1
|
Gulwani D, Upadhyay P, Goel R, Sarangthem V, Singh TD. Nanomedicine mediated thyroid cancer diagnosis and treatment: an approach from generalized to personalized medicine. Discov Oncol 2024; 15:789. [PMID: 39692930 DOI: 10.1007/s12672-024-01677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024] Open
Abstract
Thyroid cancer (TC) being the common endocrine malignancy is glooming steadily due to its poor prognosis. The treatment strategies of surgery, radiotherapy, and conventional chemotherapy are providing unsatisfactory output. However, combination therapy can negotiate the worse prognosis to the better, where chemoradiotherapy, radiotherapy with surgery, or dual chemotherapeutic drugs are being glorified. Chemotherapy includes the use of doxorubicin or taxanes generally with platinum-based drugs viz. cisplatin or carboplatin that are administered alone or along with multitarget tyrosine kinase inhibitors viz. Lenvatinib, Sorafenib, Sunitinib, Vandetanib, Pyrazolo-pyrimidine compounds, etc., single target tyrosine kinase inhibitors like Dabrafenib plus Trametinib and Vemurafenib against BRAF, Gefitinib against EGFR, Everolimus against mTOR, vascular disruptors like Fosbretabulin, and immunotherapy with viz. Spartalizumab and Pembrolizumab, are anti-PD-1/PD-L1 molecules. Hence, several trials are currently evaluating the possible beneficial role of combinatorial therapy in TC. Since TC is the outcome of multiple genetic alterations, it necessitates targeting the multiple factors in a single shot. These combination strategies for systemically delivering therapeutic drugs seem feasible only with the help of theranostic. To date, nanoparticle-based drug delivery systems (NDDS) have devoted themselves to diagnosis, bioimaging, imaging-assisted surgery, and therapy with high success rates. The ease of handling hybrid technologies is also selectively admirable. However, in this review, we have summarized the sequential progression of chemotherapeutic drugs to NDDS designed for Personalized Medicine (PM) against TC. Personalized medicine is an ever-growing field that will be explored in future discoveries in biomedicine, particularly cancer theranostics. Hence, our review presents a closer view of NDDS as a personalized treatment for TC. We have also discussed the primary challenges facing NDDS in meeting excellence in PM.
Collapse
Affiliation(s)
- Deepak Gulwani
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Upadhyay
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Ridhima Goel
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Vijaya Sarangthem
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry and Cell Biology, School of Medicine, Cell and Matrix Research Institute, Kyungpook National University, Daegu, 41944, Korea
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Rajesh R U, Sangeetha D. Therapeutic potentials and targeting strategies of quercetin on cancer cells: Challenges and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155902. [PMID: 39059266 DOI: 10.1016/j.phymed.2024.155902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Every cell in the human body is vital because it maintains equilibrium and carries out a variety of tasks, including growth and development. These activities are carried out by a set of instructions carried by many different genes and organized into DNA. It is well recognized that some lifestyle decisions, like using tobacco, alcohol, UV, or multiple sexual partners, might increase one's risk of developing cancer. The advantages of natural products for any health issue are well known, and researchers are making attempts to separate flavonoid-containing substances from plants. Various parts of plants contain a phenolic compound called flavonoid. Quercetin, which belongs to the class of compounds known as flavones with chromone skeletal structure, has anti-cancer activity. PURPOSE The study was aimed at investigating the therapeutic action of the flavonoid quercetin on various cancer cells. METHODS The phrases quercetin, anti-cancer, nanoparticles, and cell line were used to search the data using online resources such as PubMed, and Google Scholar. Several critical previous studies have been included. RESULTS Quercetin inhibits various dysregulated signaling pathways that cause cancer cells to undergo apoptosis to exercise its anticancer effects. Numerous signaling pathways are impacted by quercetin, such as the Hedgehog system, Akt, NF-κB pathway, downregulated mutant p53, JAK/STAT, G1 phase arrest, Wnt/β-Catenin, and MAPK. There are downsides to quercetin, like hydrophobicity, first-pass effect, instability in the gastrointestinal tract, etc., because of which it is not well-established in the pharmaceutical industry. The solution to these drawbacks in the future is using bio-nanomaterials like chitosan, PLGA, liposomes, and silk fibroin as carriers, which can enhance the target specificity of quercetin. The first section of this review covers the specifics of flavonoids and quercetin; the second section covers the anti-cancer activity of quercetin; and the third section explains the drawbacks and conjugation of quercetin with nanoparticles for drug delivery by overcoming quercetin's drawback. CONCLUSIONS Overall, this review presented details about quercetin, which is a plant derivative with a promising molecular mechanism of action. They inhibit cancer by various mechanisms with little or no side effects. It is anticipated that plant-based materials will become increasingly relevant in the treatment of cancer.
