1
|
Zhao Z, Cui R, Chi H, Wan T, Ma D, Zhang J, Cai M. A novel IRF6 gene mutation impacting the regulation of TGFβ2-AS1 in the TGFβ pathway: A mechanism in the development of Van der Woude syndrome. Front Genet 2024; 15:1397410. [PMID: 38903762 PMCID: PMC11188484 DOI: 10.3389/fgene.2024.1397410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Several mutations in the IRF6 gene have been identified as a causative link to VWS. In this investigation, whole-exome sequencing (WES) and Sanger sequencing of a three-generation pedigree with an autosomal-dominant inheritance pattern affected by VWS identified a unique stop-gain mutation-c.748C>T:p.R250X-in the IRF6 gene that co-segregated exclusively with the disease phenotype. Immunofluorescence analysis revealed that the IRF6-p.R250X mutation predominantly shifted its localization from the nucleus to the cytoplasm. WES and protein interaction analyses were conducted to understand this mutation's role in the pathogenesis of VWS. Using LC-MS/MS, we found that this mutation led to a reduction in the binding of IRF6 to histone modification-associated proteins (NAA10, SNRPN, NAP1L1). Furthermore, RNA-seq results show that the mutation resulted in a downregulation of TGFβ2-AS1 expression. The findings highlight the mutation's influence on TGFβ2-AS1 and its subsequent effects on the phosphorylation of SMAD2/3, which are critical in maxillofacial development, particularly the palate. These insights contribute to a deeper understanding of VWS's molecular underpinnings and might inform future therapeutic strategies.
Collapse
Affiliation(s)
- Zhiyang Zhao
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Renjie Cui
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoshu Chi
- Shanghai Xuhui District Dental Disease Center, Shanghai, China
| | - Teng Wan
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Cai
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Liu Y, Liang M, Chen K, Wang L, Yang Y, Li Q, Lian B, Zhuo T, Huang J. A novel entity of HIPK2::YAP1 pulmonary fibromatosis. BMC Pulm Med 2024; 24:223. [PMID: 38714933 PMCID: PMC11075317 DOI: 10.1186/s12890-024-03026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Pulmonary fibromatosis (PF) is a specific variant of fibromatosis, which is rarely reported occurring in the lung. PF with HIPK2-YAP1 fusion was a novel entity. CASE PRESENTATION In this report, a 66-year-old male with PF had been smoking over 40 years. Multiple cords and small nodules in both lungs had been detected in a health examination two years earlier at our hospital. But approximately twofold enlarged in the lingual segment of the upper lobe in the left lung were disclosed in this year. Immunohistochemical analysis demonstrated that the vimentin and β-Catenin were positive in the largest nodule. After underwent a DNA/RNA panel next-generation sequencing (NGS), missense mutations and HIPK2-YAP1 fusion were found in this sample. Ultimately, the case diagnosis as PF with HIPK2-YAP1 fusion after multidisciplinary treatment. Currently, the patient is doing well and recurrence-free at 14 months post-surgery. CONCLUSIONS It's difficult for patients with complex morphology to make accurate diagnosis solely based on morphology and immunohistochemistry. But molecular detection is an effective method for further determining pathological subtypes.
Collapse
Affiliation(s)
- Yuqiang Liu
- Department of Proctology, Honliv Hospital, Xinxiang, 453400, Henan Province, China
| | - Meng Liang
- Department of Academic Affairs, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Kai Chen
- Department of Respiratory Medicine, Yongcheng People Hospital, Yongcheng, 476600, Henan Province, China
| | - Lucas Wang
- Precision Medicine Center, Guangzhou Huayin Health Medical Group Co., Ltd, No.33 Binhe Road, Huangpu District, Guangzhou, 510700, Guangdong Province, China
| | - Yaxian Yang
- Precision Medicine Center, Guangzhou Huayin Health Medical Group Co., Ltd, No.33 Binhe Road, Huangpu District, Guangzhou, 510700, Guangdong Province, China
| | - Qi Li
- Precision Medicine Center, Guangzhou Huayin Health Medical Group Co., Ltd, No.33 Binhe Road, Huangpu District, Guangzhou, 510700, Guangdong Province, China
| | - Bin Lian
- Precision Medicine Center, Guangzhou Huayin Health Medical Group Co., Ltd, No.33 Binhe Road, Huangpu District, Guangzhou, 510700, Guangdong Province, China
| | - Tongxu Zhuo
- Precision Medicine Center, Guangzhou Huayin Health Medical Group Co., Ltd, No.33 Binhe Road, Huangpu District, Guangzhou, 510700, Guangdong Province, China
| | - Jian Huang
- Precision Medicine Center, Guangzhou Huayin Health Medical Group Co., Ltd, No.33 Binhe Road, Huangpu District, Guangzhou, 510700, Guangdong Province, China.
