1
|
Zou Q, Zhou X, Lai J, Zhou H, Su J, Zhang Z, Zhuang X, Liu L, Yuan R, Li S, Yang S, Qu X, Feng J, Liu Y, Li Z, Huang S, Shi Z, Yan Y, Zheng Z, Ye W, Qi Q. Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment. Redox Biol 2024; 79:103460. [PMID: 39657365 DOI: 10.1016/j.redox.2024.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent malignant bone tumor in children and adolescents worldwide. Identification of novel therapeutic targets and development of targeted drugs are one of the most feasible strategies for OS treatment. Ferroptosis, a recently discovered mode of programmed cell death, has been implicated as a potential strategy for cancer therapy. Sulforaphane (SFN), the main bioactive compound derived from cruciferous vegetables, has shown potential anti-cancer effects with negligible toxicity. However, the role of ferroptosis in the effect of SFN on OS remains unknown. In the present study, we found that SFN acted as a potent ferroptosis inducer in OS, which was demonstrated by various inhibitors of cell death. The SFN-induced ferroptotic cell death was characterized by elevated ROS levels, lipid peroxidation, and GSH depletion, which was dependent on decreased levels of SLC7A11. Mechanically, SFN directly targeted p62 protein and enhanced p62/SLC7A11 protein-protein interaction, thereby promoting the lysosomal degradation of SLC7A11 and triggering ferroptosis. Notably, both subcutaneous and intratibial OS models in nude mice confirmed the ferroptosis associated anti-cancer efficacy of SFN in vivo. Hence, our findings demonstrate that SFN exerts its anti-cancer effects through inducing SLC7A11-dependent ferroptosis in OS, providing compelling evidence for the application of SFN in OS treatment.
Collapse
Affiliation(s)
- Qiuming Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofeng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianqin Lai
- Department of Gastrointestinal Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Haixia Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinxuan Su
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhijing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaosong Zhuang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Lili Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ruijie Yuan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Sijia Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Siyu Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xinyi Qu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiezhu Feng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yongqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zisheng Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shiting Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu Yan
- Functional Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhiming Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Li X, Qian B, Chen X, Shen M, Zhao S, Zhang X, He J. The role of miR-152 in urological tumors: potential biomarkers and therapeutic targets. Front Immunol 2024; 15:1464327. [PMID: 39606232 PMCID: PMC11599204 DOI: 10.3389/fimmu.2024.1464327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Urological malignant tumors pose a significant threat to human health, with a high incidence rate each year. Prostate cancer, bladder cancer, and renal cell carcinoma are among the most prevalent and extensively researched urological malignancies. Despite advancements in research, the prognosis for these tumors remains unfavorable due to late detection, postoperative recurrence, and treatment resistance. A thorough investigation into their pathogenesis is crucial for early diagnosis and treatment. Recent studies have highlighted the close association between microRNAs (miRNAs) and cancer progression. miRNAs are small non-coding RNAs composed of 19-23 nucleotides that regulate gene expression by binding to the 3' untranslated region (3'UTR) of target mRNAs, impacting key cellular processes such as proliferation, differentiation, apoptosis, and migration. Dysregulation of miRNAs can disrupt the expression of oncogenes and tumor suppressor genes, contributing to cancer development. Among the various miRNAs studied, miR-152 has garnered attention for its role in urological malignancies. Several studies have indicated that dysregulation of miR-152 expression is significant in these cancers, warranting a comprehensive review of the evidence. This review focuses on the expression and function of miR-152 in prostate cancer, bladder cancer, and renal cell carcinoma, elucidating its mechanisms in cancer progression and exploring its potential as a therapeutic target and biomarker in urological malignancies.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xu Chen
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xinsheng Zhang
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian He
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Xiao W, Xu C. Cystine/cysteine metabolism regulates the progression and response to treatment of triple‑negative breast cancer (Review). Oncol Lett 2024; 28:521. [PMID: 39268159 PMCID: PMC11391256 DOI: 10.3892/ol.2024.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/04/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer is the most prevalent neoplasm affecting women globally, of which a notable proportion of cases are triple-negative breast cancer (TNBC). However, there are limited curative treatment options for patients with TNBC, despite advancements in the field. Amino acids and amino acid transporters serve vital roles in the regulation of tumor metabolism. Notably, cystine and cysteine can interconvert via a redox reaction, with cysteine exerting control on cell survival and growth and exogenous cystine serving a crucial role in the proliferation of numerous types of cancers. Breast cancer has been reported to disrupt the cystine/cysteine metabolism pathway, as cystine and cysteine transporters affect the development and growth of tumors. The present review aims to provide a comprehensive overview of the metabolic pathways involving cystine and cysteine in normal and TNBC cells. Furthermore, the roles of cystine and cysteine transporters in TNBC progression and metastasis and their potential as therapeutic targets for treatment of TNBC are evaluated.
Collapse
Affiliation(s)
- Wanting Xiao
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
4
|
Majumder A, Bano S, Nayak KB. The Pivotal Role of One-Carbon Metabolism in Neoplastic Progression During the Aging Process. Biomolecules 2024; 14:1387. [PMID: 39595564 PMCID: PMC11591851 DOI: 10.3390/biom14111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
One-carbon (1C) metabolism is a complex network of metabolic reactions closely related to producing 1C units (as methyl groups) and utilizing them for different anabolic processes, including nucleotide synthesis, methylation, protein synthesis, and reductive metabolism. These pathways support the high proliferative rate of cancer cells. While drugs that target 1C metabolism (like methotrexate) have been used for cancer treatment, they often have significant side effects. Therefore, developing new drugs with minimal side effects is necessary for effective cancer treatment. Methionine, glycine, and serine are the main three precursors of 1C metabolism. One-carbon metabolism is vital not only for proliferative cells but also for non-proliferative cells in regulating energy homeostasis and the aging process. Understanding the potential role of 1C metabolism in aging is crucial for advancing our knowledge of neoplastic progression. This review provides a comprehensive understanding of the molecular complexities of 1C metabolism in the context of cancer and aging, paving the way for researchers to explore new avenues for developing advanced therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Shabana Bano
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Kasturi Bala Nayak
- Quantitative Biosciences Institute, Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Hecht F, Zocchi M, Tuttle ET, Ward NP, Smith B, Kang YP, Cazarin J, Soares ZG, Ozgurses ME, Zhao H, Sheehan C, Alimohammadi F, Munger LD, Trivedi D, Asantewaa G, Blick-Nitko SK, Zoeller JJ, Chen Y, Vasiliou V, Turner BM, Muir A, Coloff JL, Munger J, DeNicola GM, Harris IS. Catabolism of extracellular glutathione supplies amino acids to support tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617667. [PMID: 39416022 PMCID: PMC11482906 DOI: 10.1101/2024.10.10.617667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Restricting amino acids from tumors is an emerging therapeutic strategy with significant promise. While typically considered an intracellular antioxidant with tumor-promoting capabilities, glutathione (GSH) is a tripeptide of cysteine, glutamate, and glycine that can be catabolized, yielding amino acids. The extent to which GSH-derived amino acids are essential to cancers is unclear. Here, we find that GSH catabolism promotes tumor growth. We show that depletion of intracellular GSH does not perturb tumor growth, and extracellular GSH is highly abundant in the tumor microenvironment, highlighting the potential importance of GSH outside of tumors. We find supplementation with GSH can rescue cancer cell survival and growth in cystine-deficient conditions, and this rescue is dependent on the catabolic activity of γ-glutamyltransferases (GGTs). Finally, pharmacologic targeting of GGTs' activity prevents the breakdown of circulating GSH, lowers tumor cysteine levels, and slows tumor growth. Our findings indicate a non-canonical role for GSH in supporting tumors by acting as a reservoir of amino acids. Depriving tumors of extracellular GSH or inhibiting its breakdown is potentially a therapeutically tractable approach for patients with cancer. Further, these findings change our view of GSH and how amino acids, including cysteine, are supplied to cells.
Collapse
Affiliation(s)
- Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- These authors contributed equally
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- These authors contributed equally
| | - Emily T. Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Nathan P. Ward
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Bradley Smith
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Yun Pyo Kang
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Zamira G. Soares
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Huiping Zhao
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Colin Sheehan
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Fatemeh Alimohammadi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Lila D. Munger
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Dhvani Trivedi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Gloria Asantewaa
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Sara K. Blick-Nitko
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Jason J. Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06510
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06510
| | - Bradley M. Turner
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Joshua Munger
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Isaac S. Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| |
Collapse
|
6
|
Zhao Y, Qin G, Jiang B, Huang J, He S, Peng H. Melatonin regulates mitochondrial function to alleviate ferroptosis through the MT2/Akt signaling pathway in swine testicular cells. Sci Rep 2024; 14:15215. [PMID: 38956409 PMCID: PMC11219911 DOI: 10.1038/s41598-024-65666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
Increasing evidence has shown that many environmental and toxic factors can cause testicular damage, leading to testicular ferroptosis and subsequent male reproductive disorders. Melatonin is a major hormone and plays an vital role in regulating male reproduction. However, there is a lack of research on whether Mel can alleviate testicular cell ferroptosis and its specific mechanism. In this study, the results indicated that Mel could enhance the viability of swine testis cells undergoing ferroptosis, reduce LDH enzyme release, increase mitochondrial membrane potential, and affect the expression of ferroptosis biomarkers. Furthermore, we found that melatonin depended on melatonin receptor 1B to exert these functions. Detection of MMP and ferroptosis biomarker protein expression confirmed that MT2 acted through the downstream Akt signaling pathway. Moreover, inhibition of the Akt signaling pathway can eliminate the protective effect of melatonin on ferroptosis, inhibit AMPK phosphorylation, reduce the expression of mitochondrial gated channel (VDAC2/3), and affect mitochondrial DNA transcription and ATP content. These results suggest that melatonin exerts a beneficial effect on mitochondrial function to mitigate ferroptosis through the MT2/Akt signaling pathway in ST cells.