Collapse
Affiliation(s)
- Udaya Rajesh R
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India
| | - Dhanaraj Sangeetha
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India.
| |
Collapse
|
3
|
Li Z, Wang Z, Zhong C, Zhang H, Liu R, An P, Ma Z, Lu J, Pan C, Zhang Z, Cao Z, Hu J, Xing D, Fei Y, Ding Y, Lu B. P53 upregulation by USP7-engaging molecular glues. Sci Bull (Beijing) 2024; 69:1936-1953. [PMID: 38734583 DOI: 10.1016/j.scib.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 05/13/2024]
Abstract
Molecular glues are typically small chemical molecules that act at the interface between a target protein and degradation machinery to trigger ternary complex formation. Identifying molecular glues is challenging. There is a scarcity of target-specific upregulating molecular glues, which are highly anticipated for numerous targets, including P53. P53 is degraded in proteasomes through polyubiquitination by specific E3 ligases, whereas deubiquitinases (DUBs) remove polyubiquitination conjugates to counteract these E3 ligases. Thus, small-molecular glues that enhance P53 anchoring to DUBs may stabilize P53 through deubiquitination. Here, using small-molecule microarray-based technology and unbiased screening, we identified three potential molecular glues that may tether P53 to the DUB, USP7, and elevate the P53 level. Among the molecular glues, bromocriptine (BC) is an FDA-approved drug with the most robust effects. BC was further verified to increase P53 stability via the predicted molecular glue mechanism engaging USP7. Consistent with P53 upregulation in cancer cells, BC was shown to inhibit the proliferation of cancer cells in vitro and suppress tumor growth in a xenograft model. In summary, we established a potential screening platform and identified potential molecular glues upregulating P53. Similar strategies could be applied to the identification of other types of molecular glues that may benefit drug discovery and chemical biology studies.
Collapse
Affiliation(s)
- Zhaoyang Li
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Ziying Wang
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chao Zhong
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hang Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Rui Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ping An
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiqiang Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junmei Lu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chengfang Pan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhaolin Zhang
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiyuan Cao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianyi Hu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200438, China.
| | - Yu Ding
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Boxun Lu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
5
|
Elshahawy ZR, Saad EA, El-Sadda RR. Synergistic impacts of rifampicin and doxorubicin against thioacetamide-induced hepatocellular carcinoma in rats. LIVER RESEARCH 2023; 7:352-360. [PMID: 39958782 PMCID: PMC11791901 DOI: 10.1016/j.livres.2023.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/16/2023] [Accepted: 11/20/2023] [Indexed: 02/18/2025]
Abstract
Background and aims Combination therapy is a promising new strategy that has been proposed to increase the efficacy of cancer treatment. We aimed to investigate the anti-cancer activity of rifampicin monotherapy and its combination with doxorubicin against hepatocellular carcinoma (HCC). Materials and methods The in vitro half maximal inhibitory concentration (IC50) and selectivity index (SI) of the drugs under investigation against HepG2 and human lung fibroblast (WI38) cell lines were determined. For the in vivo experiment, male Sprague-Dawley albino rats were injected with thioacetamide at 200 mg/kg twice a week for 90 days; HCC development was confirmed histopathologically. Following HCC induction, the rats were treated with intraperitoneal doxorubicin, rifampicin, or their combination for 45 or 90 days. After sacrifice, the livers were examined histopathologically. The levels of aminotransferases, albumin, bilirubin, malondialdehyde, superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and nitric oxide were measured by spectrophotometry. Alpha-fetoprotein, cancer antigen 19-9, tumor necrosis factor-alpha, interleukin-6, Bcl-2-associated X protein, caspase 3, caspase 8, and p53 were estimated using ELISA. Results In vitro, the combination of doxorubicin and rifampicin showed the highest SI of 3.43. In vivo, among the measured markers, the levels of TAC, CAT, SOD, and p53 decreased (P < 0.001) and the rest of the measured marker levels increased (P < 0.001) in the HCC-bearing rats; after treatment in all groups, all these changes improved toward normal in a time-dependent manner. The combination of doxorubicin and rifampicin optimized the effects of the two individual drugs and exerted the best antioxidant effects. Conclusions In general, compared with rifampicin or doxorubicin alone, combination therapy has favorable outcomes. Based on our results, the combination of rifampicin and doxorubicin might be applicable for HCC chemotherapy.
Collapse
Affiliation(s)
- Zahraa R. Elshahawy
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
- Gastroenterology Surgical Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Entsar A. Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Rana R. El-Sadda
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
6
|
Sahu P, Donovan C, Paudel KR, Pickles S, Chimankar V, Kim RY, Horvart JC, Dua K, Ieni A, Nucera F, Bielefeldt-Ohmann H, Mazilli S, Caramori G, Lyons JG, Hansbro PM. Pre-clinical lung squamous cell carcinoma mouse models to identify novel biomarkers and therapeutic interventions. Front Oncol 2023; 13:1260411. [PMID: 37817767 PMCID: PMC10560855 DOI: 10.3389/fonc.2023.1260411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Primary lung carcinoma or lung cancer (LC) is classified into small-cell or non-small-cell (NSCLC) lung carcinoma. Lung squamous cell carcinoma (LSCC) is the second most common subtype of NSCLC responsible for 30% of all LCs, and its survival remains low with only 24% of patients living for five years or longer post-diagnosis primarily due to the advanced stage of tumors at the time of diagnosis. The pathogenesis of LSCC is still poorly understood and has hampered the development of effective diagnostics and therapies. This review highlights the known risk factors, genetic and epigenetic alterations, miRNA biomarkers linked to the development and diagnosis of LSCC and the lack of therapeutic strategies to target specifically LSCC. We will also discuss existing animal models of LSCC including carcinogen induced, transgenic and xenograft mouse models, and their advantages and limitations along with the chemopreventive studies and molecular studies conducted using them. The importance of developing new and improved mouse models will also be discussed that will provide further insights into the initiation and progression of LSCC, and enable the identification of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Priyanka Sahu