- Department of Pathological Diagnosis and Research Center, the Affiliated Hospital of Guangdong Medical University, No.57 South Renmin Avenue, Xiashan District, Zhanjiang, 524001, Guangdong Province, China.
| |
Collapse
|
3
|
Cui X, Zhu G, Han M, Li X, Lou S, Xing C, Xu S, Pan Y, Wang L. Genetic variants in BCL-2 family genes influence the risk of non-syndromic cleft lip with or without cleft palate. Birth Defects Res 2024; 116:e2288. [PMID: 38108593 DOI: 10.1002/bdr2.2288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The BCL-2 family is crucial for cell death regulation and is involved in development, tissue homeostasis, and immunity. This study aimed to investigate the association between genetic variants in BCL-2 family genes and non-syndromic cleft lip with or without cleft palate (NSCL/P) risk. METHODS A two-stage case-control study was conducted in this association study. Gene-based analysis using Multi-marker Analysis of GenoMic Annotation was performed in the first stage cohort, which included 565 cases and 1269 controls. A logistic regression model was employed to assess the effect of single nucleotide polymorphisms (SNPs) on susceptibility to NSCL/P. Candidate SNPs were replicated by extra dbGaP case-parent trios. Haploreg, RegulomeDB, and UCSC Genome Browser were used to identify enhancer effects of promising SNPs. Bulk RNA sequencing data obtained from the Gene Expression Omnibus was used to identify co-expressed genes. Single-cell RNA sequencing dataset was used to infer the cell population of the candidate gene. The "Monocle" package was used to analyze the pseudotime cell trajectories. RESULTS Rs3943258 located in the enhancer region was associated with the risk of NSCL/P (Pmeta = 5.66 × 10-04 ) and exhibited an eQTL effect for BCL2 (P = 3.96 × 10-02 ). Co-expression and pathway enrichment analysis revealed that genes related to Bcl2 were significantly enriched in the PI3K-Akt signaling pathway, MAPK signaling pathway, and Wnt signaling pathway. Five cell clusters were identified in single-cell RNA sequencing, and Bcl2 was mainly located in the mesenchyme. CONCLUSION The rs3943258 located within BCL2 was probably related to NSCL/P susceptibility.
Collapse
Affiliation(s)
- Xing Cui
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Guirong Zhu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Minxuan Han
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Li
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Changyue Xing
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shuangbo Xu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Zhang Q, Chen Y, Wang Q, Wang Y, Feng W, Chai L, Liu J, Li D, Chen H, Qiu Y, Shen N, Shi X, Xie X, Li M. HMGB1-induced activation of ER stress contributes to pulmonary artery hypertension in vitro and in vivo. Respir Res 2023; 24:149. [PMID: 37268944 DOI: 10.1186/s12931-023-02454-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND HMGB1 and ER stress have been considered to participate in the progression of pulmonary artery hypertension (PAH). However, the molecular mechanism underlying HMGB1 and ER stress in PAH remains unclear. This study aims to explore whether HMGB1 induces pulmonary artery smooth muscle cells (PASMCs) functions and pulmonary artery remodeling through ER stress activation. METHODS Primary cultured PASMCs and monocrotaline (MCT)-induced PAH rats were applied in this study. Cell proliferation and migration were determined by CCK-8, EdU and transwell assay. Western blotting was conducted to detect the protein levels of protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor-4 (ATF4), seven in absentia homolog 2 (SIAH2) and homeodomain interacting protein kinase 2 (HIPK2). Hemodynamic measurements, immunohistochemistry staining, hematoxylin and eosin staining were used to evaluate the development of PAH. The ultrastructure of ER was observed by transmission electron microscopy. RESULTS In primary cultured PASMCs, HMGB1 reduced HIPK2 expression through upregulation of ER stress-related proteins (PERK and ATF4) and subsequently increased SIAH2 expression, which ultimately led to PASMC proliferation and migration. In MCT-induced PAH rats, interfering with HMGB1 by glycyrrhizin, suppression of ER stress by 4-phenylbutyric acid or targeting SIAH2 by vitamin K3 attenuated the development of PAH. Additionally, tetramethylpyrazine (TMP), as a component of traditional Chinese herbal medicine, reversed hemodynamic deterioration and vascular remodeling by targeting PERK/ATF4/SIAH2/HIPK2 axis. CONCLUSIONS The present study provides a novel insight to understand the pathogenesis of PAH and suggests that targeting HMGB1/PERK/ATF4/SIAH2/HIPK2 cascade might have potential therapeutic value for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xiangyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
5
|