Collapse
Affiliation(s)
- Yuanjie Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
- College of Life and Health, Hainan University, Haikou, 570228, China
| | - Ge Qin
- College of Animal Science and Technology, Southwest University, Chongqing, 404100, China
| | - Biao Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Jinglei Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Shiwen He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
7
|
Bin P, Wang C, Zhang H, Yan Y, Ren W. Targeting methionine metabolism in cancer: opportunities and challenges. Trends Pharmacol Sci 2024; 45:395-405. [PMID: 38580603 DOI: 10.1016/j.tips.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Reprogramming of methionine metabolism is a conserved hallmark of tumorigenesis. Recent studies have revealed mechanisms regulating methionine metabolism within the tumor microenvironment (TME) that drive both cancer development and antitumor immunity evasion. In this review article we summarize advancements in our understanding of tumor regulation of methionine metabolism and therapies in development that target tumor methionine metabolism. We also delineate the challenges of methionine blockade therapies in cancer and discuss emerging strategies to address them.
Collapse
Affiliation(s)
- Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hangchao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuqi Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Kim B, Jung J. Metabolomic Approach to Identify Potential Biomarkers in KRAS-Mutant Pancreatic Cancer Cells. Biomedicines 2024; 12:865. [PMID: 38672219 PMCID: PMC11048406 DOI: 10.3390/biomedicines12040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic cancer is characterized by its high mortality rate and limited treatment options, often driven by oncogenic RAS mutations. In this study, we investigated the metabolomic profiles of pancreatic cancer cells based on their KRAS genetic status. Utilizing both KRAS-wildtype BxPC3 and KRAS-mutant PANC1 cell lines, we identified 195 metabolites differentially altered by KRAS status through untargeted metabolomics. Principal component analysis and hierarchical condition trees revealed distinct separation between KRAS-wildtype and KRAS-mutant cells. Metabolite set enrichment analysis highlighted significant pathways such as homocysteine degradation and taurine and hypotaurine metabolism. Additionally, lipid enrichment analysis identified pathways including fatty acyl glycosides and sphingoid bases. Mapping of identified metabolites to KEGG pathways identified nine significant metabolic pathways associated with KRAS status, indicating diverse metabolic alterations in pancreatic cancer cells. Furthermore, we explored the impact of TRPML1 inhibition on the metabolomic profile of KRAS-mutant pancreatic cancer cells. TRPML1 inhibition using ML-SI1 significantly altered the metabolomic profile, leading to distinct separation between vehicle-treated and ML-SI1-treated PANC1 cells. Metabolite set enrichment analysis revealed enriched pathways such as arginine and proline metabolism, and mapping to KEGG pathways identified 17 significant metabolic pathways associated with TRPML1 inhibition. Interestingly, some metabolites identified in PANC1 compared to BxPC3 were oppositely regulated by TRPML1 inhibition, suggesting their potential as biomarkers for KRAS-mutant cancer cells. Overall, our findings shed light on the distinct metabolite changes induced by both KRAS status and TRPML1 inhibition in pancreatic cancer cells, providing insights into potential therapeutic targets and biomarkers for this deadly disease.
Collapse
Affiliation(s)
| | - Jewon Jung
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea;
| |
Collapse
|
9
|
Xu Y, Xing Z, Abdalla Ibrahim Suliman R, Liu Z, Tang F. Ferroptosis in liver cancer: a key role of post-translational modifications. Front Immunol 2024; 15:1375589. [PMID: 38650929 PMCID: PMC11033738 DOI: 10.3389/fimmu.2024.1375589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Ferroptosis is an emerging form of regulated cell death in an oxidative stress- and iron-dependent manner, primarily induced by the over-production of reactive oxygen species (ROS). Manipulation of ferroptosis has been considered a promising therapeutic approach to inhibit liver tumor growth. Nevertheless, the development of resistance to ferroptosis in liver cancer poses a significant challenge in cancer treatment. Post-translational modifications (PTMs) are crucial enzymatic catalytic reactions that covalently regulate protein conformation, stability and cellular activities. Additionally, PTMs play pivotal roles in various biological processes and divergent programmed cell death, including ferroptosis. Importantly, key PTMs regulators involved in ferroptosis have been identified as potential targets for cancer therapy. PTMs function of two proteins, SLC7A11, GPX4 involved in ferroptosis resistance have been extensively investigated in recent years. This review will summarize the roles of PTMs in ferroptosis-related proteins in hepatocellular carcinoma (HCC) treatment.
Collapse
Affiliation(s)
- Ying Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Fengyuan Tang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Thinking Biomed (Beijing) Co., Ltd, Beijing Economic and Technological Development Zone, Beijing, China
| |
Collapse
|
10
|
Hecht F, Zocchi M, Alimohammadi F, Harris IS. Regulation of antioxidants in cancer. Mol Cell 2024; 84:23-33. [PMID: 38029751 PMCID: PMC10843710 DOI: 10.1016/j.molcel.2023.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Scientists in this field often joke, "If you don't have a mechanism, say it's ROS." Seemingly connected to every biological process ever described, reactive oxygen species (ROS) have numerous pleiotropic roles in physiology and disease. In some contexts, ROS act as secondary messengers, controlling a variety of signaling cascades. In other scenarios, they initiate damage to macromolecules. Finally, in their worst form, ROS are deadly to cells and surrounding tissues. A set of molecules with detoxifying abilities, termed antioxidants, is the direct counterpart to ROS. Notably, antioxidants exist in the public domain, touted as a "cure-all" for diseases. Research has disproved many of these claims and, in some cases, shown the opposite. Of all the diseases, cancer stands out in its paradoxical relationship with antioxidants. Although the field has made numerous strides in understanding the roles of antioxidants in cancer, many questions remain.
Collapse
Affiliation(s)
- Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fatemeh Alimohammadi
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Xia H, Zhu J, Zheng Z, Xiao P, Yu X, Wu M, Xue L, Xu X, Wang X, Guo Y, Zheng C, Ding S, Wang Y, Peng X, Fu S, Li J, Deng X. Amino acids and their roles in tumor immunotherapy of breast cancer. J Gene Med 2024; 26:e3647. [PMID: 38084655 DOI: 10.1002/jgm.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women. The primary treatment options include surgery, radiotherapy, chemotherapy, targeted therapy and hormone therapy. The effectiveness of breast cancer therapy varies depending on the stage and aggressiveness of the cancer, as well as individual factors. Advances in early detection and improved treatments have significantly increased survival rates for breast cancer patients. Nevertheless, specific subtypes of breast cancer, particularly triple-negative breast cancer, still lack effective treatment strategies. Thus, novel and effective therapeutic targets for breast cancer need to be explored. As substrates of protein synthesis, amino acids are important sources of energy and nutrition, only secondly to glucose. The rich supply of amino acids enables the tumor to maintain its proliferative competence through participation in energy generation, nucleoside synthesis and maintenance of cellular redox balance. Amino acids also play an important role in immune-suppressive microenvironment formation. Thus, the biological effects of amino acids may change unexpectedly in tumor-specific or oncogene-dependent manners. In recent years, there has been significant progress in the study of amino acid metabolism, particularly in their potential application as therapeutic targets in breast cancer. In this review, we provide an update on amino acid metabolism and discuss the therapeutic implications of amino acids in breast cancer.
Collapse
Affiliation(s)
- Hongzhuo Xia
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Jianyu Zhu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
- Department of Pathophysiology, Jishou University, Jishou, Hunan, China
| | - Zhuomeng Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Peiyao Xiao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xiaohui Yu
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xi Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Yuxuan Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoning Peng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
- Department of Pathophysiology, Jishou University, Jishou, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Junjun Li
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
12
|
Fu GQ, Song Q, Wang ZQ, Chao JJ, Zhang H, Mao GJ, Chen DH, Li CY. Long-Term Imaging of Cys in Cells and Tumor Mice by a Solid-State Fluorescence Probe. Anal Chem 2023; 95:17559-17567. [PMID: 37994418 DOI: 10.1021/acs.analchem.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Cysteine is an important biological thiol and is closely related to cancer. It remains a challenge to develop a probe that can provide long-term fluorescence detection and imaging of Cys in cells as well as in living organisms. Here, a solid-state fluorophore HTPQ is combined with an acrylate group to construct a solid-state fluorescent probe HTPQC for Cys recognition. The fluorescence of the probe is quenched when the photoinduced electron transfer (PET) process is turned on and the excited-state intramolecular proton transfer (ESIPT) process is turned off. In the presence of Cys, an obvious solid-state fluorescence signal can be observed. The double quenching mechanism makes the probe HTPQC have the advantages of high sensitivity, good selectivity, and high contrast of biological imaging. Due to low cytotoxicity, the probe HTPQC can be used to detect exogenous and endogenous Cys in living cells and is capable of imaging over long periods of time. By making full use of long wavelengths, the probe can be applied for the detection of Cys levels in tumor mice and equipped with the ability to conduct long-term imaging in vivo.
Collapse
Affiliation(s)
- Gui-Qin Fu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Qian Song
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Jing-Jing Chao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Hui Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Dong-Hua Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
13
|
Huang S, Zhang Q, Zhao M, Wang X, Zhang Y, Gan B, Zhang P. The deubiquitinase ZRANB1 is an E3 ubiquitin ligase for SLC7A11 and regulates ferroptotic resistance. J Cell Biol 2023; 222:e202212072. [PMID: 37831441 PMCID: PMC10570852 DOI: 10.1083/jcb.202212072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
The dependency of cancer cells on iron increases their susceptibility to ferroptosis, thus providing new opportunities for patients with treatment-resistant tumors. However, we show that lipid peroxidation, a hallmark of ferroptosis, was found in various areas of patient samples, indicating the potential resistance of ferroptosis. Using whole deubiquitinases (DUBs) sgRNA screening, we found that loss of ZRANB1 confers cancer cell resistance to ferroptosis. Intriguingly, functional studies revealed that ZRANB1 ubiquitinates and represses SLC7A11 expression as an E3 ubiquitin ligase and that ZRANB1 inhibits glutathione (GSH) synthesis through SLC7A11 degradation, leading to elevated lipid peroxidation and ferroptosis. Deletion of the region (residues 463-584) abolishes the E3 activity of ZRANB1. Moreover, we show that ZRANB1 has lower expression in tumors, which is positively correlated with lipid peroxidation. Collectively, our results demonstrate the role of ZRANB1 in ferroptosis resistance and unveil mechanisms involving modulation of E3 ligase activity through an unconventional catalytic domain.
