1
|
Lockyer JL, Reading A, Vicenzi S, Zbela A, Viswanathan S, Delandre C, Newland JW, McMullen JPD, Marshall OJ, Gasperini R, Foa L, Lin JY. Selective optogenetic inhibition of Gα q or Gα i signaling by minimal RGS domains disrupts circuit functionality and circuit formation. Proc Natl Acad Sci U S A 2024; 121:e2411846121. [PMID: 39190348 PMCID: PMC11388284 DOI: 10.1073/pnas.2411846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gαq signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. Using PiGM-Iq we alter the behavior of Caenorhabditis elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gαi signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.
Collapse
Affiliation(s)
- Jayde L Lockyer
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Andrew Reading
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Silvia Vicenzi
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Agnieszka Zbela
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Saranya Viswanathan
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Caroline Delandre
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jake W Newland
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - John P D McMullen
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Owen J Marshall
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Robert Gasperini
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Sandy Bay, TAS 7005, Australia
| | - John Y Lin
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
2
|
Joshi IV, Chan EC, Lack JB, Liu C, Druey KM. RGS4 controls airway hyperresponsiveness through GAP-independent mechanisms. J Biol Chem 2024; 300:107127. [PMID: 38432633 PMCID: PMC11065749 DOI: 10.1016/j.jbc.2024.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Regulators of G protein signaling (RGS) proteins constrain G protein-coupled receptor (GPCR)-mediated and other responses throughout the body primarily, but not exclusively, through their GTPase-activating protein activity. Asthma is a highly prevalent condition characterized by airway hyper-responsiveness (AHR) to environmental stimuli resulting in part from amplified GPCR-mediated airway smooth muscle contraction. Rgs2 or Rgs5 gene deletion in mice enhances AHR and airway smooth muscle contraction, whereas RGS4 KO mice unexpectedly have decreased AHR because of increased production of the bronchodilator prostaglandin E2 (PGE2) by lung epithelial cells. Here, we found that knockin mice harboring Rgs4 alleles encoding a point mutation (N128A) that sharply curtails RGS4 GTPase-activating protein activity had increased AHR, reduced airway PGE2 levels, and augmented GPCR-induced bronchoconstriction compared with either RGS4 KO mice or WT controls. RGS4 interacted with the p85α subunit of PI3K and inhibited PI3K-dependent PGE2 secretion elicited by transforming growth factor beta in airway epithelial cells. Together, these findings suggest that RGS4 affects asthma severity in part by regulating the airway inflammatory milieu in a G protein-independent manner.
Collapse
Affiliation(s)
- Ilin V Joshi
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Chengyu Liu
- Transgenic Core, NHLBI/NIH, Bethesda, Maryland, USA
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Lockyer J, Reading A, Vicenzi S, Delandre C, Marshall O, Gasperini R, Foa L, Lin JY. Optogenetic inhibition of Gα signalling alters and regulates circuit functionality and early circuit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539674. [PMID: 37214843 PMCID: PMC10197587 DOI: 10.1101/2023.05.06.539674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G-protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate a new optogenetic tool that disrupt Gαq signaling through membrane recruitment of a minimal Regulator of G-protein signaling (RGS) domain. This approach, Photo-induced Modulation of Gα protein - Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. We alter the behavior of C. elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq also changes axon guidance in culture dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. By altering the choice of minimal RGS domain, we also show that this approach is amenable to Gαi signaling.