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Vrushali Chimankar
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Richard Y. Kim
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Jay C. Horvart
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Sarah Mazilli
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - J. Guy Lyons
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia, and Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Philip M. Hansbro
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| |
Collapse
|
7
|
Le Clorennec C, Lee K, Huo Y, Zage PE. USP7 Inhibition Suppresses Neuroblastoma Growth via Induction of p53-Mediated Apoptosis and EZH2 and N-Myc Downregulation. Int J Mol Sci 2023; 24:13780. [PMID: 37762082 PMCID: PMC10531325 DOI: 10.3390/ijms241813780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroblastoma (NB) is a pediatric malignancy originating from neural crest cells of the sympathetic nervous system that accounts for 15% of all pediatric cancer deaths. Despite advances in treatment, high-risk NB remains difficult to cure, highlighting the need for novel therapeutic approaches. Ubiquitin-specific protease 7 (USP7) is a deubiquitinase that plays a critical role in tumor suppression and DNA repair, and USP7 overexpression has been associated with tumor aggressiveness in a variety of tumors, including NB. Therefore, USP7 is a potential therapeutic target for NB. The tumor suppressor p53 is a known target of USP7, and therefore reactivation of the p53 pathway may be an effective therapeutic strategy for NB treatment. We hypothesized that inhibition of USP7 would be effective against NB tumor growth. Using a novel USP7 inhibitor, Almac4, we have demonstrated significant antitumor activity, with significant decreases in both cell proliferation and cell viability in TP53 wild-type NB cell lines. USP7 inhibition in NB cells activated the p53 pathway via USP7 and MDM2 degradation, leading to reduced p53 ubiquitination and increased p53 expression in all sensitive NB cells. In addition, USP7 inhibition led to decreased N-myc protein levels in both MYCN-amplified and -nonamplified NB cell lines, but no correlation was observed between MYCN amplification and treatment response. USP7 inhibition induced apoptosis in all TP53 wild-type NB cell lines. USP7 inhibition also induced EZH2 ubiquitination and degradation. Lastly, the combination of USP7 and MDM2 inhibition showed enhanced efficacy. Our data suggests that USP7 inhibition may be a promising therapeutic strategy for children with high-risk and relapsed NB.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Lee
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA
- Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter E. Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA
- Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
8
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Alterations in the p53 isoform ratio govern breast cancer cell fate in response to DNA damage. Cell Death Dis 2022; 13:907. [PMID: 36307393 PMCID: PMC9616954 DOI: 10.1038/s41419-022-05349-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Our previous studies have shown that p53 isoform expression is altered in breast cancer and related to prognosis. In particular, a high ∆40p53:p53α ratio is associated with worse disease-free survival. In this manuscript, the influence of altered Δ40p53 and p53α levels on the response to standard of care DNA-damaging agents used in breast cancer treatment was investigated in vitro. Our results revealed that a high Δ40p53:p53α ratio causes cells to respond differently to doxorubicin and cisplatin treatments. Δ40p53 overexpression significantly impairs the cells' sensitivity to doxorubicin through reducing apoptosis and DNA damage, whereas Δ40p53 knockdown has the opposite effect. Further, a high Δ40p53:p53α ratio inhibited the differential expression of several genes following doxorubicin and promoted DNA repair, impairing the cells' canonical response. Overall, our results suggest that the response of breast cancer cells to standard of care DNA-damaging therapies is dependent on the expression of p53 isoforms, which may contribute to outcomes in breast cancer.
Collapse
|
10
|
Bhuyan S, Pal B, Pathak L, Saikia PJ, Mitra S, Gayan S, Mokhtari RB, Li H, Ramana CV, Baishya D, Das B. Targeting hypoxia-induced tumor stemness by activating pathogen-induced stem cell niche defense. Front Immunol 2022; 13:933329. [PMID: 36248858 PMCID: PMC9559576 DOI: 10.3389/fimmu.2022.933329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor hypoxia and oxidative stress reprograms cancer stem cells (CSCs) to a highly aggressive and inflammatory phenotypic state of tumor stemness. Previously, we characterized tumor stemness phenotype in the ATP Binding Cassette Subfamily G Member 2 (ABCG2)–positive migratory side population (SPm) fraction of CSCs exposed to extreme hypoxia followed by reoxygenation. Here, we report that post-hypoxia/reoxygenation SPm+/ABCG2+ CSCs exerts defense against pathogen invasion that involves bystander apoptosis of non-infected CSCs. In an in vitro assay of cancer cell infection by Bacillus Calmette Guerin (BCG) or mutant Mycobacterium tuberculosis (Mtb) strain 18b (Mtb-m18b), the pathogens preferentially replicated intracellular to SPm+/ABCG2+ CSCs of seven cell lines of diverse cancer types including SCC-25 oral squamous cancer cell line. The conditioned media (CM) of infected CSCs exhibited direct anti-microbial activity against Mtb and BCG, suggesting niche defense against pathogen. Importantly, the CM of infected CSCs exhibited marked in vitro bystander apoptosis toward non-infected CSCs. Moreover, the CM-treated xenograft bearing mice showed 10- to 15-fold reduction (p < 0.001; n = 7) in the number of CSCs residing in the hypoxic niches. Our in vitro studies indicated that BCG-infected SPm+/ABCG2+ equivalent EPCAM+/ABCG2+ CSCs of SCC-25 cells underwent pyroptosis and released a high mobility group box protein 1 (HMGB1)/p53 death signal into the tumor microenvironment (TME). The death signal can induce a Toll-like receptor 2/4–mediated bystander apoptosis in non-infected CSCs by activating p53/MDM2 oscillation and subsequent activation of capase-3–dependent intrinsic apoptosis. Notably, SPm+/ABCG2+ but not SP cells undergoing bystander apoptosis amplified the death signal by further release of HMGB1/p53 complex into the TME. These results suggest that post-hypoxia SPm+/ABCG2+ CSCs serve a functional role as a tumor stemness defense (TSD) phenotype to protect TME against bacterial invasion. Importantly, the CM of TSD phenotype undergoing bystander apoptosis may have therapeutic uses against CSCs residing in the hypoxic niche.
