1
|
Zaręba P, Drabczyk AK, Wnorowski A, Maj M, Malarz K, Rurka P, Latacz G, Duszyńska B, Ciura K, Greber KE, Boguszewska-Czubara A, Śliwa P, Kuliś J. Low-Basicity 5-HT 6 Receptor Ligands from the Group of Cyclic Arylguanidine Derivatives and Their Antiproliferative Activity Evaluation. Int J Mol Sci 2024; 25:10287. [PMID: 39408617 PMCID: PMC11477289 DOI: 10.3390/ijms251910287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The serotonin 5-HT6 receptor (5-HT6R), expressed almost exclusively in the brain, affects the Cdk5 signaling as well as the mTOR pathway. Due to the association of 5-HT6R signaling with pathways involved in cancer progression, we decided to check the usefulness of 5-HT6R ligands in the treatment of CNS tumors. For this purpose, a new group of low-base 5-HT6R ligands was developed, belonging to arylsulfonamide derivatives of cyclic arylguanidines. The selected group of molecules was also tested for their antiproliferative activity on astrocytoma (1321N1) and glioblastoma (U87MG, LN-229, U-251) cell lines. Some of the molecules were subjected to ADMET tests in vitro, including lipophilicity, drug binding to plasma proteins, affinity for phospholipids, drug-drug interaction (DDI), the penetration of the membrane (PAMPA), metabolic stability, and hepatotoxicity as well as in vivo cardiotoxicity in the Danio rerio model. Two antagonists with an affinity constant Ki < 50 nM (PR 68Ki = 37 nM) were selected. These compounds were characterized by very high selectivity. An analysis of pharmacokinetic parameters for the lead compound PR 68 confirmed favorable properties for administration, including passive diffusion and acceptable metabolic stability (metabolized in 49%, MLMs). The compound did not exhibit the potential for drug-drug interactions.
Collapse
Affiliation(s)
- Przemysław Zaręba
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland;
| | - Anna K. Drabczyk
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; (A.K.D.); (P.Ś.)
| | - Artur Wnorowski
- Department of Biopharmacy, Faculty of Pharmacy, Medical University, 4a Chodźki Street, 20-093 Lublin, Poland; (A.W.); (M.M.)
| | - Maciej Maj
- Department of Biopharmacy, Faculty of Pharmacy, Medical University, 4a Chodźki Street, 20-093 Lublin, Poland; (A.W.); (M.M.)
| | - Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, 11 Akademicka Street, 44-100 Gliwice, Poland;
- Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland;
| | - Patryk Rurka
- Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland;
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland;
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology—Polish Academy of Sciences, 12 Smętna Street, 31-343 Cracow, Poland;
| | - Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Al. Gen. J. Hallera Street, 80-416 Gdansk, Poland; (K.C.); (K.E.G.)
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308 Gdansk, Poland
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Al. Gen. J. Hallera Street, 80-416 Gdansk, Poland; (K.C.); (K.E.G.)
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland;
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; (A.K.D.); (P.Ś.)