Collapse
Affiliation(s)
- Jayde Lockyer
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Andrew Reading
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Silvia Vicenzi
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
- Current affiliation, Moores Cancer Center, School of Medicine, Division of Regenerative Medicine, University of California, San Diego, California, USA
| | - Caroline Delandre
- Menzies Institute of Medical Research, University of Tasmania, Tasmania, Australia
| | - Owen Marshall
- Menzies Institute of Medical Research, University of Tasmania, Tasmania, Australia
| | - Robert Gasperini
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Tasmania, Australia
| | - John Y. Lin
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| |
Collapse
|
4
|
Asli A, Higazy-Mreih S, Avital-Shacham M, Kosloff M. Residue-level determinants of RGS R4 subfamily GAP activity and specificity towards the G i subfamily. Cell Mol Life Sci 2021; 78:6305-6318. [PMID: 34292354 PMCID: PMC11072900 DOI: 10.1007/s00018-021-03898-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023]
Abstract
The structural basis for the GTPase-accelerating activity of regulators of G protein signaling (RGS) proteins, as well as the mechanistic basis for their specificity in interacting with the heterotrimeric (αβγ) G proteins they inactivate, is not sufficiently understood at the family level. Here, we used biochemical assays to compare RGS domains across the RGS family and map those individual residues that favorably contribute to GTPase-accelerating activity, and those residues responsible for attenuating RGS domain interactions with Gα subunits. We show that conserved interactions of RGS residues with both the Gα switch I and II regions are crucial for RGS activity, while the reciprocal effects of "modulatory" and "disruptor" residues selectively modulate RGS activity. Our results quantify how specific interactions between RGS domains and Gα subunits are set by a balance between favorable RGS residue interactions with particular Gα switch regions, and unfavorable interactions with the Gα helical domain.
Collapse
Affiliation(s)
- Ali Asli
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Sabreen Higazy-Mreih
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Meirav Avital-Shacham
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
5
|
Chinn IK, Xie Z, Chan EC, Nagata BM, Koval A, Chen WS, Zhang F, Ganesan S, Hong DN, Suzuki M, Nardone G, Moore IN, Katanaev VL, Balazs AE, Liu C, Lupski JR, Orange JS, Druey KM. Short stature and combined immunodeficiency associated with mutations in RGS10. Sci Signal 2021; 14:14/693/eabc1940. [PMID: 34315806 DOI: 10.1126/scisignal.abc1940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the clinical and molecular phenotype of three siblings from one family, who presented with short stature and immunodeficiency and carried uncharacterized variants in RGS10 (c.489_491del:p.E163del and c.G511T:p.A171S). This gene encodes regulator of G protein signaling 10 (RGS10), a member of a large family of GTPase-activating proteins (GAPs) that targets heterotrimeric G proteins to constrain the activity of G protein-coupled receptors, including receptors for chemoattractants. The affected individuals exhibited systemic abnormalities directly related to the RGS10 mutations, including recurrent infections, hypergammaglobulinemia, profoundly reduced lymphocyte chemotaxis, abnormal lymph node architecture, and short stature due to growth hormone deficiency. Although the GAP activity of each RGS10 variant was intact, each protein exhibited aberrant patterns of PKA-mediated phosphorylation and increased cytosolic and cell membrane localization and activity compared to the wild-type protein. We propose that the RGS10 p.E163del and p.A171S mutations lead to mislocalization of the RGS10 protein in the cytosol, thereby resulting in attenuated chemokine signaling. This study suggests that RGS10 is critical for both immune competence and normal hormonal metabolism in humans and that rare RGS10 variants may contribute to distinct systemic genetic disorders.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhihui Xie
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva CH-1211, Switzerland.,School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia
| | - Wei-Sheng Chen
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Fan Zhang
- Transgenic Core, NHLBI/NIH, Bethesda, MD 20892 USA
| | - Sundar Ganesan
- Biological Imaging Section, NIAID/NIH Bethesda, MD 20892, USA
| | - Diana N Hong
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Motoshi Suzuki
- Protein Chemistry Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Glenn Nardone
- Protein Chemistry Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva CH-1211, Switzerland.,School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia
| | - Andrea E Balazs
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Chengyu Liu
- Transgenic Core, NHLBI/NIH, Bethesda, MD 20892 USA
| | - James R Lupski
- Department of Molecular and Human Genetics and Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jordan S Orange
- Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Nubbemeyer B, Pepanian A, Paul George AA, Imhof D. Strategies towards Targeting Gαi/s Proteins: Scanning of Protein-Protein Interaction Sites To Overcome Inaccessibility. ChemMedChem 2021; 16:1696-1715. [PMID: 33615736 PMCID: PMC8252600 DOI: 10.1002/cmdc.202100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Heterotrimeric G proteins are classified into four subfamilies and play a key role in signal transduction. They transmit extracellular signals to intracellular effectors subsequent to the activation of G protein-coupled receptors (GPCRs), which are targeted by over 30 % of FDA-approved drugs. However, addressing G proteins as drug targets represents a compelling alternative, for example, when G proteins act independently of the corresponding GPCRs, or in cases of complex multifunctional diseases, when a large number of different GPCRs are involved. In contrast to Gαq, efforts to target Gαi/s by suitable chemical compounds has not been successful so far. Here, a comprehensive analysis was conducted examining the most important interface regions of Gαi/s with its upstream and downstream interaction partners. By assigning the existing compounds and the performed approaches to the respective interfaces, the druggability of the individual interfaces was ranked to provide perspectives for selective targeting of Gαi/s in the future.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | | | - Diana Imhof
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
7
|
Shushan A, Kosloff M. Structural design principles for specific ultra-high affinity interactions between colicins/pyocins and immunity proteins. Sci Rep 2021; 11:3789. [PMID: 33589691 PMCID: PMC7884437 DOI: 10.1038/s41598-021-83265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
The interactions of the antibiotic proteins colicins/pyocins with immunity proteins is a seminal model system for studying protein–protein interactions and specificity. Yet, a precise and quantitative determination of which structural elements and residues determine their binding affinity and specificity is still lacking. Here, we used comparative structure-based energy calculations to map residues that substantially contribute to interactions across native and engineered complexes of colicins/pyocins and immunity proteins. We show that the immunity protein α1–α2 motif is a unique structurally-dissimilar element that restricts interaction specificity towards all colicins/pyocins, in both engineered and native complexes. This motif combines with a diverse and extensive array of electrostatic/polar interactions that enable the exquisite specificity that characterizes these interactions while achieving ultra-high affinity. Surprisingly, the divergence of these contributing colicin residues is reciprocal to residue conservation in immunity proteins. The structurally-dissimilar immunity protein α1–α2 motif is recognized by divergent colicins similarly, while the conserved immunity protein α3 helix interacts with diverse colicin residues. Electrostatics thus plays a key role in setting interaction specificity across all colicins and immunity proteins. Our analysis and resulting residue-level maps illuminate the molecular basis for these protein–protein interactions, with implications for drug development and rational engineering of these interfaces.
Collapse
Affiliation(s)
- Avital Shushan
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
8
|
Masuho I, Balaji S, Muntean BS, Skamangas NK, Chavali S, Tesmer JJG, Babu MM, Martemyanov KA. A Global Map of G Protein Signaling Regulation by RGS Proteins. Cell 2020; 183:503-521.e19. [PMID: 33007266 PMCID: PMC7572916 DOI: 10.1016/j.cell.2020.08.052] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 07/03/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
The control over the extent and timing of G protein signaling is provided by the regulator of G protein signaling (RGS) proteins that deactivate G protein α subunits (Gα). Mammalian genomes encode 20 canonical RGS and 16 Gα genes with key roles in physiology and disease. To understand the principles governing the selectivity of Gα regulation by RGS, we examine the catalytic activity of all canonical human RGS proteins and their selectivity for a complete set of Gα substrates using real-time kinetic measurements in living cells. The data reveal rules governing RGS-Gα recognition, the structural basis of its selectivity, and provide principles for engineering RGS proteins with defined selectivity. The study also explores the evolution of RGS-Gα selectivity through ancestral reconstruction and demonstrates how naturally occurring non-synonymous variants in RGS alter signaling. These results provide a blueprint for decoding signaling selectivity and advance our understanding of molecular recognition principles. Systematic analysis reveals G protein selectivity of all canonical RGS proteins RGS proteins rely on selectivity bar codes for selective G protein recognition Transplantation of bar codes across RGS proteins switches their G protein preferences Natural variants, mutations, and evolution shape RGS selectivity
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Santhanam Balaji
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Nickolas K Skamangas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati 517 507, India
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
9
|