Collapse
Affiliation(s)
- Seema Bhuyan
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bidisha Pal
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Sukanya Gayan
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Reza Bayat Mokhtari
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Hong Li
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Chilakamarti V. Ramana
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
- *Correspondence: Bikul Das,
| |
Collapse
|
11
|
Cai C, Zhang Y, Hu X, Yang S, Ye J, Wei Z, Chu T. Spindle and Kinetochore-associated Family Genes are Prognostic and Predictive Biomarkers in Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:627-641. [PMID: 36062274 PMCID: PMC9396317 DOI: 10.14218/jcth.2021.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors. Spindle and kinetochore-associated (SKA) family genes are essential for the maintenance of the metaphase plate and spindle checkpoint silencing during mitosis. Recent studies have indicated that dysregulation of SKA family genes induces tumorigenesis, tumor progression, and chemoresistance via modulation of cell cycle and DNA replication. However, the differential transcription of SKAs in the context of HCC and its prognostic significance has not been demonstrated. METHODS Bioinformatics analyses were performed using TCGA, ONCOMINE, HCCDB, Kaplan-Meier plotter, STRING, GEPIA databases. qRT-PCR, western blot, and functional assays were utilized for in vitro experiments. RESULTS We found remarkable upregulation of transcripts of SKA family genes in HCC samples compared with normal liver samples on bioinformatics analyses and in vitro validation. Interaction analysis and enrichment analysis showed that SKA family members were mainly related to microtubule motor activity, mitosis, and cell cycle. Immuno-infiltration analysis showed a correlation of all SKA family genes with various immune cell subsets, especially T helper 2 (Th2) cells. Transcriptional levels of SKA family members were positively associated with histologic grade, T stage, and α-fetoprotein in HCC patients. Receiver operating characteristic curve analysis demonstrated a strong predictive ability of SKA1/2/3 for HCC. Increased expression of these SKAs was associated with unfavorable overall survival, progression-free survival, and disease-specific survival. On Cox proportional hazards regression analyses, SKA1 upregulation and pathological staging were independent predictors of overall survival and disease-specific survival of HCC patients. Finally, clinical tissue microarray validation and in vitro functional assays revealed SKA1 acts an important regulatory role in tumor malignant behavior. CONCLUSIONS SKA family members may potentially serve as diagnostic and prognostic markers in the context of HCC. The correlation between SKAs and immune cell infiltration provides a promising research direction for SKA-targeted immunotherapeutics for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tongwei Chu
- Correspondence to: Tongwei Chu, Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), No.83 Xinqiao Main Street, Shapingba District, Chongqing 400037, China. ORCID: https://orcid.org/0000-0003-0309-7082. Tel: +86-13708388336, E-mail:
| |
Collapse
|
12
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
13
|
A Comprehensive View on the Quercetin Impact on Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061873. [PMID: 35335239 PMCID: PMC8953922 DOI: 10.3390/molecules27061873] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) represents the third type of cancer in incidence and second in mortality worldwide, with the newly diagnosed case number on the rise. Among the diagnosed patients, approximately 70% have no hereditary germ-line mutations or family history of pathology, thus being termed sporadic CRC. Diet and environmental factors are to date considered solely responsible for the development of sporadic CRC; therefore; attention should be directed towards the discovery of preventative actions to combat the CRC initiation, promotion, and progression. Quercetin is a polyphenolic flavonoid plant secondary metabolite with a well-characterized antioxidant activity. It has been extensively reported as an anti-carcinogenic agent in the scientific literature, and the modulated targets of quercetin have been also characterized in the context of CRC, mainly in original research publications. In this fairly comprehensive review, we summarize the molecular targets of quercetin reported to date in in vivo and in vitro CRC models, while also giving background information about the signal transduction pathways that it up- and downregulates. Among the most relevant modulated pathways, the Wnt/β-catenin, PI3K/AKT, MAPK/Erk, JNK, or p38, p53, and NF-κB have been described. With this work, we hope to encourage further quests in the elucidation of quercetin anti-carcinogenic activity as single agent, as dietary component, or as pharmaconutrient delivered in the form of plant extracts.
Collapse
|
14
|
Wang Y, Sun C, Huang L, Liu M, Li L, Wang X, Wang L, Sun S, Xu H, Ma G, Zhang L, Zheng J, Liu H. Magnolol-loaded Cholesteryl Biguanide Conjugate Hydrochloride Nanoparticles for Triple-negative Breast Cancer Therapy. Int J Pharm 2022; 615:121509. [PMID: 35085734 DOI: 10.1016/j.ijpharm.2022.121509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
Abstract
The potential of combination therapy using nanoparticle delivery systems in improving triple-negative breast cancer treatment efficacy remains to be explored. Here, we report a novel nanoparticle system using a cholesterol biguanide conjugate hydrochloride (CBH) as both a drug and carrier to load magnolol (MAG). Poly(ethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA) and aminoethyl anisamide-poly(ethylene glycol)-poly(lactic-co-glycolic acid) (AEAA-PEG-PLGA) were added to form nanoparticles. Nanoparticles accumulated most in tumor tissues when the weight ratio of AEAA-PEG-PLGA to mPEG-PLGA was 4:1. MAG and CBH exerted a synergistic inhibitory effect on 4T1 cells. An in vitro study showed that nanoparticles displayed the highest tumor cell uptake rate, highest apoptosis rate, and strongest inhibitory effect on tumor cell migration and monoclonal formation. CBH might promote nanoparticle uptake by cells and lysosomal escape. After intravenous administration to mice with 4T1 breast tumors in situ, the nanoparticles inhibited tumor growth without obvious toxicity. Western blot results showed that nanoparticles altered the levels of p53, p-AKT, and p-AMPK in the tumor tissue. Moreover, cell apoptosis was found in the same area of H&E-stained and TUNEL-stained tumors treated with the nanoparticles. Collectively, this nanoparticle system provides a novel combination drug delivery strategy for treating triple-negative breast cancer.