| | - Julia Kuliś
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland;
| |
Collapse
|
2
|
Arias HR, Micheli L, Rudin D, Bento O, Borsdorf S, Ciampi C, Marin P, Ponimaskin E, Manetti D, Romanelli MN, Ghelardini C, Liechti ME, Di Cesare Mannelli L. Non-hallucinogenic compounds derived from iboga alkaloids alleviate neuropathic and visceral pain in mice through a mechanism involving 5-HT 2A receptor activation. Biomed Pharmacother 2024; 177:116867. [PMID: 38889634 DOI: 10.1016/j.biopha.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The aim of this study was to determine the anti-hypersensitivity activity of novel non-hallucinogenic compounds derived from iboga alkaloids (i.e., ibogalogs), including tabernanthalog (TBG), ibogainalog (IBG), and ibogaminalog (DM506), using mouse models of neuropathic (Chronic Constriction Injury; CCI) and visceral pain (dextrane sulfate sodium; DSS). Ibogalogs decreased mechanical hyperalgesia and allodynia induced by CCI in a dose- and timeframe-dependent manner, where IBG showed the longest anti-hyperalgesic activity at a comparatively lower dose, whereas DM506 displayed the quickest response. These compounds also decreased hypersensitivity induced by colitis, where DM506 showed the longest activity. To understand the mechanisms involved in these effects, two approaches were utilized: ibogalogs were challenged with the 5-HT2A receptor antagonist ketanserin and the pharmacological activity of these compounds was assessed at the respective 5-HT2A, 5-HT6, and 5-HT7 receptor subtypes. The behavioral results clearly demonstrated that ketanserin abolishes the pain-relieving activity of ibogalogs without inducing any effect per se, supporting the concept that 5-HT2A receptor activation, but not inhibition, is involved in this process. The functional results showed that ibogalogs potently activate the 5-HT2A and 5-HT6 receptor subtypes, whereas they behave as inverse agonists (except TBG) at the 5-HT7 receptor. Considering previous studies showing that 5-HT6 receptor inhibition, but not activation, and 5-HT7 receptor activation, but not inhibition, relieved chronic pain, we can discard these two receptor subtypes as participating in the pain-relieving activity of ibogalogs. The potential involvement of 5-HT2B/2 C receptor subtypes was also ruled out. In conclusion, the anti-hypersensitivity activity of ibogalogs in mice is mediated by a mechanism involving 5-HT2A receptor activation.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, College of Osteopathic Medicine, Oklahoma State University Center for Health Sciences, Tahlequah, OK, USA
| | - Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Ophelie Bento
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Saskia Borsdorf
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Clara Ciampi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Dina Manetti
- Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Philibert CE, Disdier C, Lafon PA, Bouyssou A, Oosterlaken M, Galant S, Pizzoccaro A, Tuduri P, Ster J, Liu J, Kniazeff J, Pin JP, Rondard P, Marin P, Vandermoere F. TrkB receptor interacts with mGlu 2 receptor and mediates antipsychotic-like effects of mGlu 2 receptor activation in the mouse. SCIENCE ADVANCES 2024; 10:eadg1679. [PMID: 38277461 PMCID: PMC10816717 DOI: 10.1126/sciadv.adg1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/28/2023] [Indexed: 01/28/2024]
Abstract
Metabotropic glutamate receptor 2 (mGlu2) attracts particular attention as a possible target for a new class of antipsychotics. However, the signaling pathways transducing the effects of mGlu2 in the brain remain poorly characterized. Here, we addressed this issue by identifying native mGlu2 interactome in mouse prefrontal cortex. Nanobody-based affinity purification and mass spectrometry identified 149 candidate mGlu2 partners, including the neurotrophin receptor TrkB. The later interaction was confirmed both in cultured cells and prefrontal cortex. mGlu2 activation triggers phosphorylation of TrkB on Tyr816 in primary cortical neurons and prefrontal cortex. Reciprocally, TrkB stimulation enhances mGlu2-operated Gi/o protein activation. Furthermore, TrkB inhibition prevents the rescue of behavioral deficits by glutamatergic antipsychotics in phencyclidine-treated mice. Collectively, these results reveal a cross-talk between TrkB and mGlu2, which is key to the behavioral response to glutamatergic antipsychotics.
Collapse
Affiliation(s)
- Clémentine Eva Philibert
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Candice Disdier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pierre-André Lafon
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of MOE, International Research Centre for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Alexandre Bouyssou
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Mathieu Oosterlaken
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sonya Galant
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pola Tuduri
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jeanne Ster
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of MOE, International Research Centre for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Franck Vandermoere
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
4
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Basakis P, Khaderi A, Lom B. Xenopus retinal ganglion cell axon extension is unaffected by 5-HT 1B/D receptor activation during visual system development. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001076. [PMID: 38116474 PMCID: PMC10728752 DOI: 10.17912/micropub.biology.001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Activating 5-HT 1B/D receptors with the agonist Zolmitriptan was previously shown to facilitate Xenopus retinal ganglion cell (RGC) axon extension from ectopic eye primordia transplanted to the ventral fin. To determine if 5-HT 1B/D receptor activation influenced entopic RGC axonal outgrowth toward the optic tectum during typical visual system development, we reared embryos in 50 μΜ Zolmitriptan then visualized optic tracts with anterograde HRP labeling. Zolmitriptan did not significantly alter entopic RGC extension in the contralateral brain. Consequently, RGC axon extension in ectopic but not entopic locations is influenced by altering serotonergic signaling .