Almutairi F, Lee JK, Rada B. Regulator of G protein signaling 10: Structure, expression and functions in cellular physiology and diseases. Cell Signal 2020; 75:109765. [PMID: 32882407 PMCID: PMC7579743 DOI: 10.1016/j.cellsig.2020.109765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Regulator of G protein signaling 10 (RGS10) belongs to the superfamily of RGS proteins, defined by the presence of a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. RGS proteins act as GTPase activating proteins (GAPs), which accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. RGS10 is the smallest protein of the D/R12 subfamily and selectively interacts with Gαi proteins. It is widely expressed in many cells and tissues, with the highest expression found in the brain and immune cells. RGS10 expression is transcriptionally regulated via epigenetic mechanisms. Although RGS10 lacks multiple of the defined regulatory domains found in other RGS proteins, RGS10 contains post-translational modification sites regulating its expression, localization, and function. Additionally, RGS10 is a critical protein in the regulation of physiological processes in multiple cells, where dysregulation of its expression has been implicated in various diseases including Parkinson's disease, multiple sclerosis, osteopetrosis, chemoresistant ovarian cancer and cardiac hypertrophy. This review summarizes RGS10 features and its regulatory mechanisms, and discusses the known functions of RGS10 in cellular physiology and pathogenesis of several diseases.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
DiGiacomo V, Maziarz M, Luebbers A, Norris JM, Laksono P, Garcia-Marcos M. Probing the mutational landscape of regulators of G protein signaling proteins in cancer. Sci Signal 2020; 13:13/617/eaax8620. [PMID: 32019900 DOI: 10.1126/scisignal.aax8620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advent of deep-sequencing techniques has revealed that mutations in G protein-coupled receptor (GPCR) signaling pathways in cancer are more prominent than was previously appreciated. An emergent theme is that cancer-associated mutations tend to cause enhanced GPCR pathway activation to favor oncogenicity. Regulators of G protein signaling (RGS) proteins are critical modulators of GPCR signaling that dampen the activity of heterotrimeric G proteins through their GTPase-accelerating protein (GAP) activity, which is conferred by a conserved domain dubbed the "RGS-box." Here, we developed an experimental pipeline to systematically assess the mutational landscape of RGS GAPs in cancer. A pan-cancer bioinformatics analysis of the 20 RGS domains with GAP activity revealed hundreds of low-frequency mutations spread throughout the conserved RGS domain structure with a slight enrichment at positions that interface with G proteins. We empirically tested multiple mutations representing all RGS GAP subfamilies and sampling both G protein interface and noninterface positions with a scalable, yeast-based assay. Last, a subset of mutants was validated using G protein activity biosensors in mammalian cells. Our findings reveal that a sizable fraction of RGS protein mutations leads to a loss of function through various mechanisms, including disruption of the G protein-binding interface, loss of protein stability, or allosteric effects on G protein coupling. Moreover, our results also validate a scalable pipeline for the rapid characterization of cancer-associated mutations in RGS proteins.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jillian M Norris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pandu Laksono
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
11
|
Israeli R, Asli A, Avital-Shacham M, Kosloff M. RGS6 and RGS7 Discriminate between the Highly Similar Gα i and Gα o Proteins Using a Two-Tiered Specificity Strategy. J Mol Biol 2019; 431:3302-3311. [PMID: 31153905 DOI: 10.1016/j.jmb.2019.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 11/15/2022]
Abstract
RGS6 and RGS7 are regulators of G protein signaling (RGS) proteins that inactivate heterotrimeric (αβγ) G proteins and mediate diverse biological functions, such as cardiac and neuronal signaling. Uniquely, both RGS6 and RGS7 can discriminate between Gαo and Gαi1-two similar Gα subunits that belong to the same Gi sub-family. Here, we show that the isolated RGS domains of RGS6 and RGS7 are sufficient to achieve this specificity. We identified three specific RGS6/7 "disruptor residues" that can attenuate RGS interactions toward Gα subunits and demonstrated that their insertion into a representative high-activity RGS causes a significant, yet non-specific, reduction in activity. We further identified a unique "modulatory" residue that bypasses this negative effect, specifically toward Gαo. Hence, the exquisite specificity of RGS6 and RGS7 toward closely related Gα subunits is achieved via a two-tier specificity system, whereby a Gα-specific modulatory motif overrides the inhibitory effect of non-specific disruptor residues. Our findings expand the understanding of the molecular toolkit used by the RGS family to achieve specific interactions with selected Gα subunits-emphasizing the functional importance of the RGS domain in determining the activity and selectivity of RGS R7 sub-family members toward particular Gα subunits.