Collapse
Affiliation(s)
- Yanzhi Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China.
| | - Cancan Sun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China; Department of Pharmacy, People's Hospital of Zhengzhou, Zhengzhou 450001, China
| | - Leaf Huang
- Division of Pharmaco-engineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mengqian Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Lu Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Xiping Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Linchao Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Shanshan Sun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Haiwei Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Gege Ma
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Lei Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Jiaxin Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Moazzendizaji S, Sevbitov A, Ezzatifar F, Jalili HR, Aalii M, Hemmatzadeh M, Aslani S, Gholizadeh Navashenaq J, Safari R, Hosseinzadeh R, Rahmany MR, Mohammadi H. microRNAs: Small molecules with a large impact on colorectal cancer. Biotechnol Appl Biochem 2021; 69:1893-1908. [PMID: 34550619 DOI: 10.1002/bab.2255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) accounts for one of the main cancer-related mortality and morbidity worldwide. The molecular mechanisms of CRC development have been broadly investigated and, over the last decade, it has become evident that aberrant transcription of microRNAs (miRNAs), a class of small, noncoding RNA molecules, has a significant role in the inception and promotion of CRC. In the involved tissues of CRC, the transcription profile of miRNAs is modulated, and their expression templates are related with prognosis, diagnosis, and treatment outcomes. Here, in the current review, we attempted to discuss the latest information regarding the aberrantly expressed miRNAs in CRC and the advantages of utilizing miRNAs as biomarkers for early diagnosis and prognosis of CRC as well as potential therapeutic application. The effect of miRNAs involved in various signaling pathways, primarily p53, EGFR, Wnt, and TGF-β pathways, was clarified.
Collapse
Affiliation(s)
- Sahand Moazzendizaji
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Andrey Sevbitov
- Head of Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Jalili
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Morteza Aalii
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roghaiyeh Safari
- Molecular and Cellular Epigenetics (GIGA), University of Liege, Sart-Tilman Liège, Belgium.,13. Molecular and Cellular Biology (TERRA), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rahmany
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
16
|
Nogueira LS, Vasconcelos CP, Plaça JR, Mitre GP, Bittencourt LO, Kataoka MSDS, de Oliveira EHC, Lima RR. Non-Lethal Concentration of MeHg Causes Marked Responses in the DNA Repair, Integrity, and Replication Pathways in the Exposed Human Salivary Gland Cell Line. Front Pharmacol 2021; 12:698671. [PMID: 34512333 PMCID: PMC8423918 DOI: 10.3389/fphar.2021.698671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
In Brazilian northern Amazon, communities are potentially exposed and vulnerable to methylmercury (MeHg) toxicity through the vast ingestion of fish. In vivo and in vitro studies demonstrated that the salivary glands as a susceptible organ to this potent environmental pollutant, reporting alterations on physiological, biochemical, and proteomic parameters. However, the alterations caused by MeHg on the gene expression of the exposed human salivary gland cells are still unknown. Therefore, the goal was to perform the transcriptome profile of the human salivary gland cell line after exposure to MeHg, using the microarray technique and posterior bioinformatics analysis. The cell exposure was performed using 2.5 µM MeHg. A previously published study demonstrated that this concentration belongs to a range of concentrations that caused biochemical and metabolic alterations in this linage. As a result, the MeHg exposure did not cause lethality in the human salivary gland cells line but was able to alter the expression of 155 genes. Downregulated genes (15) are entirety relating to the cell metabolism impairment, and according to KEGG analysis, they belong to the glycosphingolipid (GSL) biosynthesis pathway. On the other hand, most of the 140 upregulated genes were related to cell-cycle progression, DNA repair, and replication pathway, or cellular defenses through the GSH basal metabolism. These genomic changes revealed the effort to the cell to maintain physiological and genomic stability to avoid cell death, being in accordance with the nonlethality in the toxicity test. Last, the results support in-depth studies on nonlethal MeHg concentrations for biomarkers identification that interpret transcriptomics data in toxicological tests serving as an early alert of physiological changes in vitro biological models.