Collapse
Affiliation(s)
- Shan Huang
- Department of Oncology, National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qimin Zhang
- Department of Oncology, National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Manyu Zhao
- Department of Oncology, National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, The Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peijing Zhang
- Department of Oncology, National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Zhang G, Zhang Z, Pei Y, Hu W, Xue Y, Ning R, Guo X, Sun Y, Zhang Q. Biological and clinical significance of radiomics features obtained from magnetic resonance imaging preceding pre-carbon ion radiotherapy in prostate cancer based on radiometabolomics. Front Endocrinol (Lausanne) 2023; 14:1272806. [PMID: 38027108 PMCID: PMC10644841 DOI: 10.3389/fendo.2023.1272806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction We aimed to investigate the feasibility of metabolomics to explain the underlying biological implications of radiomics features obtained from magnetic resonance imaging (MRI) preceding carbon ion radiotherapy (CIRT) in patients with prostate cancer and to further explore the clinical significance of radiomics features on the prognosis of patients, based on their biochemical recurrence (BCR) status. Methods Metabolomic results obtained using high-performance liquid chromatography coupled with tandem mass spectrometry of urine samples, combined with pre-RT radiomic features extracted from MRI images, were evaluated to investigate their biological significance. Receiver operating characteristic (ROC) curve analysis was subsequently conducted to examine the correlation between these biological implications and clinical BCR status. Statistical and metabolic pathway analyses were performed using MetaboAnalyst and R software. Results Correlation analysis revealed that methionine alteration extent was significantly related to four radiomic features (Contrast, Difference Variance, Small Dependence High Gray Level Emphasis, and Mean Absolute Deviation), which were significantly correlated with BCR status. The area under the curve (AUC) for BCR prediction of these four radiomic features ranged from 0.704 to 0.769, suggesting that the higher the value of these four radiomic features, the greater the decrease in methionine levels after CIRT and the lower the probability of BCR. Pre-CIRT MRI radiomic features were associated with CIRT-suppressed metabolites. Discussion These radiomic features can be used to predict the alteration in the amplitude of methionine after CIRT and the BCR status, which may contribute to the optimization of the CIRT strategy and deepen the understanding of PCa.
Collapse
Affiliation(s)
- Guangyuan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yulei Pei
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Wei Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yushan Xue
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Renli Ning
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yun Sun
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
15
|
Iqbal MA, Siddiqui S, Smith K, Singh P, Kumar B, Chouaib S, Chandrasekaran S. Metabolic stratification of human breast tumors reveal subtypes of clinical and therapeutic relevance. iScience 2023; 26:108059. [PMID: 37854701 PMCID: PMC10579441 DOI: 10.1016/j.isci.2023.108059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Extensive metabolic heterogeneity in breast cancers has limited the deployment of metabolic therapies. To enable patient stratification, we studied the metabolic landscape in breast cancers (∼3000 patients combined) and identified three subtypes with increasing degrees of metabolic deregulation. Subtype M1 was found to be dependent on bile-acid biosynthesis, whereas M2 showed reliance on methionine pathway, and M3 engaged fatty-acid, nucleotide, and glucose metabolism. The extent of metabolic alterations correlated strongly with tumor aggressiveness and patient outcome. This pattern was reproducible in independent datasets and using in vivo tumor metabolite data. Using machine-learning, we identified robust and generalizable signatures of metabolic subtypes in tumors and cell lines. Experimental inhibition of metabolic pathways in cell lines representing metabolic subtypes revealed subtype-specific sensitivity, therapeutically relevant drugs, and promising combination therapies. Taken together, metabolic stratification of breast cancers can thus aid in predicting patient outcome and designing precision therapies.
Collapse
Affiliation(s)
- Mohammad A. Iqbal
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | | | - Kirk Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Bhupender Kumar
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, Delhi, India
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Gustave Roussy, EPHE, Faculty of Medicine, University of Paris-Saclay, Villejuif, France
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
16
|
He L, Chen J, Deng P, Huang S, Liu P, Wang C, Huang X, Li Y, Chen B, Shi D, Xiao Y, Chen X, Ouyang Y, Song L, Lin C. Lysosomal cyst(e)ine storage potentiates tolerance to oxidative stress in cancer cells. Mol Cell 2023; 83:3502-3519.e11. [PMID: 37751742 DOI: 10.1016/j.molcel.2023.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Cyst(e)ine is a key precursor for the synthesis of glutathione (GSH), which protects cancer cells from oxidative stress. Cyst(e)ine is stored in lysosomes, but its role in redox regulation is unclear. Here, we show that breast cancer cells upregulate major facilitator superfamily domain containing 12 (MFSD12) to increase lysosomal cyst(e)ine storage, which is released by cystinosin (CTNS) to maintain GSH levels and buffer oxidative stress. We find that mTORC1 regulates MFSD12 by directly phosphorylating residue T254, while mTORC1 inhibition enhances lysosome acidification that activates CTNS. This switch modulates lysosomal cyst(e)ine levels in response to oxidative stress, fine-tuning redox homeostasis to enhance cell fitness. MFSD12-T254A mutant inhibits MFSD12 function and suppresses tumor progression. Moreover, MFSD12 overexpression correlates with poor neoadjuvant chemotherapy response and prognosis in breast cancer patients. Our findings reveal the critical role of lysosomal cyst(e)ine storage in adaptive redox homeostasis and suggest that MFSD12 is a potential therapeutic target.
Collapse
Affiliation(s)
- Lixin He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jinxin Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Pinwei Deng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chanjuan Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Guangdong Esophageal Cancer Institute, Guangzhou 510060, China.
| |
Collapse
|
17
|
Ruiu R, Cossu C, Iacoviello A, Conti L, Bolli E, Ponzone L, Magri J, Rumandla A, Calautti E, Cavallo F. Cystine/glutamate antiporter xCT deficiency reduces metastasis without impairing immune system function in breast cancer mouse models. J Exp Clin Cancer Res 2023; 42:254. [PMID: 37770957 PMCID: PMC10540318 DOI: 10.1186/s13046-023-02830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The upregulation of antioxidant mechanisms is a common occurrence in cancer cells, as they strive to maintain balanced redox state and prevent oxidative damage. This includes the upregulation of the cystine/glutamate antiporter xCT, which plays a crucial role in protecting cancer cells from oxidative stress. Consequently, targeting xCT has become an attractive strategy for cancer treatment. However, xCT is also expressed by several types of immune cells where it has a role in proliferation and effector functions. In light of these observations, a comprehensive understanding of the specific role of xCT in the initiation and progression of cancer, as well as its potential impact on the immune system within the tumor microenvironment and the anti-tumor response, require further investigation. METHODS We generated xCTnull BALB/c mice to investigate the role of xCT in the immune system and xCTnull/Erbb2-transgenic BALB-neuT mice to study the role of xCT in a mammary cancer-prone model. We also used mammary cancer cells derived from BALB-neuT/xCTnull mice and xCTKO 4T1 cells to test the contribution of xCT to malignant properties in vitro and in vivo. RESULTS xCT depletion in BALB-neuT/xCTnull mice does not alter autochthonous tumor initiation, but tumor cells isolated from these mice display proliferation and redox balance defects in vitro. Although xCT disruption sensitizes 4T1 cells to oxidative stress, it does not prevent transplantable tumor growth, but reduces cell migration in vitro and lung metastasis in vivo. This is accompanied by an altered immune cell recruitment in the pre-metastatic niche. Finally, systemic depletion of xCT in host mice does not affect transplantable tumor growth and metastasis nor impair the proper mounting of both humoral and cellular immune responses in vivo. CONCLUSIONS xCT is dispensable for proper immune system function, thus supporting the safety of xCT targeting in oncology. Nevertheless, xCT is involved in several processes required for the metastatic seeding of mammary cancer cells, thus broadening the scope of xCT-targeting approaches.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Chiara Cossu
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Antonella Iacoviello
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Luca Ponzone
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Epithelial Stem Cell Biology and Signaling, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Jolanda Magri
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
- Laboratory of Immunotherapy, IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Alekya Rumandla
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
- Biocon Bristol Myers Squibb R&D Center, Bommasandra Jigani Link Road, Bommasandra Industrial Area, Bangalore, Karnataka, 560099, India
| | - Enzo Calautti
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Epithelial Stem Cell Biology and Signaling, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy.
| |
Collapse
|
18
|
Xu F, Jiang HL, Feng WW, Fu C, Zhou JC. Characteristics of amino acid metabolism in colorectal cancer. World J Clin Cases 2023; 11:6318-6326. [PMID: 37900242 PMCID: PMC10601002 DOI: 10.12998/wjcc.v11.i27.6318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023] Open
Abstract
In recent years, metabolomics research has become a hot spot in the screening and treatment of cancer. It is a popular technique for the quantitative characterization of small molecular compounds in biological cells, tissues, organs or organisms. Further study of the tumor revealed that amino acid changes may occur early in the tumor. The rapid growth and metabolism required for survival result in tumors exhibiting an increased demand for amino acids. An abundant supply of amino acids is important for cancer to maintain its proliferative driving force. Changes in amino acid metabolism can be used to screen malignant tumors and improve therapeutic outcomes. Therefore, it is particularly important to study the characteristics of amino acid metabolism in colorectal cancer. This article reviews several specific amino acid metabolism characteristics in colorectal cancer.