Collapse
Affiliation(s)
- Ran Israeli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ali Asli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Meirav Avital-Shacham
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
12
|
Navot S, Kosloff M. Structural design principles that underlie the multi-specific interactions of Gα q with dissimilar partners. Sci Rep 2019; 9:6898. [PMID: 31053791 PMCID: PMC6499889 DOI: 10.1038/s41598-019-43395-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gαq is a ubiquitous molecular switch that activates the effectors phospholipase-C-β3 (PLC-β3) and Rho guanine-nucleotide exchange factors. Gαq is inactivated by regulators of G protein signaling proteins, as well as by PLC-β3. Gαq further interacts with G protein-coupled receptor kinase 2 (GRK2), although the functional role of this interaction is debated. While X-ray structures of Gαq bound to representatives of these partners have revealed details of their interactions, the mechanistic basis for differential Gαq interactions with multiple partners (i.e., Gαq multi-specificity) has not been elucidated at the individual residue resolution. Here, we map the structural determinants of Gαq multi-specificity using structure-based energy calculations. We delineate regions that specifically interact with GTPase Activating Proteins (GAPs) and residues that exclusively contribute to effector interactions, showing that only the Gαq “Switch II” region interacts with all partners. Our analysis further suggests that Gαq-GRK2 interactions are consistent with GRK2 functioning as an effector, rather than a GAP. Our multi-specificity analysis pinpoints Gαq residues that uniquely contribute to interactions with particular partners, enabling precise manipulation of these cascades. As such, we dissect the molecular basis of Gαq function as a central signaling hub, which can be used to target Gαq-mediated signaling in therapeutic interventions.
Collapse
Affiliation(s)
- Shir Navot
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
13
|
Bakhman A, Rabinovich E, Shlamkovich T, Papo N, Kosloff M. Residue-level determinants of angiopoietin-2 interactions with its receptor Tie2. Proteins 2018; 87:185-197. [PMID: 30520519 DOI: 10.1002/prot.25638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 11/11/2022]
Abstract
We combined computational and experimental methods to interrogate the binding determinants of angiopoietin-2 (Ang2) to its receptor tyrosine kinase (RTK) Tie2-a central signaling system in angiogenesis, inflammation, and tumorigenesis. We used physics-based electrostatic and surface-area calculations to identify the subset of interfacial Ang2 and Tie2 residues that can affect binding directly. Using random and site-directed mutagenesis and yeast surface display (YSD), we validated these predictions and identified additional Ang2 positions that affected receptor binding. We then used burial-based calculations to classify the larger set of Ang2 residues that are buried in the Ang2 core, whose mutations can perturb the Ang2 structure and thereby affect interactions with Tie2 indirectly. Our analysis showed that the Ang2-Tie2 interface is dominated by nonpolar contributions, with only three Ang2 and two Tie2 residues that contribute electrostatically to intermolecular interactions. Individual interfacial residues contributed only moderately to binding, suggesting that engineering of this interface will require multiple mutations to reach major effects. Conversely, substitutions in substantially buried Ang2 residues were more prevalent in our experimental screen, reduced binding substantially, and are therefore more likely to have a deleterious effect that might contribute to oncogenesis. Computational analysis of additional RTK-ligand complexes, c-Kit-SCF and M-CSF-c-FMS, and comparison to previous YSD results, further show the utility of our combined methodology.
Collapse
Affiliation(s)
- Anna Bakhman
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Eitan Rabinovich
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Shlamkovich
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
14
|
Structural motifs in the RGS RZ subfamily combine to attenuate interactions with Gα subunits. Biochem Biophys Res Commun 2018; 503:2736-2741. [DOI: 10.1016/j.bbrc.2018.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 11/20/2022]
|