Collapse
Affiliation(s)
- Lygia Sega Nogueira
- Laboratory of Functional and Structural Biology, Federal University of Pará, Belém, Brazil
| | - Carolina P Vasconcelos
- Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Jessica Rodrigues Plaça
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Edivaldo H C de Oliveira
- Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Federal University of Pará, Belém, Brazil
| |
Collapse
|
17
|
Shi T, van Soest DMK, Polderman PE, Burgering BMT, Dansen TB. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic Biol Med 2021; 172:298-311. [PMID: 34144191 DOI: 10.1016/j.freeradbiomed.2021.06.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 12/22/2022]
Abstract
Stabilization and activation of the p53 tumor suppressor are triggered in response to various cellular stresses, including DNA damaging agents and elevated Reactive Oxygen Species (ROS) like H2O2. When cells are exposed to exogenously added H2O2, ATR/CHK1 and ATM/CHK2 dependent DNA damage signaling is switched on, suggesting that H2O2 induces both single and double strand breaks. These collective observations have resulted in the widely accepted model that oxidizing conditions lead to DNA damage that subsequently mediates a p53-dependent response like cell cycle arrest and apoptosis. However, H2O2 also induces signaling through stress-activated kinases (SAPK, e.g., JNK and p38 MAPK) that can activate p53. Here we dissect to what extent these pathways contribute to functional activation of p53 in response to oxidizing conditions. Collectively, our data suggest that p53 can be activated both by SAPK signaling and the DDR independently of each other, and which of these pathways is activated depends on the type of oxidant used. This implies that it could in principle be possible to modulate oxidative signaling to stimulate p53 without inducing collateral DNA damage, thereby limiting mutation accumulation in both healthy and tumor tissues.
Collapse
Affiliation(s)
- Tao Shi
- Center for Molecular Medicine, Molecular Cancer Research, the Netherlands
| | - Daan M K van Soest
- Center for Molecular Medicine, Molecular Cancer Research, the Netherlands
| | | | - Boudewijn M T Burgering
- Center for Molecular Medicine, Molecular Cancer Research, the Netherlands; Oncode Institute, University Medical Center Utrecht, Universiteitsweg, 100 3584, CG, Utrecht, the Netherlands
| | - Tobias B Dansen
- Center for Molecular Medicine, Molecular Cancer Research, the Netherlands.
| |
Collapse
|
18
|
Gomes CL, de Albuquerque Wanderley Sales V, Gomes de Melo C, Ferreira da Silva RM, Vicente Nishimura RH, Rolim LA, Rolim Neto PJ. Beta-lapachone: Natural occurrence, physicochemical properties, biological activities, toxicity and synthesis. PHYTOCHEMISTRY 2021; 186:112713. [PMID: 33667813 DOI: 10.1016/j.phytochem.2021.112713] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
β-Lapachone is an ortho-naphthoquinone originally isolated from the heartwood of Handroanthus impetiginosus and can be obtained through synthesis from lapachol, naphthoquinones, and other aromatic compounds. β-Lapachone is well known to inhibit topoisomerase I and to induce NAD(P)H: quinone oxidoreductase 1. Currently, phase II clinical trials are being conducted for the treatment of pancreatic cancer. In view of ever-increasing scientific interest in this naphthoquinone, herein, the authors present a review of the synthesis, physicochemical properties, biological activities, and toxicity of β-lapachone. This natural compound has shown activity against several types of malignant tumors, such as lung and pancreatic cancers and melanoma. Furthermore, this ortho-naphthoquinone has antifungal and antibacterial activities, underscoring its action against resistant microorganisms and providing anti-inflammatory, antiobesity, antioxidant, neuroprotective, nephroprotective, and wound-healing properties. β-Lapachone presents low toxicity, with no signs of toxicity against alveolar macrophages, dermal fibroblast cells, hepatocytes, or kidney cells.
Collapse
Affiliation(s)
- Camila Luiz Gomes
- Laboratório de Tecnologia Dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-901, Av. Professor Artur de Sá, S/n - Cidade Universitária, Recife, PE, Brazil
| | - Victor de Albuquerque Wanderley Sales
- Laboratório de Tecnologia Dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-901, Av. Professor Artur de Sá, S/n - Cidade Universitária, Recife, PE, Brazil
| | - Camila Gomes de Melo
- Laboratório de Tecnologia Dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-901, Av. Professor Artur de Sá, S/n - Cidade Universitária, Recife, PE, Brazil
| | - Rosali Maria Ferreira da Silva
- Laboratório de Tecnologia Dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-901, Av. Professor Artur de Sá, S/n - Cidade Universitária, Recife, PE, Brazil
| | - Rodolfo Hideki Vicente Nishimura
- Central de Análise de Fármacos, Medicamentos e Alimentos (CAFMA), Federal University of Vale Do São Francisco, 56304-205, Av. José de Sá Maniçoba, S/n - Centro, Petrolina, PE, Brazil
| | - Larissa Araújo Rolim
- Central de Análise de Fármacos, Medicamentos e Alimentos (CAFMA), Federal University of Vale Do São Francisco, 56304-205, Av. José de Sá Maniçoba, S/n - Centro, Petrolina, PE, Brazil
| | - Pedro José Rolim Neto
- Laboratório de Tecnologia Dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-901, Av. Professor Artur de Sá, S/n - Cidade Universitária, Recife, PE, Brazil.