Collapse
Affiliation(s)
- Fen Xu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Hong-Liang Jiang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Wei-Wei Feng
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Chen Fu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Jiang-Chang Zhou
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| |
Collapse
|
19
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
20
|
Peng H, Yan Y, He M, Li J, Wang L, Jia W, Yang L, Jiang J, Chen Y, Li F, Yuan X, Pang L. SLC43A2 and NFκB signaling pathway regulate methionine/cystine restriction-induced ferroptosis in esophageal squamous cell carcinoma via a feedback loop. Cell Death Dis 2023; 14:347. [PMID: 37268653 DOI: 10.1038/s41419-023-05860-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
Studies have indicated dietary restriction of methionine/cystine provided a therapeutic benefit in diseases such as cancer. However, the molecular and cellular mechanisms that underlie the interaction between methionine/cystine restriction (MCR) and effects on esophageal squamous cell carcinoma (ESCC) have remained elusive. Here, we discovered the dietary restriction of methionine/cystine has a large effect on cellular methionine metabolism as assayed in a ECA109 derived xenograft model. RNA-seq and enrichment analysis suggested the blocked tumor progression was affected by ferroptosis, together with the NFκB signaling pathway activation in ESCC. Consistently, GSH content and GPX4 expression were downregulated by MCR both in vivo and in vitro. The contents of Fe2+ and MDA were negatively correlated with supplementary methionine in a dose-dependent way. Mechanistically, MCR and silent of SLC43A2, a methionine transporter, diminished phosphorylation of IKKα/β and p65. Blocked NFκB signaling pathway further decreased the expression of SLC43A2 and GPX4 in both mRNA and protein level, which in turn downregulated the methionine intake and stimulated ferroptosis, respectively. ESCC progression was inhibited by enhanced ferroptosis and apoptosis and impaired cell proliferation. In this study, we proposed a novel feedback regulation mechanism underlie the correlation between dietary restriction of methionine/cystine and ESCC progression. MCR blocked cancer progression via stimulating ferroptosis through the positive feedback loop between SLC43A2 and NFκB signaling pathways. Our results provided the theoretical basis and new targets for ferroptosis-based clinical antitumor treatments for ESCC patients.
Collapse
Affiliation(s)
- Hao Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei Province, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University)/Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, 832002, Shihezi, China
| | - Yuyu Yan
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University)/Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, 832002, Shihezi, China
| | - Min He
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University)/Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, 832002, Shihezi, China
| | - Jinxia Li
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University)/Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, 832002, Shihezi, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University)/Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, 832002, Shihezi, China
| | - Wei Jia
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University)/Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, 832002, Shihezi, China
| | - Lan Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University)/Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, 832002, Shihezi, China
| | - Jinfang Jiang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University)/Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, 832002, Shihezi, China
| | - Yunzhao Chen
- The People's Hospital of Suzhou National Hi-Tech District, 215010, Suzhou, China
| | - Feng Li
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei Province, China.
| | - Lijuan Pang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei Province, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University)/Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, 832002, Shihezi, China.
- Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, 524000, Zhanjiang, Guangdong, China.
| |
Collapse
|
21
|
Cahuzac KM, Lubin A, Bosch K, Stokes N, Shoenfeld SM, Zhou R, Lemon H, Asara J, Parsons RE. AKT activation because of PTEN loss upregulates xCT via GSK3β/NRF2, leading to inhibition of ferroptosis in PTEN-mutant tumor cells. Cell Rep 2023; 42:112536. [PMID: 37210723 PMCID: PMC10558134 DOI: 10.1016/j.celrep.2023.112536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Here, we show that the tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) sensitizes cells to ferroptosis, an iron-dependent form of cell death, by restraining the expression and activity of the cystine/glutamate antiporter system Xc- (xCT). Loss of PTEN activates AKT kinase to inhibit GSK3β, increasing NF-E2 p45-related factor 2 (NRF2) along with transcription of one of its known target genes encoding xCT. Elevated xCT in Pten-null mouse embryonic fibroblasts increases the flux of cystine transport and synthesis of glutathione, which enhances the steady-state levels of these metabolites. A pan-cancer analysis finds that loss of PTEN shows evidence of increased xCT, and PTEN-mutant cells are resistant to ferroptosis as a consequence of elevated xCT. These findings suggest that selection of PTEN mutation during tumor development may be due to its ability to confer resistance to ferroptosis in the setting of metabolic and oxidative stress that occurs during tumor initiation and progression.
Collapse
Affiliation(s)
- Kaitlyn M Cahuzac
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abigail Lubin
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaitlyn Bosch
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Stokes
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Royce Zhou
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haddy Lemon
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ramon E Parsons
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
22
|
Yoon SJ, Combs JA, Falzone A, Prieto-Farigua N, Caldwell S, Ackerman HD, Flores ER, DeNicola GM. Comprehensive Metabolic Tracing Reveals the Origin and Catabolism of Cysteine in Mammalian Tissues and Tumors. Cancer Res 2023; 83:1426-1442. [PMID: 36862034 PMCID: PMC10152234 DOI: 10.1158/0008-5472.can-22-3000] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/11/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
Cysteine plays critical roles in cellular biosynthesis, enzyme catalysis, and redox metabolism. The intracellular cysteine pool can be sustained by cystine uptake or de novo synthesis from serine and homocysteine. Demand for cysteine is increased during tumorigenesis for generating glutathione to deal with oxidative stress. While cultured cells have been shown to be highly dependent on exogenous cystine for proliferation and survival, how diverse tissues obtain and use cysteine in vivo has not been characterized. We comprehensively interrogated cysteine metabolism in normal murine tissues and cancers that arise from them using stable isotope 13C1-serine and 13C6-cystine tracing. De novo cysteine synthesis was highest in normal liver and pancreas and absent in lung tissue, while cysteine synthesis was either inactive or downregulated during tumorigenesis. In contrast, cystine uptake and metabolism to downstream metabolites was a universal feature of normal tissues and tumors. However, differences in glutathione labeling from cysteine were evident across tumor types. Thus, cystine is a major contributor to the cysteine pool in tumors, and glutathione metabolism is differentially active across tumor types. SIGNIFICANCE Stable isotope 13C1-serine and 13C6-cystine tracing characterizes cysteine metabolism in normal murine tissues and its rewiring in tumors using genetically engineered mouse models of liver, pancreas, and lung cancers.
Collapse
Affiliation(s)
- Sang Jun Yoon
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Joseph A. Combs
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Aimee Falzone
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Nicolas Prieto-Farigua
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Samantha Caldwell
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Hayley D. Ackerman
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Department of Molecular Oncology, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Elsa R. Flores
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Department of Molecular Oncology, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
23
|
Xu J, Wang XL, Zeng HF, Han ZY. Methionine alleviates heat stress-induced ferroptosis in bovine mammary epithelial cells through the Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114889. [PMID: 37079940 DOI: 10.1016/j.ecoenv.2023.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Heat stress (HS) triggers mammary gland degradation, accompanied by apoptosis and autophagy in bovine mammary epithelial cells, negatively affecting milk performance and mammary gland health. Ferroptosis is iron-mediated regulated cell death caused by over production of lipid peroxides, however, the relationship between ferroptosis and HS in bovine mammary epithelial cells has not been clarified. Methionine (Met) plays a notable role in alleviating HS affecting the mammary glands in dairy cows, but the underlying mechanisms require further exploration. Therefore, we evaluated the regulatory effect and mechanism of Met in alleviating HS-induced ferroptosis by using bovine mammary epithelial cell line (MAC-T) as an in vitro model. The results showed that Met improved cell vitality, restored mitochondrial function; reduced the content of various reactive oxygen species (ROS), especially hydrogen peroxide (H2O2) and superoxide anion (O2·-); had positive effects on antioxidant enzyme activity, namely glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). More importantly, Met reduced labile iron protein (LIP) levels; increased iron storage and simultaneously decreased the levels of lipid reactive oxygen species (lipid ROS) and malondialdehyde (MDA), which all caused by HS in MAC-T. Mechanistically, Met increased the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7, member 11 (SLC7A11) and ferritin heavy chain 1 (FTH1) by activating nuclear factor E2-related factor 2 (Nrf2) expression. Additionally, the protection effect of Met was cut off in MAC-T cells after interference with Nrf2, manifesting in decresing the protein expression levels of GPX4, SLC7A11 and FTH1,and increasing the levels of LIP and lipid ROS. Our findings indicate that Met eases HS-induced ferroptosis in MAC-T through the Nrf2 pathway, revealing that Met produces a marked effect on easing HS-induced bovine mammary gland injury in dairy cows.
Collapse
Affiliation(s)
- Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ling Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Han-Fang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao-Yu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Li Y, Duan Z, Pan D, Ren L, Gu L, Li X, Xu G, Zhu H, Zhang H, Gu Z, Chen R, Gong Q, Wu Y, Luo K. Attenuating Metabolic Competition of Tumor Cells for Favoring the Nutritional Demand of Immune Cells by a Branched Polymeric Drug Delivery System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210161. [PMID: 36504170 DOI: 10.1002/adma.202210161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Tumor cells are dominant in the nutritional competition in the tumor microenvironment, and their metabolic abnormalities often lead to microenvironmental acidosis and nutrient deprivation, thereby impairing the function of immune cells and diminishing the antitumor therapeutic effect. Herein, a branched polymeric conjugate and its efficacy in attenuating the metabolic competition of tumor cells are reported. Compared with the control nanoparticles prepared from its linear counterpart, the branched-conjugate-based nanoparticles can more efficiently accumulate in the tumor tissue and interfere with the metabolic processes of tumor cells to increase the concentration of essential nutrients and reduce the level of immunosuppressive metabolites in the TME, thus creating a favorable environment for infiltrated immune cells. Its combined treatment with an immune checkpoint inhibitor (ICI) achieves an enhanced antitumor effect. The work presents a promising approach for targeting metabolic competition in the TME to enhance the chemo-immunotherapeutic effect against cancers.