Collapse
Affiliation(s)
- Petros Basakis
- Biology & Neuroscience, Davidson College, Davidson, North Carolina, United States
| | - Aalim Khaderi
- Biology & Neuroscience, Davidson College, Davidson, North Carolina, United States
- Systems Biology, Harvard Medical School, Harvard University, Cambridge, Massachusetts, United States
| | - Barbara Lom
- Biology & Neuroscience, Davidson College, Davidson, North Carolina, United States
| |
Collapse
|
6
|
Jiang F, Yang L, Jiao X. Dynamic network biomarker to determine the critical point of breast cancer stage progression. Breast Cancer 2023; 30:453-465. [PMID: 36807044 DOI: 10.1007/s12282-023-01438-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND The discovery of early warning signs and biomarkers in patients with early breast cancer is crucial for the prevention and treatment of breast cancer. Dynamic Network Biomarker (DNB) is an approach based on nonlinear dynamics theory, which we exploited to identify a set of DNB members and their key genes as early warning signals during breast cancer staging progression. METHODS First, based on the gene expression profile of breast cancer in the TCGA database, the DNB algorithm was used to calculate the composite index (CI) of each gene cluster in the process of breast cancer anatomical staging. Then we calculated gene modules associated with the clinical phenotype stage based on weighted gene co-expression network analysis (WGCNA), combined with DNB membership to identify key genes in the network. RESULTS We identified a set of gene clusters with the highest CI in Stage II as DNBs, whose roles in related pathways indicate the emergence of a tipping point and impact on breast cancer development. In addition, analysis of the key gene GPRIN1 showed that high expression of GPRIN1 predicts poor prognosis, and related immune analysis showed that GPRIN1 is involved in the development of breast cancer through immune aspects. CONCLUSION The discovery of DNBs and the key gene GPRIN1 can provide potential biomarkers and therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Fa Jiang
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Lifeng Yang
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Xiong Jiao
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| |
Collapse
|
7
|
Impact of 5-HT 6 Receptor Subcellular Localization on Its Signaling and Its Pathophysiological Roles. Cells 2023; 12:cells12030426. [PMID: 36766768 PMCID: PMC9913600 DOI: 10.3390/cells12030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
The serotonin (5-HT)6 receptor still raises particular interest given its unique spatio-temporal pattern of expression among the serotonin receptor subtypes. It is the only serotonin receptor specifically expressed in the central nervous system, where it is detected very early in embryonic life and modulates key neurodevelopmental processes, from neuronal migration to brain circuit refinement. Its predominant localization in the primary cilium of neurons and astrocytes is also unique among the serotonin receptor subtypes. Consistent with the high expression levels of the 5-HT6 receptor in brain regions involved in the control of cognitive processes, it is now well-established that the pharmacological inhibition of the receptor induces pro-cognitive effects in several paradigms of cognitive impairment in rodents, including models of neurodevelopmental psychiatric disorders and neurodegenerative diseases. The 5-HT6 receptor can engage several signaling pathways in addition to the canonical Gs signaling, but there is still uncertainty surrounding the signaling pathways that underly its modulation of cognition, as well as how the receptor's coupling is dependent on its cellular compartmentation. Here, we describe recent findings showing how the proper subcellular localization of the receptor is achieved, how this peculiar localization determines signaling pathways engaged by the receptor, and their pathophysiological influence.