| |
Collapse
|
19
|
Hsu YK, Chen HY, Wu CC, Huang YC, Hsieh CP, Su PF, Huang YF. Butein induces cellular senescence through reactive oxygen species-mediated p53 activation in osteosarcoma U-2 OS cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:773-781. [PMID: 33325610 DOI: 10.1002/tox.23079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Butein is a flavonoid isolated from various medicinal plants. It is known to have different biological activities including anti-inflammation, anti-adipogenesis, and anti-angiogenesis. In the study, we demonstrated the anti-proliferative effect of butein in human osteosarcoma U-2 OS cells. Our data showed that butein significantly suppressed the viability and colony formation ability of U-2 OS cells. Further experiments revealed butein exposure resulted in a cell cycle arrest at S and G2/M phase in U-2 OS cells. Importantly, we found that butein activated the tumor suppressor p53, and trigged a p53-dependent senescence in U-2 OS cells. Knockdown of p53 suppressed the senescence and rescued the viability in butein-treated U-2 OS cells. Furthermore, we observed that butein exposure significantly enhanced reactive oxygen species (ROS) levels in U-2 OS cells. Co-administration of the ROS inhibitor NAC largely abolished the up-regulated p53 protein level, and rescued the suppressed viability and colony formation ability in butein-exposed U-2 OS cells. Taken together, our data proposed the increased ROS by butein exposure activated p53, and the activated p53 was involved in the anti-proliferative effect of butein via inducing senescence in U-2 OS cells. This report suggests that butein is a promising candidate for cancer therapy against osteosarcoma.
Collapse
Affiliation(s)
- Yung-Ken Hsu
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsuan-Ying Chen
- Orthopedics and Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chieh Wu
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chih Huang
- Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng-Pu Hsieh
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Orthopedics and Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Feng Su
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Fu Huang
- Orthopedics and Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
20
|
Baviskar T, Momin M, Liu J, Guo B, Bhatt L. Target Genetic Abnormalities for the Treatment of Colon Cancer and Its Progression to Metastasis. Curr Drug Targets 2021; 22:722-733. [PMID: 33213339 DOI: 10.2174/1389450121666201119141015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/09/2022]
Abstract
Colorectal carcinogenesis involves various processes from the accumulation of genetic alterations to genetic and epigenetic modulations and chromosomal abnormalities. It also involves mutations in oncogenes and tumour suppressor genes. Genomic instability plays a vital role in CRC. Advances in modern biological techniques and molecular level studies have identified various genes involved in colorectal cancer (CRC). KRAS, BRAF, PI3K, and p53 genes play a significant role in different phases of CRC. Alteration of these genes leads to development or progression and metastasis colon cancer. This review focuses on the role of KRAS, BRAF, PI3KCA, and TP53 genes in carcinogenesis and their significance in various stages of CRC. It also provides insights on specific modulators acting on these genes. Further, this review discusses the mechanism of the pathways involving these genes in carcinogenesis and current molecules and treatment options under various stages of clinical evaluation.
Collapse
Affiliation(s)
- Tushar Baviskar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Munira Momin
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Jingwen Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Lokesh Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
21
|
Jin KT, Lu ZB, Lv JQ, Zhang JG. The role of long non-coding RNAs in mediating chemoresistance by modulating autophagy in cancer. RNA Biol 2020; 17:1727-1740. [PMID: 32129701 PMCID: PMC7714480 DOI: 10.1080/15476286.2020.1737787] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex process in which protein-coding and non-coding genes play essential roles. Long noncoding RNAs (lncRNAs), as a subclass of noncoding genes, are implicated in various cancer processes including growth, proliferation, metastasis, and angiogenesis. Due to presence in body fluids such as blood and urine, lncRNAs have become novel biomarkers in cancer detection, diagnosis, progression, and therapy response. Remarkably, increasing evidence has verified that lncRNAs play essential roles in chemoresistance by targeting different signalling pathways. Autophagy, a highly conserved process in response to environmental stresses such as starvation and hypoxia, plays a paradoxical role in inducing resistance or sensitivity to chemotherapy agents. In this regard, we reviewed chemoresistance, the role of lncRNAs in cancer, and the role of lncRNAs in chemoresistance by modulating autophagy.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang Province, P.R. China
| | - Ze-Bei Lu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
| | - Jie-Qing Lv
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
22
|
Nisar S, Hashem S, Macha MA, Yadav SK, Muralitharan S, Therachiyil L, Sageena G, Al-Naemi H, Haris M, Bhat AA. Exploring Dysregulated Signaling Pathways in Cancer. Curr Pharm Des 2020; 26:429-445. [PMID: 31939726 DOI: 10.2174/1381612826666200115095937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
Cancer cell biology takes advantage of identifying diverse cellular signaling pathways that are disrupted in cancer. Signaling pathways are an important means of communication from the exterior of cell to intracellular mediators, as well as intracellular interactions that govern diverse cellular processes. Oncogenic mutations or abnormal expression of signaling components disrupt the regulatory networks that govern cell function, thus enabling tumor cells to undergo dysregulated mitogenesis, to resist apoptosis, and to promote invasion to neighboring tissues. Unraveling of dysregulated signaling pathways may advance the understanding of tumor pathophysiology and lead to the improvement of targeted tumor therapy. In this review article, different signaling pathways and how their dysregulation contributes to the development of tumors have been discussed.
Collapse
Affiliation(s)
- Sabah Nisar
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States.,Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Santosh K Yadav
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ajaz A Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| |
Collapse
|
23
|
Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxid Redox Signal 2020; 33:839-859. [PMID: 32151151 DOI: 10.1089/ars.2020.8074] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: The p53 tumor suppressor has been dubbed the "guardian of genome" because of its various roles in the response to DNA damage such as DNA damage repair, cell cycle arrest, senescence, and apoptosis, all of which are in place to prevent mutations from being passed on down the lineage. Recent Advances: Reactive oxygen species (ROS), for instance hydrogen peroxide derived from mitochondrial respiration, have long been regarded mainly as a major source of cellular damage to DNA and other macromolecules. Critical Issues: More recently, ROS have been shown to also play important physiological roles as second messengers in so-called redox signaling. It is, therefore, not clear whether the observed activation of p53 by ROS is mediated through the DNA damage response, redox signaling, or both. In this review, we will discuss the similarities and differences between p53 activation in response to DNA damage and redox signaling in terms of upstream signaling and downstream transcriptional program activation. Future Directions: Understanding whether and how DNA damage and redox signaling-dependent p53 activation can be dissected could be useful to develop anti-cancer therapeutic p53-reactivation strategies that do not depend on the induction of DNA damage and the resulting additional mutational load.