Collapse
Affiliation(s)
- Yinggang Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Long Ren
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Yao Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
25
|
Metabolomic and Mitochondrial Fingerprinting of the Epithelial-to-Mesenchymal Transition (EMT) in Non-Tumorigenic and Tumorigenic Human Breast Cells. Cancers (Basel) 2022; 14:cancers14246214. [PMID: 36551699 PMCID: PMC9776482 DOI: 10.3390/cancers14246214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and H-RasV12-driven tumorigenic backgrounds possess unique metabolic fingerprints. We profiled mitochondrial-cytosolic bioenergetic and one-carbon (1C) metabolites by metabolomic analysis, and then questioned the utilization of different mitochondrial substrates by EMT mitochondria and their sensitivity to mitochondria-centered inhibitors. "Upper" and "lower" glycolysis were the preferred glucose fluxes activated by EMT in non-tumorigenic and tumorigenic backgrounds, respectively. EMT in non-tumorigenic and tumorigenic backgrounds could be distinguished by the differential contribution of the homocysteine-methionine 1C cycle to the transsulfuration pathway. Both non-tumorigenic and tumorigenic EMT-activated cells showed elevated mitochondrial utilization of glycolysis end-products such as lactic acid, β-oxidation substrates including palmitoyl-carnitine, and tricarboxylic acid pathway substrates such as succinic acid. Notably, mitochondria in tumorigenic EMT cells distinctively exhibited a significant alteration in the electron flow intensity from succinate to mitochondrial complex III as they were highly refractory to the inhibitory effects of antimycin A and myxothiazol. Our results show that the bioenergetic/1C metabolic signature, the utilization rates of preferred mitochondrial substrates, and sensitivity to mitochondrial drugs significantly differs upon execution of EMT in non-tumorigenic and tumorigenic backgrounds, which could help to resolve the relationship between EMT, malignancy, and therapeutic resistance in breast cancer.
Collapse
|
26
|
Sun Y, Fowke JH, Liang X, Mozhui K, Sen S, Bao W, Liu B, Snetselaar LG, Wallace RB, Shadyab AH, Saquib N, Cheng TYD, Johnson KC. Changes in Dietary Intake of Methionine, Folate/Folic Acid and Vitamin B12 and Survival in Postmenopausal Women with Breast Cancer: A Prospective Cohort Study. Nutrients 2022; 14:nu14224747. [PMID: 36432434 PMCID: PMC9699275 DOI: 10.3390/nu14224747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Previous experimental studies showed that limiting methionine in the diet of animals or in cell culture media suppresses mammary cancer cell proliferation or metastasis. However, no previous study has investigated the associations of changes in methionine intake with survival among breast cancer survivors. We aimed to examine the association between changes in dietary intake of methionine, folate/folic acid, and vitamin B12 from before to after diagnosis of breast cancer, and mortality among breast cancer survivors. METHODS We included 1553 postmenopausal women from the Women's Health Initiative who were diagnosed with invasive breast cancer and completed a food frequency questionnaire both before and after breast cancer diagnosis. Multivariable Cox proportional hazards regression models were used to estimate adjusted hazard ratios (HRs) and 95% confidence (CIs) of all-cause and breast cancer mortality associated with changes in methionine intake and changes in folate/folic acid and vitamin B12 intake. RESULTS Relative to pre-diagnosis, 28% of women decreased methionine intake by ≥20%, 30% of women increased methionine intake by ≥20%, and 42% of women had a relatively stable methionine intake (±19.9%) following breast cancer diagnosis. During a mean 16.1 years of follow up, there were 772 deaths in total, including 195 deaths from breast cancer. Compared to women with relatively stable methionine intake, women with decreased methionine intake had lower risks of all-cause (HR 0.78, 95% CI 0.62-0.97) and breast cancer mortality (HR 0.58, 95% CI 0.37-0.91) in fully adjusted models. In contrast, increased methionine intake or changes in folate/folic acid or vitamin B12 intake were not associated with all-cause or breast cancer mortality. CONCLUSIONS Among breast cancer survivors, decreased methionine intake after breast cancer diagnosis was associated with lower risk of all-cause and breast cancer mortality.
Collapse
Affiliation(s)
- Yangbo Sun
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, 66 N. Pauline Street, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-901-448-3923; Fax: +1-901-448-7041
| | - Jay H. Fowke
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, 66 N. Pauline Street, Memphis, TN 38163, USA
| | - Xiaoyu Liang
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, 66 N. Pauline Street, Memphis, TN 38163, USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, 66 N. Pauline Street, Memphis, TN 38163, USA
| | - Saunak Sen
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, 66 N. Pauline Street, Memphis, TN 38163, USA
| | - Wei Bao
- Institute of Public Health, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Department of Endocrinology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230026, China
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Linda G. Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Robert B. Wallace
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA
| | - Nazmus Saquib
- College of Medicine, Sulaiman AlRajhi University, Al Bukayriah 51941, Saudi Arabia
| | - Ting-Yuan David Cheng
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
| | - Karen C. Johnson
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, 66 N. Pauline Street, Memphis, TN 38163, USA
| |
Collapse
|
27
|
Pokrovsky VS, Abo Qoura L, Morozova E, Bunik VI. Predictive markers for efficiency of the amino-acid deprivation therapies in cancer. Front Med (Lausanne) 2022; 9:1035356. [PMID: 36405587 PMCID: PMC9669297 DOI: 10.3389/fmed.2022.1035356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Amino acid deprivation therapy (AADT) is a promising strategy for developing novel anticancer treatments, based on variations in metabolism of healthy and malignant cells. L-asparaginase was the first amino acid-degrading enzyme that received FDA approval for the treatment of acute lymphoblastic leukemia (ALL). Arginase and arginine deiminase were effective in clinical trials for the treatment of metastatic melanomas and hepatocellular carcinomas. Essential dependence of certain cancer cells on methionine explains the anticancer efficacy of methionine-g-lyase. Along with significant progress in identification of metabolic vulnerabilities of cancer cells, new amino acid-cleaving enzymes appear as promising agents for cancer treatment: lysine oxidase, tyrosine phenol-lyase, cysteinase, and phenylalanine ammonia-lyase. However, sensitivity of specific cancer cell types to these enzymes differs. Hence, search for prognostic and predictive markers for AADT and introduction of the markers into clinical practice are of great importance for translational medicine. As specific metabolic pathways in cancer cells are determined by the enzyme expression, some of these enzymes may define the sensitivity to AADT. This review considers the known predictors for efficiency of AADT, emphasizing the importance of knowledge on cancer-specific amino acid significance for such predictions.
Collapse
Affiliation(s)
- Vadim S. Pokrovsky
- Laboratory of Experimental Oncology, Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), Moscow, Russia
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- *Correspondence: Vadim S. Pokrovsky,
| | - Louay Abo Qoura
- Laboratory of Experimental Oncology, Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria I. Bunik
- A.N. Belozersky Institute of Physicochemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
28
|
Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol 2022; 32. [PMID: 35365367 PMCID: PMC9378356 DOI: 10.1016/j.tcb.2022.02.009&set/a 845351627+823089559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Cysteine, a thiol-containing amino acid, is crucial for the synthesis of sulfur-containing biomolecules that control multiple essential cellular activities. Altered cysteine metabolism has been linked to numerous driver oncoproteins and tumor suppressors, as well as to malignant traits in cancer. Cysteine can be acquired from extracellular sources or synthesized de novo via the transsulfuration (TSS) pathway. Limited availability of cystine in tumor interstitial fluids raises the possible dependency on de novo cysteine synthesis via TSS. However, the contribution of TSS to cancer metabolism remains highly contentious. Based on recent findings, we provide new perspectives on this crucial but understudied metabolic pathway in cancer.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Seth J Parker
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
29
|
Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol 2022; 32:800-814. [PMID: 35365367 PMCID: PMC9378356 DOI: 10.1016/j.tcb.2022.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Cysteine, a thiol-containing amino acid, is crucial for the synthesis of sulfur-containing biomolecules that control multiple essential cellular activities. Altered cysteine metabolism has been linked to numerous driver oncoproteins and tumor suppressors, as well as to malignant traits in cancer. Cysteine can be acquired from extracellular sources or synthesized de novo via the transsulfuration (TSS) pathway. Limited availability of cystine in tumor interstitial fluids raises the possible dependency on de novo cysteine synthesis via TSS. However, the contribution of TSS to cancer metabolism remains highly contentious. Based on recent findings, we provide new perspectives on this crucial but understudied metabolic pathway in cancer.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Seth J Parker
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol 2022. [DOI: 10.1016/j.tcb.2022.02.009
expr 919953342 + 844571884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
31
|
Gao M, Fan K, Chen Y, Zhang G, Chen J, Zhang Y. Understanding the mechanistic regulation of ferroptosis in cancer: gene matters. J Genet Genomics 2022; 49:913-926. [PMID: 35697272 DOI: 10.1016/j.jgg.2022.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 12/28/2022]
Abstract
Ferroptosis has emerged as a crucial regulated cell death involved in a variety of physiological processes or pathological diseases, such as tumor suppression. Though initially being found from anti-cancer drug screening and considered not essential as apoptosis for growth and development, numerous studies have demonstrated that ferroptosis is tightly regulated by key genetic pathways and/or genes, including several tumor suppressors and oncogenes. In this review, we will first introduce the basic concepts of ferroptosis, characterized by the features of non-apoptotic, iron-dependent and overwhelmed accumulation of lipid peroxides, and the underlying regulated circuits are considered to be pro-ferroptotic pathways. Then we discuss several established lipid peroxidation defending systems within cells, including SLC7A11/GPX4, FSP1/CoQ, GCH1/BH4, and mitochondria DHODH/CoQ, all of which serve as anti-ferroptoic pathways to prevent ferroptosis. Moreover, we provide a comprehensive summary of the genetic regulation of ferroptosis via targeting the above-mentioned pro-ferroptotic or anti-ferroptotic pathways. The regulation of pro- and anti-ferroptotic pathways gives rise to more specific responses to the tumor cells in a context-dependent manner, highlighting the unceasing study and deeper understanding of mechanistic regulation of ferroptosis for the purpose of applying ferroptosis induction in cancer therapy.