Collapse
|
8
|
Dupuy V, Prieur M, Pizzoccaro A, Margarido C, Valjent E, Bockaert J, Bouschet T, Marin P, Chaumont-Dubel S. Spatiotemporal dynamics of 5-HT 6 receptor ciliary localization during mouse brain development. Neurobiol Dis 2023; 176:105949. [PMID: 36496200 DOI: 10.1016/j.nbd.2022.105949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The serotonin 5-HT6 receptor (5-HT6R) is a promising target to improve cognitive symptoms of psychiatric diseases of neurodevelopmental origin, such as autism spectrum disorders and schizophrenia. However, its expression and localization at different stages of brain development remain largely unknown, due to the lack of specific antibodies to detect endogenous 5-HT6R. Here, we used transgenic mice expressing a GFP-tagged 5-HT6R under the control of its endogenous promoter (Knock-in) as well as embryonic stem cells expressing the GFP-tagged receptor to extensively characterize its expression at cellular and subcellular levels during development. We show that the receptor is already expressed at E13.5 in the cortex, the striatum, the ventricular zone, and to a lesser extent the subventricular zone. In adulthood, it is preferentially found in projection neurons of the hippocampus and cerebral cortex, in striatal medium-sized spiny neurons, as well as in a large proportion of astrocytes, while it is expressed in a minor population of interneurons. Whereas the receptor is almost exclusively detected in the primary cilia of neurons at embryonic and adult stages and in differentiated stem cells, it is located in the somatodendritic compartment of neurons from some brain regions at the neonatal stage and in the soma of undifferentiated stem cells. Finally, knocking-out the receptor induces a shortening of the primary cilium, suggesting that it plays a role in its function. This study provides the first global picture of 5-HT6R expression pattern in the mouse brain at different developmental stages. It reveals dynamic changes in receptor localization in neurons at the neonatal stage, which might underlie its key role in neuronal differentiation and psychiatric disorders of neurodevelopmental origin.
Collapse
Affiliation(s)
- Vincent Dupuy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Matthieu Prieur
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Clara Margarido
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joël Bockaert
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
9
|
Canale V, Trybała W, Chaumont-Dubel S, Koczurkiewicz-Adamczyk P, Satała G, Bento O, Blicharz-Futera K, Bantreil X, Pękala E, Bojarski AJ, Lamaty F, Marin P, Zajdel P. 1-(Arylsulfonyl-isoindol-2-yl)piperazines as 5-HT 6R Antagonists: Mechanochemical Synthesis, In Vitro Pharmacological Properties and Glioprotective Activity. Biomolecules 2022; 13:biom13010012. [PMID: 36671397 PMCID: PMC9855333 DOI: 10.3390/biom13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to the canonical Gs adenylyl cyclase pathway, the serotonin type 6 receptor (5-HT6R) recruits additional signaling pathways that control cognitive function, brain development, and synaptic plasticity in an agonist-dependent and independent manner. Considering that aberrant constitutive and agonist-induced active states are involved in various pathological mechanisms, the development of biased ligands with different functional profiles at specific 5-HT6R-elicited signaling pathways may provide a novel therapeutic perspective in the field of neurodegenerative and psychiatric diseases. Based on the structure of SB-258585, an inverse agonist at 5-HT6R-operated Gs and Cdk5 signaling, we designed a series of 1-(arylsulfonyl-isoindol-2-yl)piperazine derivatives and synthesized them using a sustainable mechanochemical method. We identified the safe and metabolically stable biased ligand 3g, which behaves as a neutral antagonist at the 5-HT6R-operated Gs signaling and displays inverse agonist activity at the Cdk5 pathway. Inversion of the sulfonamide bond combined with its incorporation into the isoindoline scaffold switched the functional profile of 3g at Gs signaling with no impact at the Cdk5 pathway. Compound 3g reduced the cytotoxicity of 6-OHDA and produced a glioprotective effect against rotenone-induced toxicity in C8-D1A astrocyte cell cultures. In view of these findings, compound 3g can be considered a promising biased ligand to investigate the role of the 5-HT6R-elicited Gs and Cdk5 signaling pathways in neurodegenerative diseases.