Baker JA, Brettin JT, Mulligan MK, Hamre KM. Effects of Genetics and Sex on Acute Gene Expression Changes in the Hippocampus Following Neonatal Ethanol Exposure in BXD Recombinant Inbred Mouse Strains. Brain Sci 2022; 12:1634. [PMID: 36552094 PMCID: PMC9776411 DOI: 10.3390/brainsci12121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are prevalent neurodevelopmental disorders. Genetics have been shown to have a role in the severity of alcohol's teratogenic effects on the developing brain. We previously identified recombinant inbred BXD mouse strains that show high (HCD) or low cell death (LCD) in the hippocampus following ethanol exposure. The present study aimed to identify gene networks that influence this susceptibility. On postnatal day 7 (3rd-trimester-equivalent), male and female neonates were treated with ethanol (5.0 g/kg) or saline, and hippocampi were collected 7hrs later. Using the Affymetrix microarray platform, ethanol-induced gene expression changes were identified in all strains with divergent expression sets found between sexes. Genes, such as Bcl2l11, Jun, and Tgfb3, showed significant strain-by-treatment interactions and were involved in many apoptosis pathways. Comparison of HCD versus LCD showed twice as many ethanol-induced genes changes in the HCD. Interestingly, these changes were regulated in the same direction suggesting (1) more perturbed effects in HCD compared to LCD and (2) limited gene expression changes that confer resistance to ethanol-induced cell death in LCD. These results demonstrate that genetic background and sex are important factors that affect differential cell death pathways after alcohol exposure during development that could have long-term consequences.
Collapse
Affiliation(s)
- Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Jacob T. Brettin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
6
|
Teng T, Teng CS, Kaartinen V, Bush JO. A unique form of collective epithelial migration is crucial for tissue fusion in the secondary palate and can overcome loss of epithelial apoptosis. Development 2022; 149:275520. [PMID: 35593401 PMCID: PMC9188751 DOI: 10.1242/dev.200181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Tissue fusion frequently requires the removal of an epithelium that intervenes distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion support their importance in MES removal. However, genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES results in complete loss of cell death and cell extrusion, but successful removal of the MES. Novel static- and live-imaging approaches reveal that the MES is removed through streaming migration of epithelial trails and islands to reach the oral and nasal epithelial surfaces. Epithelial trail cells that express the basal epithelial marker ΔNp63 begin to express periderm markers, suggesting that migration is concomitant with differentiation. Live imaging reveals anisotropic actomyosin contractility within epithelial trails, and genetic ablation of actomyosin contractility results in dispersion of epithelial collectives and failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis, and reveal a crucial and unique form of collective epithelial migration during tissue fusion. Summary: Multiple cellular processes mediate secondary palate fusion, including a unique form of streaming collective epithelial migration driven by pulsatile actomyosin contractility.
Collapse
Affiliation(s)
- Teng Teng
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| | - Camilla S. Teng
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| | - Vesa Kaartinen
- University of Michigan School of Dentistry 5 Department of Biologic and Materials Sciences , , Ann Arbor, MI 48109 , USA
| | - Jeffrey O. Bush
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| |
Collapse
|
7
|
Di Segni M, Virdia I, Verdina A, Amoreo CA, Baldari S, Toietta G, Diodoro MG, Mottolese M, Sperduti I, Moretti F, Buglioni S, Soddu S, Di Rocco G. HIPK2 cooperates with KRAS signaling and associates with colorectal cancer progression. Mol Cancer Res 2022; 20:686-698. [PMID: 35082165 DOI: 10.1158/1541-7786.mcr-21-0628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
HIPK2 is an evolutionary conserved kinase that has gained attention as a fine tuner of multiple signaling pathways, among which those commonly altered in colorectal cancer (CRC). The aim of this study was to evaluate the relationship of HIPK2 expression with progression markers and mutational pattern and gain insights into the contribution of HIPK2 activity in CRC. We evaluated a retrospective cohort of CRC samples by immunohistochemistry for HIPK2 expression and by NGS for the detection of mutations of cancer associated genes. We show that the percentage of HIPK2 positive cells increases with tumor progression, significantly correlates with TNM staging and associates with a worse outcome. In addition, we observed that high HIPK2 expression significantly associates with KRAS mutations but not with other cancer related genes. Functional characterization of the link between HIPK2 and KRAS show that activation of the RAS pathway either due to KRAS mutation or via upstream receptor stimulation, increases HIPK2 expression at the protein level. Of note, HIPK2 physically participates in the active RAS complex while HIPK2 depletion impairs ERK phosphorylation and the growth of tumors derived from KRAS mutated CRC cells. Overall, this study identifies HIPK2 as a prognostic biomarker candidate in CRC patients and underscores a previously unknown functional link between HIPK2 and the KRAS signaling pathway. Implications: Our data indicate HIPK2 as a new player in the complex picture of the KRAS signaling network, providing rationales for future clinical studies and new treatment strategies for KRAS mutated CRC.