Collapse
Affiliation(s)
- Min Gao
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Kexin Fan
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yuhan Chen
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Chen
- Department of Obstetrics, New Changan International Maternity Hospital, Xi'an, Shaanxi 710001, China; Shaanxi Stem Cell Engineering Application Technology Research Center, Shaanxi Jiuzhou Biomedical Technology Group Co., Ltd. Xi'an, Shaanxi 710065, China.
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
32
|
Sedillo JC, Cryns VL. Targeting the methionine addiction of cancer. Am J Cancer Res 2022; 12:2249-2276. [PMID: 35693095 PMCID: PMC9185618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Methionine is the initiator amino acid for protein synthesis, the methyl source for most nucleotide, chromatin, and protein methylation, and the carbon backbone for various aspects of the cellular antioxidant response and nucleotide biosynthesis. Methionine is provided in the diet and serum methionine levels fluctuate based on dietary methionine content. Within the cell, methionine is recycled from homocysteine via the methionine cycle, which is linked to nutrient status via one-carbon metabolism. Unlike normal cells, many cancer cells, both in vitro and in vivo, show high methionine cycle activity and are dependent on exogenous methionine for continued growth. However, the molecular mechanisms underlying the methionine dependence of diverse malignancies are poorly understood. Methionine deprivation initiates widespread metabolic alterations in cancer cells that enable them to survive despite limited methionine availability, and these adaptive alterations can be specifically targeted to enhance the activity of methionine deprivation, a strategy we have termed "metabolic priming". Chemotherapy-resistant cell populations such as cancer stem cells, which drive treatment-resistance, are also sensitive to methionine deprivation, suggesting dietary methionine restriction may inhibit metastasis and recurrence. Several clinical trials in cancer are investigating methionine restriction in combination with other agents. This review will explore new insights into the mechanisms of methionine dependence in cancer and therapeutic efforts to translate these insights into enhanced clinical activity of methionine restriction in cancer.
Collapse
Affiliation(s)
- Joni C Sedillo
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| |
Collapse
|
33
|
Essential amino acids deprivation is a potential strategy for breast cancer treatment. Breast 2022; 62:152-161. [PMID: 35217381 PMCID: PMC8873954 DOI: 10.1016/j.breast.2022.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Aims The study aimed to search novel, simple and practical index reflecting the level of essential amino acids (EAAs) metabolism in breast cancer (BC), as well as to explore the effect of enhanced EAAs metabolism on the prognosis and immune microenvironment of BC, thus providing new evidence for the application of EAAs deprivation in the BC treatment. Methods The study includes the analysis of multi-omics and clinical data of 13 BC cell lines and 2898 BC patients in the public database. Further validation was performed using multi-omics and immunohistochemistry data from 83 BC tissue samples collected at our hospital. Results According to the multi-omics data, the SLC7A5 to SLC7A8 Ratio (SSR) score was found to be significantly correlated with the EAAs level and EAAs-metabolic activity of BC, suggesting that the SSR score might be used as a biomarker to assess the degree of EAAs metabolism in BC. Besides, BC patients with high EAAs metabolism had shorter overall survival (OS) time, higher PD-L1 expression, and higher T regulatory cells (Tregs) infiltration, indicating that a high EAAs metabolism was related to a poor prognosis and immune suppression in BC. Additionally, MYC amplification is a critical molecular process in the metabolic reprogramming of EAAs in BC. Conclusion EAAs may be a possible therapeutic target for BC treatment. A novel biomarker to assess the EAAs metabolism in breast cancer. High EAAs metabolism is related to a poor prognosis in breast cancer. High EAAs metabolism is also related to immune suppression in breast cancer. MYC amplification drives the metabolic reprogramming of EAAs in breast cancer.
Collapse
|
34
|
Connolly-Schoonen J, Biamonte SF, Danowski L, Montrose DC. Modifying dietary amino acids in cancer patients. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:1-36. [PMID: 36283763 DOI: 10.1016/bs.ircmb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Limiting nutrient utilization by cancer cells in order to disrupt their metabolism and suppress their growth represents a promising approach for anti-cancer therapy. Recently, studies demonstrating the anti-neoplastic effects of lowering amino acid (AA) availability have opened up an exciting and quickly growing field of study. Although intracellular synthesis can often provide the AAs necessary to support cancer cells, diet and the tumor microenvironment can also be important sources. In fact, studies carried out in vitro and in animal tumor models have supported the anti-cancer potential of restricting exogenous sources of AAs. However the potential benefit of reducing AA intake in cancer patients requires further investigation. Furthermore, implementation of such an approach clinically, even if proven useful, could be challenging. In the enclosed review, we (1) summarize the pre-clinical studies showing the anti-tumorigenic effects of restricting exogenously available AAs, including through reducing dietary protein, (2) consider the role of microbiota in this process, (3) report on current recommendations for protein intake in cancer patients and studies that applied these guidelines, and (4) propose considerations for studies to test the potential therapeutic benefit of reducing protein/AA consumption in patients with cancer.
Collapse
Affiliation(s)
- Josephine Connolly-Schoonen
- Department of Family, Population & Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Steven F Biamonte
- Department of Family, Population & Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Lorraine Danowski
- Department of Family, Population & Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - David C Montrose
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States; Stony Brook Cancer Center, Stony Brook, NY, United States.
| |
Collapse
|
35
|
Fan K, Liu Z, Gao M, Tu K, Xu Q, Zhang Y. Targeting Nutrient Dependency in Cancer Treatment. Front Oncol 2022; 12:820173. [PMID: 35178349 PMCID: PMC8846368 DOI: 10.3389/fonc.2022.820173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumor. Growing evidence suggests metabolic changes that support oncogenic progression may cause selective vulnerabilities that can be exploited for cancer treatment. Increasing demands for certain nutrients under genetic determination or environmental challenge enhance dependency of tumor cells on specific nutrient, which could be therapeutically developed through targeting such nutrient dependency. Various nutrients including several amino acids and glucose have been found to induce dependency in genetic alteration- or context-dependent manners. In this review, we discuss the extensively studied nutrient dependency and the biological mechanisms behind such vulnerabilities. Besides, existing applications and strategies to target nutrient dependency in different cancer types, accompanied with remaining challenges to further exploit these metabolic vulnerabilities to improve cancer therapies, are reviewed.
Collapse
Affiliation(s)
- Kexin Fan
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, China
| | - Min Gao
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
36
|
Wang X, Song Y, Shi Y, Yang D, Li J, Yin B. SNHG3 could promote prostate cancer progression through reducing methionine dependence of PCa cells. Cell Mol Biol Lett 2022; 27:13. [PMID: 35123415 PMCID: PMC8903624 DOI: 10.1186/s11658-022-00313-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/17/2022] [Indexed: 01/21/2023] Open
Abstract
In recent years, morbidity and mortality of prostate cancer (PCa) have increased dramatically, while mechanistic understanding of its onset and progression remains unmet. LncRNA SNHG3 has been proved to stimulate malignant progression of multiple cancers, whereas its functional mechanism in PCa needs to be deciphered. In this study, our analysis in the TCGA database revealed high SNHG3 expression in PCa tissue. Further analysis in starBase, TargetScan, and mirDIP databases identified the SNHG3/miR-152-3p/SLC7A11 regulatory axis. FISH was conducted to assess the distribution of SNHG3 in PCa tissue. Dual-luciferase reporter gene and RIP assays confirmed the relationship among the three objects. Next, qRT-PCR and western blot were conducted to measure expression levels of SNHG3, miR-152-3p, and SLC7A11. CCK-8, colony formation, Transwell, and flow cytometry were carried out to assess proliferation, migration, invasion, methionine dependence, apoptosis, and the cell cycle. It was noted that SNHG3 as a molecular sponge of miR-152-3p stimulated proliferation, migration, and invasion, restrained methionine dependence and apoptosis, and affected the cell cycle of PCa cells via targeting SLC7A11. Additionally, we constructed xenograft tumor models in nude mice and confirmed that knockdown of SNHG3 could restrain PCa tumor growth and elevate methionine dependence in vivo. In conclusion, our investigation improved understanding of the molecular mechanism of SNHG3 modulating PCa progression, thereby generating novel insights into clinical therapy for PCa.
Collapse
|
37
|
Abstract
Cysteine is a conditionally essential amino acid required for the synthesis of proteins and many important intracellular metabolites. Cysteine depletion can trigger iron-dependent nonapoptotic cell death-ferroptosis. Despite this, cysteine itself is normally maintained at relatively low levels within the cell, and many mechanisms that could act to buffer cysteine depletion do not appear to be especially effective or active, at least in cancer cells. How do we reconcile these seemingly paradoxical features? Here, we describe the regulation of cysteine and its contribution to ferroptosis and speculate about how the levels of this amino acid are controlled to govern nonapoptotic cell death.