Collapse
Affiliation(s)
- Vittorio Canale
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
- Correspondence:
| | - Wojciech Trybała
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemisty, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Ophélie Bento
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Klaudia Blicharz-Futera
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemisty, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Paweł Zajdel
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
10
|
Abdildinova A, Kim YC, Lee GH, Park WK, Cho H, Gong YD. N-(2,7-dimethyl-2-alkyl-2H-chromen-6-yl)sulfonamide derivatives as selective serotonin 5-HT6 receptor antagonists: Design, synthesis, and biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Blockade of Serotonin 5-HT 6 Receptor Constitutive Activity Alleviates Cognitive Deficits in a Preclinical Model of Neurofibromatosis Type 1. Int J Mol Sci 2021; 22:ijms221810178. [PMID: 34576341 PMCID: PMC8467191 DOI: 10.3390/ijms221810178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/04/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common inherited disorder caused by mutations of the NF1 gene that encodes the Ras-GTPase activating protein neurofibromin, leading to overactivation of Ras-dependent signaling pathways such as the mTOR pathway. It is often characterized by a broad range of cognitive symptoms that are currently untreated. The serotonin 5-HT6 receptor is a potentially relevant target in view of its ability to associate with neurofibromin and to engage the mTOR pathway to compromise cognition in several cognitive impairment paradigms. Here, we show that constitutively active 5-HT6 receptors contribute to increased mTOR activity in the brain of Nf1+/− mice, a preclinical model recapitulating some behavioral alterations of NF1. Correspondingly, peripheral administration of SB258585, a 5-HT6 receptor inverse agonist, or rapamycin, abolished deficits in long-term social and associative memories in Nf1+/− mice, whereas administration of CPPQ, a neutral antagonist, did not produce cognitive improvement. These results show a key influence of mTOR activation by constitutively active 5-HT6 receptors in NF1 cognitive symptoms. They provide a proof of concept that 5-HT6 receptor inverse agonists already in clinical development as symptomatic treatments to reduce cognitive decline in dementia and psychoses, might be repurposed as therapies alleviating cognitive deficits in NF1 patients.
Collapse
|
12
|
Peng Z, Yang X, Zhang H, Yin M, Luo Y, Xie C. MiR-29b-3p aggravates NG108-15 cell apoptosis triggered by fluorine combined with aluminum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112658. [PMID: 34425535 DOI: 10.1016/j.ecoenv.2021.112658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The mechanism of learning and memory impairment induced by the combination of fluorine and aluminum (FA) is not fully understood. The results of our previous research demonstrated that miR-29b-3p is a differentially expressed miRNA in the hippocampi of rat offspring exposed to FA; this miRNA is related to learning and memory and apoptosis. Based on these findings, in vitro studies were designed to assess the role of miR-29b-3p in neuronal apoptosis caused by the coexistence of FA. In the present study, the viability of mouse neuroblastoma-rat glioma hybrid cell (NG108-15 cell) was analyzed using Cell Counting Kit-8 (CCK-8). Apoptosis was detected by a Novocyte Flow Cytometer. Relative mRNA and protein expression levels were evaluated by real-time fluorescence quantitative PCR (qRT-PCR) and Western blotting (WB), respectively. The results showed that FA aggravated NG108-15 cell apoptosis by inhibiting dual-specificity phosphatase-2 (Dusp2) via increased miR-29b-3p. Accordingly, a dual-luciferase reporter assay showed that miR-29b-3p modulated Dusp2 protein levels by targeting its 3'-untranslated region. These findings show, for the first time, that miR-29b-3p is involved in neuronal apoptosis triggered by FA by targeting Dusp2.
