NF-κB pathways in B and T cells. Inflammopharmacology 2018; 27:487-502. [PMID: 30426454 DOI: 10.1007/s10787-018-0545-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
The angiotensin II type 1 receptor (AT1R) antagonist losartan has been confirmed to have a moderate anti-inflammatory effect in vitro and in vivo. However, how it affects immune cells in Rheumatoid Arthritis (RA) is still unknown. We found that in human synovial tissues, AT1R is significantly expressed on T cells and B cells. Treatment with losartan (15 mg/kg) alone and in combination with a low dose of methotrexate (MTX 0.25 mg/kg/3 days) significantly suppressed the progression of CIA. Secondary paw swelling, joint destruction and the presence of pro-inflammatory cytokines (TNF-α and IFN-γ) in the serum were alleviated after treatment. The therapeutic effects of losartan were based on reduced T-cell and B-cell activation, specifically by decreased cell vitality and pro-inflammatory cytokine production. In addition, losartan combined with a low dose of MTX achieved a similar therapeutic effect, while protecting liver and kidney from MTX damage. Mechanistically, losartan inhibits the production of pro-inflammatory mediators, reduces the phosphorylation of p38, ERK, and p65, p50 nuclear transposition in T cells and B cells. Phosphorylation of JNK is not affected by losartan in the CIA rat model. losartan can be used as an effective RA treatment, which exhibits anti-arthritic effects potentially through down-regulating the phosphorylation of p38, ERK and signaling through NF-κB. While achieving similar anti-rheumatic effects, a combination therapy of losartan with a low dose of MTX, can protect from liver and renal damage caused by giving a high dose of MTX.
Collapse
|
21
|
Truskey GA. Development and application of human skeletal muscle microphysiological systems. LAB ON A CHIP 2018; 18:3061-3073. [PMID: 30183050 PMCID: PMC6177290 DOI: 10.1039/c8lc00553b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A number of major disease states involve skeletal muscle, including type 2 diabetes, muscular dystrophy, sarcopenia and cachexia arising from cancer or heart disease. Animals do not accurately represent many of these disease states. Human skeletal muscle microphysiological systems derived from primary or induced pluripotent stem cells (hPSCs) can provide an in vitro model of genetic and chronic diseases and assess individual variations. Three-dimensional culture systems more accurately represent skeletal muscle function than do two-dimensional cultures. While muscle biopsies enable culture of primary muscle cells, hPSCs provide the opportunity to sample a wider population of donors. Recent advances to promote maturation of PSC-derived skeletal muscle provide an alternative to primary cells. While contractile function is often measured in three-dimensional cultures and several systems exist to characterize contraction of small numbers of muscle fibers, there is a need for functional measures of metabolism suited for microphysiological systems. Future research should address generation of well-differentiated hPSC-derived muscle cells, enabling muscle repair in vitro, and improved disease models.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biomedical Engineering, Duke University, 1427 CIEMAS, 101 Science Drive, Durham, NC 27708-0281, USA.
| |
Collapse
|
22
|
Singh AK, Fechtner S, Chourasia M, Sicalo J, Ahmed S. Critical role of IL-1α in IL-1β-induced inflammatory responses: cooperation with NF-κBp65 in transcriptional regulation. FASEB J 2018; 33:2526-2536. [PMID: 30272996 DOI: 10.1096/fj.201801513r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The IL-1 cytokines are considered among the first family of cytokines that orchestrate acute and chronic inflammatory diseases. Both IL-1β and IL-1α are members of the IL-1 family; however, their distinct roles in the inflammatory processes remain poorly understood. We explored the role of IL-1α in IL-1β-activated signaling pathways causing synovial inflammation in rheumatoid arthritis (RA). Using synovial fibroblasts isolated from RA joints, we found that IL-1β significantly stimulated IL-1α expression, which was selectively inhibited by blocking the NF-κB pathway. Knockdown of IL-1α using small interfering RNA abolished IL-1β-induced pro-IL-1α and pro-IL-1β expression and suppressed inflammation. Native and chromatin immunoprecipitation studies showed that IL-1α cooperates in NF-κBp65 binding to the distal region of IL-1α promoter and to the proximal region of IL-1β promoter upstream of the transcription start site to stabilize their gene transcription. Molecular dynamics simulation of IL-1α or IL-1β binding to IL-1 receptor showed distinct interaction sites that corroborate with the ability of IL-1α to differentially activate phosphorylation of signaling proteins compared with IL-1β. Our study highlights the importance of IL-1α in mediating IL-1β-induced inflammation in addition to maintaining its expression and providing a rationale for targeting IL-1α to minimize the role of IL-1β in inflammatory diseases like RA.-Singh, A. K., Fechtner, S., Chourasia, M., Sicalo, J., Ahmed, S. Critical role of IL-1α in IL-1β-induced inflammatory responses: cooperation with NF-κBp65 in transcriptional regulation.
Collapse
Affiliation(s)
- Anil K Singh
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Sabrina Fechtner
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Mukesh Chourasia
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Jerry Sicalo
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA.,Division of Rheumatology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
23
|
Truskey GA. Human Microphysiological Systems and Organoids as in Vitro Models for Toxicological Studies. Front Public Health 2018; 6:185. [PMID: 30042936 PMCID: PMC6048981 DOI: 10.3389/fpubh.2018.00185] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Organoids and microphysiological systems represent two current approaches to reproduce organ function in vitro. These systems can potentially provide unbiased assays of function which are needed to understand the mechanism of action of environmental toxins. Culture models that replicate organ function and interactions among cell types and tissues move beyond existing screens that target individual pathways and provide a means to assay context-dependent function. The current state of organoid cultures and microphysiological systems is reviewed and applications discussed. While few studies have examined environmental pollutants, studies with drugs demonstrate the power of these systems to assess toxicity as well as mechanism of action. Strengths and limitations of organoids and microphysiological systems are reviewed and challenges are identified to produce suitable high capacity functional assays.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|