Collapse
Affiliation(s)
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Erdélyi K, Ditrói T, Johansson HJ, Czikora Á, Balog N, Silwal-Pandit L, Ida T, Olasz J, Hajdú D, Mátrai Z, Csuka O, Uchida K, Tóvári J, Engebraten O, Akaike T, Børresen Dale AL, Kásler M, Lehtiö J, Nagy P. Reprogrammed transsulfuration promotes basal-like breast tumor progression via realigning cellular cysteine persulfidation. Proc Natl Acad Sci U S A 2021; 118:e2100050118. [PMID: 34737229 PMCID: PMC8609449 DOI: 10.1073/pnas.2100050118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/02/2023] Open
Abstract
Basal-like breast cancer (BLBC) is the most aggressive subtype of breast tumors with poor prognosis and limited molecular-targeted therapy options. We show that BLBC cells have a high Cys demand and reprogrammed Cys metabolism. Patient-derived BLBC tumors from four different cohorts exhibited elevated expression of the transsulfuration enzyme cystathione β-synthetase (CBS). CBS silencing (shCBS) made BLBC cells less invasive, proliferate slower, more vulnerable to oxidative stress and cystine (CySSCy) deprivation, prone to ferroptosis, and less responsive to HIF1-α activation under hypoxia. shCBS xenograft tumors grew slower than controls and exhibited impaired angiogenesis and larger necrotic areas. Sulfur metabolite profiling suggested that realigned sulfide/persulfide-inducing functions of CBS are important in BLBC tumor progression. Supporting this, the exclusion of serine, a substrate of CBS for producing Cys but not for producing sulfide/persulfide, did not exacerbate CySSCy deprivation-induced ferroptosis in shCBS BLBC cells. Impaired Tyr phosphorylation was detected in shCBS cells and xenografts, likely due to persulfidation-inhibited phosphatase functions. Overexpression of cystathione γ-lyase (CSE), which can also contribute to cellular sulfide/persulfide production, compensated for the loss of CBS activities, and treatment of shCBS xenografts with a CSE inhibitor further blocked tumor growth. Glutathione and protein-Cys levels were not diminished in shCBS cells or xenografts, but levels of Cys persulfidation and the persulfide-catabolizing enzyme ETHE1 were suppressed. Finally, expression of enzymes of the oxidizing Cys catabolism pathway was diminished, but expression of the persulfide-producing CARS2 was elevated in human BLBC tumors. Hence, the persulfide-producing pathways are major targetable determinants of BLBC pathology that could be therapeutically exploited.
Collapse
Affiliation(s)
- Katalin Erdélyi
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Henrik J Johansson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 21 Solna, Sweden
| | - Ágnes Czikora
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Noémi Balog
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Laxmi Silwal-Pandit
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Judit Olasz
- Department of Pathogenetics, National Institute of Oncology, 1122 Budapest, Hungary
| | - Dorottya Hajdú
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Zoltán Mátrai
- Department of Surgery, National Institute of Oncology, 1122 Budapest, Hungary
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of Oncology, 1122 Budapest, Hungary
| | - Koji Uchida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Olav Engebraten
- Department of Oncology, Faculty of Medicine, Institute for Cancer Research, Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Anne-Lise Børresen Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway
| | - Miklós Kásler
- Department of Head and Neck Surgery, National Institute of Oncology, 1122 Budapest, Hungary
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 21 Solna, Sweden
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Hungary;
- Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, Hungary
- Institute of Oncochemistry, University of Debrecen, 4012 Debrecen, Hungary
| |
Collapse
|
40
|
Madsen RR, Erickson EC, Rueda OM, Robin X, Caldas C, Toker A, Semple RK, Vanhaesebroeck B. Positive correlation between transcriptomic stemness and PI3K/AKT/mTOR signaling scores in breast cancer, and a counterintuitive relationship with PIK3CA genotype. PLoS Genet 2021; 17:e1009876. [PMID: 34762647 PMCID: PMC8584750 DOI: 10.1371/journal.pgen.1009876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
A PI3Kα-selective inhibitor has recently been approved for use in breast tumors harboring mutations in PIK3CA, the gene encoding p110α. Preclinical studies have suggested that the PI3K/AKT/mTOR signaling pathway influences stemness, a dedifferentiation-related cellular phenotype associated with aggressive cancer. However, to date, no direct evidence for such a correlation has been demonstrated in human tumors. In two independent human breast cancer cohorts, encompassing nearly 3,000 tumor samples, transcriptional footprint-based analysis uncovered a positive linear association between transcriptionally-inferred PI3K/AKT/mTOR signaling scores and stemness scores. Unexpectedly, stratification of tumors according to PIK3CA genotype revealed a "biphasic" relationship of mutant PIK3CA allele dosage with these scores. Relative to tumor samples without PIK3CA mutations, the presence of a single copy of a hotspot PIK3CA variant was associated with lower PI3K/AKT/mTOR signaling and stemness scores, whereas the presence of multiple copies of PIK3CA hotspot mutations correlated with higher PI3K/AKT/mTOR signaling and stemness scores. This observation was recapitulated in a human cell model of heterozygous and homozygous PIK3CAH1047R expression. Collectively, our analysis (1) provides evidence for a signaling strength-dependent PI3K-stemness relationship in human breast cancer; (2) supports evaluation of the potential benefit of patient stratification based on a combination of conventional PI3K pathway genetic information with transcriptomic indices of PI3K signaling activation.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- University College London Cancer Institute, Paul O’Gorman Building, University College London, London, United Kingdom
| | - Emily C. Erickson
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
- Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Xavier Robin
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Basel, Switzerland
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
- Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Alex Toker
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bart Vanhaesebroeck
- University College London Cancer Institute, Paul O’Gorman Building, University College London, London, United Kingdom
| |
Collapse
|
41
|
Zhang HF, Hughes CS, Li W, He JZ, Surdez D, El-Naggar AM, Cheng H, Prudova A, Delaidelli A, Negri GL, Li X, Ørum-Madsen MS, Lizardo MM, Oo HZ, Colborne S, Shyp T, Scopim-Ribeiro R, Hammond CA, Dhez AC, Langman S, Lim JKM, Kung SHY, Li A, Steino A, Daugaard M, Parker SJ, Geltink RIK, Orentas RJ, Xu LY, Morin GB, Delattre O, Dimitrov DS, Sorensen PH. Proteomic Screens for Suppressors of Anoikis Identify IL1RAP as a Promising Surface Target in Ewing Sarcoma. Cancer Discov 2021; 11:2884-2903. [PMID: 34021002 PMCID: PMC8563374 DOI: 10.1158/2159-8290.cd-20-1690] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/03/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Cancer cells must overcome anoikis (detachment-induced death) to successfully metastasize. Using proteomic screens, we found that distinct oncoproteins upregulate IL1 receptor accessory protein (IL1RAP) to suppress anoikis. IL1RAP is directly induced by oncogenic fusions of Ewing sarcoma, a highly metastatic childhood sarcoma. IL1RAP inactivation triggers anoikis and impedes metastatic dissemination of Ewing sarcoma cells. Mechanistically, IL1RAP binds the cell-surface system Xc - transporter to enhance exogenous cystine uptake, thereby replenishing cysteine and the glutathione antioxidant. Under cystine depletion, IL1RAP induces cystathionine gamma lyase (CTH) to activate the transsulfuration pathway for de novo cysteine synthesis. Therefore, IL1RAP maintains cyst(e)ine and glutathione pools, which are vital for redox homeostasis and anoikis resistance. IL1RAP is minimally expressed in pediatric and adult normal tissues, and human anti-IL1RAP antibodies induce potent antibody-dependent cellular cytotoxicity of Ewing sarcoma cells. Therefore, we define IL1RAP as a new cell-surface target in Ewing sarcoma, which is potentially exploitable for immunotherapy. SIGNIFICANCE: Here, we identify cell-surface protein IL1RAP as a key driver of metastasis in Ewing sarcoma, a highly aggressive childhood sarcoma. Minimal expression in pediatric and adult normal tissues nominates IL1RAP as a promising target for immunotherapy.See related commentary by Yoon and DeNicola, p. 2679.This article is highlighted in the In This Issue feature, p. 2659.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Christopher S Hughes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Jian-Zhong He
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Didier Surdez
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Amal M El-Naggar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Hongwei Cheng
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
- Modelling and translation Laboratory, Xinxiang Medical University, Xinxiang, Henan, China
| | - Anna Prudova
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Xiaojun Li
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Michael M Lizardo
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Shane Colborne
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Taras Shyp
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Renata Scopim-Ribeiro
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Colin A Hammond
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Anne-Chloe Dhez
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sofya Langman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Jonathan K M Lim
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Amy Li
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Anne Steino
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Seth J Parker
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Rimas J Orentas
- Seattle Children's Research Institute, Seattle, Washington
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olivier Delattre
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Wilder CS, Chen Z, DiGiovanni J. Pharmacologic approaches to amino acid depletion for cancer therapy. Mol Carcinog 2021; 61:127-152. [PMID: 34534385 DOI: 10.1002/mc.23349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Abstract
Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids. Amino acids are involved in a wide range of cellular functions, including proliferation, redox balance, bioenergetic and biosynthesis support, and homeostatic functions. Thus, targeting amino acid dependency in cancer is an attractive strategy for a number of cancers. In particular, pharmacologically mediated amino acid depletion has been evaluated as a cancer treatment option for several cancers. Amino acids that have been investigated for the feasibility of drug-induced depletion in preclinical and clinical studies for cancer treatment include arginine, asparagine, cysteine, glutamine, lysine, and methionine. In this review, we will summarize the status of current research on pharmacologically mediated amino acid depletion as a strategy for cancer treatment and potential chemotherapeutic combinations that synergize with amino acid depletion to further inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Carly S Wilder
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhao Chen
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.,Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
43
|
Yang H, Zheng H, Pan Y, Zhang W, Yang M, Du H, Yu A, Li P, Chen X, Xie W, Ren K, Zhao Y, Wang T, He X, Zhou Z. Quantitative proteomic analysis of the effects of dietary deprivation of methionine and cystine on A549 xenograft and A549 xenograft-bearing mouse. Proteomics 2021; 21:e2100007. [PMID: 34482643 DOI: 10.1002/pmic.202100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/11/2022]
Abstract
Methionine (Met) and cystine (CySS) are key sulfur donors in cell metabolism and are important nutrients for sustaining tumor growth; however, the molecular effects associated with their deprivation remain to be characterized. Here, we applied a xenograft mouse model to assess the impact of their deprivation on A549 xenografts and the xenograft-bearing animal. Results show that Met and CySS deprivation inhibits A549 growth in vitro, not in vivo. Deprivation was detrimental to the xenograft-bearing mouse, as demonstrated by weight loss and renal dysfunction. Differentially expressed proteins in A549 xenograft and mouse kidneys were characterized using quantitative proteomics. Functional annotation and protein-protein interaction network analysis revealed the enriched signaling pathways, including focal adhesion (Fn1) in the A549 xenograft, and xenobiotic metabolism (Cyp2e1) and glutathione metabolism (Ggt1) in the mouse kidney. Met and CySS deprivation inhibits the migratory and invasive properties of cancer cells, as evidenced by reduced expression of the epithelial to mesenchymal transition marker N-cadherin in A549 cells in vitro. Moreover, IGFBP1 protein expression was inhibited in both A549 xenograft and mouse kidneys. This study provides the first insights into changes within the proteome profile and biological processes upon Met and CySS deprivation in a A549 xenograft mouse model.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Haoyang Zheng
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yue Pan
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Weiguo Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Mengjing Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Huiling Du
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Anan Yu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Ping Li
- School of Medical Instrument, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaoyan Chen
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Wei Xie
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Kaiming Ren
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianjiao Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiaoyan He
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
44
|
SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl Med 2021; 19:367. [PMID: 34446045 PMCID: PMC8393811 DOI: 10.1186/s12967-021-03042-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/14/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11's expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC. METHODS We included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps. RESULTS NRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features. CONCLUSION Our study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker.