Collapse
Affiliation(s)
- Zhongbi Peng
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Xuemei Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Hua Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Mingyue Yin
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Yu Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Chun Xie
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
13
|
Bockaert J, Perroy J, Ango F. The Complex Formed by Group I Metabotropic Glutamate Receptor (mGluR) and Homer1a Plays a Central Role in Metaplasticity and Homeostatic Synaptic Scaling. J Neurosci 2021; 41:5567-5578. [PMID: 34193623 PMCID: PMC8244974 DOI: 10.1523/jneurosci.0026-21.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
G-protein-coupled receptors can be constitutively activated following physical interaction with intracellular proteins. The first example described was the constitutive activation of Group I metabotropic glutamate receptors (mGluR: mGluR1,5) following their interaction with Homer1a, an activity-inducible early-termination variant of the scaffolding protein Homer that lacks dimerization capacity (Ango et al., 2001). Homer1a disrupts the links, maintained by the long form of Homer (cross-linking Homers), between mGluR1,5 and the Shank-GKAP-PSD-95-ionotropic glutamate receptor network. Two characteristics of the constitutive activation of the Group I mGluR-Homer1a complex are particularly interesting: (1) it affects a large number of synapses in which Homer1a is upregulated following enhanced, long-lasting neuronal activity; and (2) it mainly depends on Homer1a protein turnover. The constitutively active Group I mGluR-Homer1a complex is involved in the two main forms of non-Hebbian neuronal plasticity: "metaplasticity" and "homeostatic synaptic scaling," which are implicated in a large series of physiological and pathologic processes. Those include non-Hebbian plasticity observed in visual system, synapses modulated by addictive drugs (rewarded synapses), chronically overactivated synaptic networks, normal sleep, and sleep deprivation.
Collapse
Affiliation(s)
- Joël Bockaert
- Institut de Génomique Fonctionnelle, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34094 Montpellier, France
| | - Julie Perroy
- Institut de Génomique Fonctionnelle, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34094 Montpellier, France
| | - Fabrice Ango
- Institut des Neurosciences de Montpellier, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34295 Montpellier, France
| |
Collapse
|
14
|
Bockaert J, Bécamel C, Chaumont-Dubel S, Claeysen S, Vandermoere F, Marin P. Novel and atypical pathways for serotonin signaling. Fac Rev 2021; 10:52. [PMID: 34195691 PMCID: PMC8204760 DOI: 10.12703/r/10-52] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Serotonin (5-HT) appeared billions of years before 5-HT receptors and synapses. It is thus not surprising that 5-HT can control biological processes independently of its receptors. One example is serotonylation, which consists of covalent binding of 5-HT to the primary amine of glutamine. Over the past 20 years, serotonylation has been involved in the regulation of many signaling mechanisms. One of the most striking examples is the recent evidence that serotonylation of histone H3 constitutes an epigenetic mark. However, the pathophysiological role of histone H3 serotonylation remains to be discovered. All but one of the 5-HT receptors are G-protein-coupled receptors (GPCRs). The signaling pathways they control are finely tuned, and new, unexpected regulatory mechanisms are being uncovered continuously. Some 5-HT receptors (5-HT2C, 5-HT4, 5-HT6, and 5-HT7) signal through mechanisms that require neither G-proteins nor β-arrestins, the two classical and almost universal GPCR signal transducers. 5-HT6 receptors are constitutively activated via their association with intracellular GPCR-interacting proteins (GIPs), including neurofibromin 1, cyclin-dependent kinase 5 (Cdk5), and G-protein-regulated inducer of neurite outgrowth 1 (GPRIN1). Interactions of 5-HT6 receptor with Cdk5 and GPRIN1 are not concomitant but occur sequentially and play a key role in dendritic tree morphogenesis. Furthermore, 5-HT6 receptor-mediated G-protein signaling in neurons is different in the cell body and primary cilium, where it is modulated by smoothened receptor activation. Finally, 5-HT2A receptors form heteromers with mGlu2 metabotropic glutamate receptors. This heteromerization results in a specific phosphorylation of mGlu2 receptor on a serine residue (Ser843) upon agonist stimulation of 5-HT2A or mGlu2 receptor. mGlu2 receptor phosphorylation on Ser843 is an essential step in engagement of Gi/o signaling not only upon mGlu2 receptor activation but also following 5-HT2A receptor activation, and thus represents a key molecular event underlying functional crosstalk between both receptors.