Collapse
Affiliation(s)
- Micol Di Segni
- Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS - Regina Elena National Cancer Institute
| | - Ilaria Virdia
- Department of Research, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute, IRCCS - Regina Elena National Cancer Institute
| | - Alessandra Verdina
- Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS - Regina Elena National Cancer Institute
| | - Carla Azzurra Amoreo
- Research, Advanced Diagnostic, and Technological Innovation, Istituto Nazionale Tumori Regina Elena
| | - Silvia Baldari
- Department of Research, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute
| | | | | | | | - Fabiola Moretti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy
| | | | - Silvia Soddu
- Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute
| | - Giuliana Di Rocco
- Department of Research and Advanced Technologies, IRCCS - Regina Elena National Cancer Institute
| |
Collapse
|
8
|
Zhou Q, Deng J, Yao J, Song J, Meng D, Zhu Y, Xu M, Liang Y, Xu J, Sluijter JP, Xiao J. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine 2021; 74:103713. [PMID: 34837851 PMCID: PMC8626841 DOI: 10.1016/j.ebiom.2021.103713] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Exercise can protect myocardial infarction (MI) and downregulate cardiac Homeodomain-Interacting Protein Kinase 2 (HIPK2). However, the role of HIPK2 in MI is unclear. Methods HIPK2–/– mice and miR-222–/– rats, HIPK2 inhibitor (PKI1H) and adeno-associated virus serotype 9 (AAV9) carrying miR-222 were applied in the study. Animals were subjected to running, swimming, acute MI or post-MI remodeling. HIPK2 inhibition and P53 activator were used in neonatal rat cardiomyocytes (NRCMs) and human embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to oxygen glucose deprivation/reperfusion (OGD/R). Serum miR-222 levels were analyzed in healthy people and MI patients that were survival or readmitted to the hospital and/or died. Findings Cardiac HIPK2 protein levels were reduced by exercise while increased in MI. In vitro, HIPK2 suppression by lentiviral vectors or inhibitor prevented apoptosis induced by OGD/R in NRCMs and hESC-CMs. HIPK2 inhibitor-treated mice and HIPK2–/– mice reduced infarct size after acute MI, and preserved cardiac function in MI remodeling. Mechanistically, protective effect against apoptosis by HIPK2 suppression was reversed by P53 activators. Furthermore, increasing levels of miR-222, targeting HIPK2, protected post-MI cardiac dysfunction, whereas cardiac dysfunction post-MI was aggravated in miR-222–/– rats. Moreover, serum miR-222 levels were significantly reduced in MI patients, as well as in MI patients that were readmitted to the hospital and/or died compared to those not. Interpretation Exercise-induced HIPK2 suppression attenuates cardiomyocytes apoptosis and protects MI by decreasing P-P53. Inhibition of HIPK2 represents a potential novel therapeutic intervention for MI. Funding This work was supported by the grants from National Key Research and Development Project (2018YFE0113500 to JJ Xiao), National Natural Science Foundation of China (82020108002, 81722008, and 81911540486 to JJ Xiao, 81400647 to MJ Xu, 81800265 to YJ Liang), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to JJ Xiao), the grant from Science and Technology Commission of Shanghai Municipality (18410722200 and 17010500100 to JJ Xiao), the “Dawn” Program of Shanghai Education Commission (19SG34 to JJ Xiao), Shanghai Sailing Program (21YF1413200 to QL Zhou). JS is supported by Horizon2020 ERC-2016-COG EVICARE (725229).