Collapse
|
45
|
Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Front Oncol 2021; 11:694526. [PMID: 34277440 PMCID: PMC8281237 DOI: 10.3389/fonc.2021.694526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Amino acid (AA) metabolism plays an important role in many cellular processes including energy production, immune function, and purine and pyrimidine synthesis. Cancer cells therefore require increased AA uptake and undergo metabolic reprogramming to satisfy the energy demand associated with their rapid proliferation. Like many other cancers, myeloid leukemias are vulnerable to specific therapeutic strategies targeting metabolic dependencies. Herein, our review provides a comprehensive overview and TCGA data analysis of biosynthetic enzymes required for non-essential AA synthesis and their dysregulation in myeloid leukemias. Furthermore, we discuss the role of the general control nonderepressible 2 (GCN2) and-mammalian target of rapamycin (mTOR) pathways of AA sensing on metabolic vulnerability and drug resistance.
Collapse
Affiliation(s)
- Aboli Bhingarkar
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Hima V. Vangapandu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Sanjay Rathod
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Keito Hoshitsuki
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Morozova E, Anufrieva N, Koval V, Lesnova E, Kushch A, Timofeeva V, Solovieva A, Kulikova V, Revtovich S, Demidkina T. Conjugates of methionine γ-lyase with polysialic acid: Two approaches to antitumor therapy. Int J Biol Macromol 2021; 182:394-401. [PMID: 33839182 DOI: 10.1016/j.ijbiomac.2021.03.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The methionine dependence is a well known phenomenon in metabolism of cancer cells. Methionine γ-lyase (EC 4.4.1.11, MGL) catalyzes the γ-elimination reaction of L-methionine and thus could effectively inhibit the growth of malignant cells. Recently we have demonstrated that the mutant form of the enzyme C115H MGL can be used as a component of the pharmacological pair enzyme/S-(allyl/alkyl)-L-cysteine sulfoxides to yield thiosulfinates in situ. Thiosulfinates were shown to be toxic to various cancer cell lines. Therefore the application of the enzyme in enzyme pro-drug therapy may be promising. The conjugates of MGL and C115H MGL with polysialic acid were obtained and their kinetic and pharmacokinetic parameters were determined. The formation of polysialic shell around the enzyme was confirmed by atomic force microscopy. The half-life of conjugated enzymes increased 3-6 times compared to the native enzyme. The cytotoxic effect of conjugated MGL against methionine dependent cancer cell lines was increased two times compared to the values for the native enzymes. The anticancer efficiency of thiosulfinates produced by pharmacological pair C115H MGL/S-(allyl/alkyl)-L-cysteine sulfoxides was demonstrated in vitro. The results indicate that the conjugates of MGL with polysialic acid could be new antitumor drugs.
Collapse
Affiliation(s)
- E Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - N Anufrieva
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - V Koval
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - E Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - A Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - V Timofeeva
- N. N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - A Solovieva
- N. N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - V Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - S Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - T Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
47
|
Asantewaa G, Harris IS. Glutathione and its precursors in cancer. Curr Opin Biotechnol 2021; 68:292-299. [PMID: 33819793 DOI: 10.1016/j.copbio.2021.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Buffering oxidative stress is as a crucial requirement for tumorigenesis. Antioxidant is a term reserved for molecules that quench reactive oxygen species (ROS) and alleviate oxidative stress. The details regarding antioxidant synthesis, their utilization to eliminate ROS, and their ability to promote different stages of tumorigenesis are unclear. Here, we focus on glutathione (GSH), the most abundant antioxidant in the cell, and its precursor amino acids (cysteine, glutamate, and glycine). Even though GSH was discovered more than a century ago, continued research into this antioxidant has provided answers to longstanding questions while also posing new ones.
Collapse
Affiliation(s)
- Gloria Asantewaa
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, United States; Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, United States; Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, United States.
| |
Collapse
|
48
|
Torrence ME, MacArthur MR, Hosios AM, Valvezan AJ, Asara JM, Mitchell JR, Manning BD. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. eLife 2021; 10:e63326. [PMID: 33646118 PMCID: PMC7997658 DOI: 10.7554/elife.63326] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) stimulates a coordinated anabolic program in response to growth-promoting signals. Paradoxically, recent studies indicate that mTORC1 can activate the transcription factor ATF4 through mechanisms distinct from its canonical induction by the integrated stress response (ISR). However, its broader roles as a downstream target of mTORC1 are unknown. Therefore, we directly compared ATF4-dependent transcriptional changes induced upon insulin-stimulated mTORC1 signaling to those activated by the ISR. In multiple mouse embryo fibroblast and human cancer cell lines, the mTORC1-ATF4 pathway stimulated expression of only a subset of the ATF4 target genes induced by the ISR, including genes involved in amino acid uptake, synthesis, and tRNA charging. We demonstrate that ATF4 is a metabolic effector of mTORC1 involved in both its established role in promoting protein synthesis and in a previously unappreciated function for mTORC1 in stimulating cellular cystine uptake and glutathione synthesis.
Collapse
Affiliation(s)
- Margaret E Torrence
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public HealthBostonUnited States
| | - Michael R MacArthur
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public HealthBostonUnited States
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Aaron M Hosios
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public HealthBostonUnited States
| | - Alexander J Valvezan
- Center for Advanced Biotechnology and Medicine, Department of Pharmacology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical SchoolBostonUnited States
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public HealthBostonUnited States
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public HealthBostonUnited States
| |
Collapse
|
49
|
Bonifácio VDB, Pereira SA, Serpa J, Vicente JB. Cysteine metabolic circuitries: druggable targets in cancer. Br J Cancer 2021; 124:862-879. [PMID: 33223534 PMCID: PMC7921671 DOI: 10.1038/s41416-020-01156-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
To enable survival in adverse conditions, cancer cells undergo global metabolic adaptations. The amino acid cysteine actively contributes to cancer metabolic remodelling on three different levels: first, in its free form, in redox control, as a component of the antioxidant glutathione or its involvement in protein s-cysteinylation, a reversible post-translational modification; second, as a substrate for the production of hydrogen sulphide (H2S), which feeds the mitochondrial electron transfer chain and mediates per-sulphidation of ATPase and glycolytic enzymes, thereby stimulating cellular bioenergetics; and, finally, as a carbon source for epigenetic regulation, biomass production and energy production. This review will provide a systematic portrayal of the role of cysteine in cancer biology as a source of carbon and sulphur atoms, the pivotal role of cysteine in different metabolic pathways and the importance of H2S as an energetic substrate and signalling molecule. The different pools of cysteine in the cell and within the body, and their putative use as prognostic cancer markers will be also addressed. Finally, we will discuss the pharmacological means and potential of targeting cysteine metabolism for the treatment of cancer.
Collapse
Affiliation(s)
- Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157, Oeiras, Portugal
| |
Collapse
|
50
|
Borrego SL, Fahrmann J, Hou J, Lin DW, Tromberg BJ, Fiehn O, Kaiser P. Lipid remodeling in response to methionine stress in MDA-MBA-468 triple-negative breast cancer cells. J Lipid Res 2021; 62:100056. [PMID: 33647277 PMCID: PMC8042402 DOI: 10.1016/j.jlr.2021.100056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Methionine (Met) is an essential amino acid and critical precursor to the cellular methyl donor S-adenosylmethionine. Unlike nontransformed cells, cancer cells have a unique metabolic requirement for Met and are unable to proliferate in growth media where Met is replaced with its metabolic precursor, homocysteine. This metabolic vulnerability is common among cancer cells regardless of tissue origin and is known as "methionine dependence", "methionine stress sensitivity", or the Hoffman effect. The response of lipids to Met stress, however, is not well-understood. Using mass spectroscopy, label-free vibrational microscopy, and next-generation sequencing, we characterize the response of lipids to Met stress in the triple-negative breast cancer cell line MDA-MB-468 and its Met stress insensitive derivative, MDA-MB-468res-R8. Lipidome analysis identified an immediate, global decrease in lipid abundances with the exception of triglycerides and an increase in lipid droplets in response to Met stress specifically in MDA-MB-468 cells. Furthermore, specific gene expression changes were observed as a secondary response to Met stress in MDA-MB-468, resulting in a downregulation of fatty acid metabolic genes and an upregulation of genes in the unfolded protein response pathway. We conclude that the extensive changes in lipid abundance during Met stress is a direct consequence of the modified metabolic profile previously described in Met stress-sensitive cells. The changes in lipid abundance likely results in changes in membrane composition inducing the unfolded protein response we observe.
Collapse
Affiliation(s)
- Stacey L Borrego
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Johannes Fahrmann
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA; Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jue Hou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Da-Wei Lin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Bruce J Tromberg
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA; National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|