Collapse
Affiliation(s)
- Joël Bockaert
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Carine Bécamel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Sylvie Claeysen
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Franck Vandermoere
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
15
|
Drop M, Canale V, Chaumont-Dubel S, Kurczab R, Satała G, Bantreil X, Walczak M, Koczurkiewicz-Adamczyk P, Latacz G, Gwizdak A, Krawczyk M, Gołębiowska J, Grychowska K, Bojarski AJ, Nikiforuk A, Subra G, Martinez J, Pawłowski M, Popik P, Marin P, Lamaty F, Zajdel P. 2-Phenyl-1 H-pyrrole-3-carboxamide as a New Scaffold for Developing 5-HT 6 Receptor Inverse Agonists with Cognition-Enhancing Activity. ACS Chem Neurosci 2021; 12:1228-1240. [PMID: 33705101 PMCID: PMC8041276 DOI: 10.1021/acschemneuro.1c00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
![]()
Serotonin type 6
receptor (5-HT6R) has gained particular
interest as a promising target for treating cognitive deficits, given
the positive effects of its antagonists in a wide range of memory
impairment paradigms. Herein, we report on degradation of the 1H-pyrrolo[3,2-c]quinoline scaffold
to provide the 2-phenyl-1H-pyrrole-3-carboxamide,
which is devoid of canonical indole-like skeleton and retains recognition
of 5-HT6R. This modification has changed the compound’s
activity at 5-HT6R-operated signaling pathways from neutral
antagonism to inverse agonism. The study identified compound 27 that behaves as an inverse agonist of the 5-HT6R at the Gs and Cdk5 signaling pathways. Compound 27 showed high selectivity and metabolic stability and was brain penetrant.
Finally, 27 reversed scopolamine-induced memory decline
in the novel object recognition test and exhibited procognitive properties
in the attentional set-shifting task in rats. In light of these findings, 27 might be considered for further evaluation as a new cognition-enhancing
agent, while 2-phenyl-1H-pyrrole-3-carboxamide might
be used as a template for designing 5-HT6R inverse agonists.
Collapse
Affiliation(s)
- Marcin Drop
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maria Walczak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | | | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Anna Gwizdak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Martyna Krawczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Joanna Gołębiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Katarzyna Grychowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Gilles Subra
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
16
|
HTR6 and SSTR3 targeting to primary cilia. Biochem Soc Trans 2021; 49:79-91. [PMID: 33599752 DOI: 10.1042/bst20191005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/25/2020] [Accepted: 01/20/2021] [Indexed: 12/30/2022]
Abstract
Primary cilia are hair-like projections of the cell membrane supported by an inner microtubule scaffold, the axoneme, which polymerizes out of a membrane-docked centriole at the ciliary base. By working as specialized signaling compartments, primary cilia provide an optimal environment for many G protein-coupled receptors (GPCRs) and their effectors to efficiently transmit their signals to the rest of the cell. For this to occur, however, all necessary receptors and signal transducers must first accumulate at the ciliary membrane. Serotonin receptor 6 (HTR6) and Somatostatin receptor 3 (SSTR3) are two GPCRs whose signaling in brain neuronal cilia affects cognition and is implicated in psychiatric, neurodegenerative, and oncologic diseases. Over a decade ago, the third intracellular loops (IC3s) of HTR6 and SSTR3 were shown to contain ciliary localization sequences (CLSs) that, when grafted onto non-ciliary GPCRs, could drive their ciliary accumulation. Nevertheless, these CLSs were dispensable for ciliary targeting of HTR6 and SSTR3, suggesting the presence of additional CLSs, which we have recently identified in their C-terminal tails. Herein, we review the discovery and mapping of these CLSs, as well as the state of the art regarding how these CLSs may orchestrate ciliary accumulation of these GPCRs by controlling when and where they interact with the ciliary entry and exit machinery via adaptors such as TULP3, RABL2 and the BBSome.