Collapse
Affiliation(s)
- Qiulian Zhou
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Jiali Deng
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiaxin Song
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Danni Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Yujiao Zhu
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Minjun Xu
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Yajun Liang
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Joost Pg Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, 3508GA, the Netherlands; UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, Utrecht, 3508GA, the Netherlands
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
9
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
10
|
Xu J, Liu F, Xiong Z, Huo J, Li W, Jiang B, Mao W, He B, Wang X, Li G. The cleft palate candidate gene BAG6 supports FoxO1 acetylation to promote FasL-mediated apoptosis during palate fusion. Exp Cell Res 2020; 396:112310. [PMID: 32991875 DOI: 10.1016/j.yexcr.2020.112310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cleft palate is a common craniofacial defect, which occurs when the palate fails to fuse during development. During fusion, the palatal shelves migrate towards the embryonic midline to form a seam. Apoptotic elimination of medial edge epithelium (MEE) cells along this seam is required for the completion of palate fusion. METHODS Whole exome sequencing (WES) of six Chinese cleft palate families was applied to identify novel cleft palate-associated gene variants. Palatal fusion and immunofluorescence studies were performed in a murine palatal shelf organ culture model. Gene and protein expression were analyzed by qPCR and immunoblotting in murine MEE cells during seam formation in vivo. Mechanistic immunoprecipitation studies were performed in murine MEE cells in vitro. RESULTS WES identified Bcl-2 associated anthanogene 6 (BAG6) as a novel cleft palate-associated gene. In murine MEE cells, we discovered upregulation of Bag6 and the transcription factor forkhead box protein O1 (FoxO1) during seam formation in vivo. Using a palatal shelf organ culture model, we demonstrate that nuclear-localized Bag6 enhances MEE cell apoptosis by promoting p300's acetylation of FoxO1, thereby promoting transcription of the pro-apoptotic Fas ligand (FasL). Subsequent gain- and loss-of-function studies in the organ culture model demonstrated that FasL is required for Bag6/acFoxO1-mediated activation of pro-apoptotic Bax/caspase-3 signaling, MEE apoptosis, and palate fusion. Palatal shelf contact was shown to enhance Bag6 nuclear localization and upregulate nuclear acFoxO1 in MEE cells. CONCLUSIONS These findings demonstrate that nuclear-localized Bag6 and p300 co-operatively enhance FoxO1 acetylation to promote FasL-mediated MEE apoptosis during palate fusion.
Collapse
Affiliation(s)
- Jing Xu
- Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fei Liu
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, China; The Molecular diagnostic center, The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhuyou Xiong
- Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiwu Huo
- Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Li
- Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Banghong Jiang
- Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wu Mao
- Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bo He
- Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, China; The Molecular diagnostic center, The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| | - Guangzao Li
- Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
11
|
Yang K, Dong XY, Wu J, Zhu JJ, Tan Y, Yan YS, Lin L, Zhang DL. A clinical and multi‑omics study of Van der Woude syndrome in three generations of a Chinese family. Mol Med Rep 2020; 22:2925-2931. [PMID: 32945398 PMCID: PMC7457716 DOI: 10.3892/mmr.2020.11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
Previous studies have suggested that pathogenic variants in interferon regulatoryse factor 6 (IRF6) can account for almost 70% of familial Van der Woude Syndrome (VWS) cases. However, gene modifiers that account for the phenotypic variability of IRF6 in the context of VWS remain poorly characterized. The aim of this study was to report a family with VWS with variable expressivity and to identify the genetic cause. A 4-month-old boy initially presented with cleft palate and bilateral lower lip pits. Examination of his family history identified similar, albeit milder, clinical features in another four family members, including bilateral lower lip pits and/or hypodontia. Peripheral blood samples of eight members in this three-generation family were subsequently collected, and whole-exome sequencing was performed to detect pathogenic variants. A heterozygous missense IRF6 variant with a c.1198C>T change in exon 9 (resulting in an R400W change at the amino acid level) was detected in five affected subjects, but not in the other three unaffected subjects. Moreover, subsequent structural analysis was indicative of damaged stability to the structure in the mutant IRF protein. Whole-transcriptome sequencing, expression analysis and Gene Ontology enrichment analysis were conducted on two groups of patients with phenotypic diversity from the same family. These analyses identified significant differentially expressed genes and enriched pathways in these two groups. Altogether, these findings provide insight into the mechanism underlying the variable expressivity of VWS.
Collapse
Affiliation(s)
- Kai Yang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xing-Yue Dong
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Jue Wu
- Department of Translational Medicine Laboratory, First Medical Center of People's Liberation Army General Hospital, Beijing 100039, P.R. China
| | - Jian-Jiang Zhu
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing 100080, P.R. China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - You-Sheng Yan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Dong-Liang Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|