Collapse
|
17
|
Vanda D, Canale V, Chaumont-Dubel S, Kurczab R, Satała G, Koczurkiewicz-Adamczyk P, Krawczyk M, Pietruś W, Blicharz K, Pękala E, Bojarski AJ, Popik P, Marin P, Soural M, Zajdel P. Imidazopyridine-Based 5-HT 6 Receptor Neutral Antagonists: Impact of N1-Benzyl and N1-Phenylsulfonyl Fragments on Different Receptor Conformational States. J Med Chem 2021; 64:1180-1196. [PMID: 33439019 DOI: 10.1021/acs.jmedchem.0c02009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-protein coupled receptors (GPCRs) exist in an equilibrium of multiple conformational states, including different active states, which depend on the nature of the bound ligand. In consequence, different conformational states can initiate specific signal transduction pathways. The study identified compound 7e, which acts as a potent 5-hydroxytryptamine type 6 receptor (5-HT6R) neutral antagonist at Gs and does not impact neurite growth (process controlled by Cdk5). MD simulations highlighted receptor conformational changes for 7e and inverse agonist PZ-1444. In cell-based assays, neutral antagonists of the 5-HT6R (7e and CPPQ), but not inverse agonists (SB-258585, intepirdine, PZ-1444), displayed glioprotective properties against 6-hydroxydopamine-induced and doxorubicin-induced cytotoxicity. These suggest that targeting the activated conformational state of the 5-HT6R with neutral antagonists implicates the protecting properties of astrocytes. Additionally, 7e prevented scopolamine-induced learning deficits in the novel object recognition test in rats. We propose 7e as a probe for further understanding of the functional outcomes of different states of the 5-HT6R.
Collapse
Affiliation(s)
- David Vanda
- Faculty of Science, Department of Organic Chemistry, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| | - Severine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Univ. Montpellier, INSERM, CNRS, 141 Rue de la Cardonille, Montpellier 34-094, France
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | | | - Martyna Krawczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Wojciech Pietruś
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Klaudia Blicharz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| | - Elżbieta Pękala
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Univ. Montpellier, INSERM, CNRS, 141 Rue de la Cardonille, Montpellier 34-094, France
| | - Miroslav Soural
- Faculty of Science, Department of Organic Chemistry, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, Olomouc 779 00, Czech Republic
| | - Paweł Zajdel
- Faculty of Pharmacy, Department of Organic Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| |
Collapse
|
18
|
Zhu C, Lin R, Liu C, Huang M, Lin F, Zhang G, Zhang Y, Miao J, Lin W, Huang H. The Antagonism of 5-HT6 Receptor Attenuates Current-Induced Spikes and Improves Long-Term Potentiation via the Regulation of M-Currents in a Pilocarpine-Induced Epilepsy Model. Front Pharmacol 2020; 11:475. [PMID: 32425770 PMCID: PMC7212420 DOI: 10.3389/fphar.2020.00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/26/2020] [Indexed: 12/02/2022] Open
Abstract
Recent studies have documented that reduced M-current promotes epileptogenesis and attenuates synaptic remodeling. Neurite growth is closely related to the level of 5-HT6 receptor (5-HT6R) in the central nervous system. However, little research is available regarding the relation between 5-HT6R and M-current and the role of 5-HT6R in M-current regulation. Herein, we found that the expression of 5-HT6R was notably increased and the expression of KNCQ2/3, the main components of the M channel, was decreased in a time-dependent manner in pilocarpine-induced chronic epileptic hippocampus. Interestingly, antagonism of 5-HT6R by SB271046 upregulated the expression of KCNQ2 but not KCNQ3. SB271046 greatly alleviated excitatory/inhibitory imbalance and improved the impaired LTP in the chronic epileptic hippocampus. Further mechanism exploration revealed that the above effects of SB271046 can be reversed by the M-channel inhibitor XE991, which also confirmed that SB271046 can indeed improve abnormal M current. These data indicate that the antagonism of 5-HT6R may decrease the excitability of hippocampal pyramidal neurons in chronic epileptic rats and improve the impaired long-term potentiation by upregulating the expression of KCNQ2 in the M-channel.
Collapse
Affiliation(s)
- Chaofeng Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rong Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Changyun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingzhu Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Gan Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Junjie Miao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wanhui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Electrophysiology, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.,Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|