Collapse
Affiliation(s)
- Tao Shi
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias B Dansen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
24
|
Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma. J Clin Med 2020; 9:jcm9093010. [PMID: 32961989 PMCID: PMC7565128 DOI: 10.3390/jcm9093010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignant skin tumor. BCC displays a different behavior compared with other neoplasms, has a slow evolution, and metastasizes very rarely, but sometimes it causes an important local destruction. Chronic ultraviolet exposure along with genetic factors are the most important risk factors involved in BCC development. Mutations in the PTCH1 gene are associated with Gorlin syndrome, an autosomal dominant disorder characterized by the occurrence of multiple BCCs, but are also the most frequent mutations observed in sporadic BCCs. PTCH1 encodes for PTCH1 protein, the most important negative regulator of the Hedgehog (Hh) pathway. There are numerous studies confirming Hh pathway involvement in BCC pathogenesis. Although Hh pathway has been intensively investigated, it remains incompletely elucidated. Recent studies on BCC tumorigenesis have shown that in addition to Hh pathway, there are other signaling pathways involved in BCC development. In this review, we present recent advances in BCC carcinogenesis.
Collapse
|
25
|
Kong N, Tao W, Ling X, Wang J, Xiao Y, Shi S, Ji X, Shajii A, Gan ST, Kim NY, Duda DG, Xie T, Farokhzad OC, Shi J. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci Transl Med 2020; 11:11/523/eaaw1565. [PMID: 31852795 DOI: 10.1126/scitranslmed.aaw1565] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
Loss of function in tumor suppressor genes is commonly associated with the onset/progression of cancer and treatment resistance. The p53 tumor suppressor gene, a master regulator of diverse cellular pathways, is frequently altered in various cancers, for example, in ~36% of hepatocellular carcinomas (HCCs) and ~68% of non-small cell lung cancers (NSCLCs). Current methods for restoration of p53 expression, including small molecules and DNA therapies, have yielded progressive success, but each has formidable drawbacks. Here, a redox-responsive nanoparticle (NP) platform is engineered for effective delivery of p53-encoding synthetic messenger RNA (mRNA). We demonstrate that the synthetic p53-mRNA NPs markedly delay the growth of p53-null HCC and NSCLC cells by inducing cell cycle arrest and apoptosis. We also reveal that p53 restoration markedly improves the sensitivity of these tumor cells to everolimus, a mammalian target of rapamycin (mTOR) inhibitor that failed to show clinical benefits in advanced HCC and NSCLC. Moreover, cotargeting of tumor-suppressing p53 and tumorigenic mTOR signaling pathways results in marked antitumor effects in vitro and in multiple animal models of HCC and NSCLC. Our findings indicate that restoration of tumor suppressors by the synthetic mRNA NP delivery strategy could be combined together with other therapies for potent combinatorial cancer treatment.
Collapse
Affiliation(s)
- Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Xiang Ling
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sanjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyuan Ji
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Aram Shajii
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Tian Gan
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Na Yoon Kim
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tian Xie
- Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. .,King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Arora C, Kaur D, Lathwal A, Raghava GP. Risk prediction in cutaneous melanoma patients from their clinico-pathological features: superiority of clinical data over gene expression data. Heliyon 2020; 6:e04811. [PMID: 32913910 PMCID: PMC7472860 DOI: 10.1016/j.heliyon.2020.e04811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Risk assessment in cutaneous melanoma (CM) patients is one of the major challenges in the effective treatment of CM patients. Traditionally, clinico-pathological features such as Breslow thickness, American Joint Committee on Cancer (AJCC) tumor staging, etc. are utilized for this purpose. However, due to advancements in technology, most of the upcoming risk prediction methods are gene-expression profile (GEP) based. In this study, we have tried to develop new GEP and clinico-pathological features-based biomarkers and assessed their prognostic strength in contrast to existing prognostic methods. We developed risk prediction models using the expression of the genes associated with different cancer-related pathways and got a maximum hazard ratio (HR) of 2.52 with p-value ~10-8 for the apoptotic pathway. Another model, based on combination of apoptotic and notch pathway genes boosted the HR to 2.57. Next, we developed models based on individual clinical features and got a maximum HR of 2.45 with p-value ~10-6 for Breslow thickness. We also developed models using the best features of clinical as well as gene-expression data and obtained a maximum HR of 3.19 with p-value ~10-9. Finally, we developed a new ensemble method using clinical variables only and got a maximum HR of 6.40 with p-value ~10-15. Based on this method, a web-based service and an android application named 'CMcrpred' is available at (https://webs.iiitd.edu.in/raghava/cmcrpred/) and Google Play Store respectively to facilitate scientific community. This study reveals that our new ensemble method based on only clinico-pathological features overperforms methods based on GEP based profiles as well as currently used AJCC staging. It also highlights the need to explore the full potential of clinical variables for prognostication of cancer patients.
Collapse
Affiliation(s)
- Chakit Arora
- Department of Computational Biology, IIIT- Delhi, New-Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, IIIT- Delhi, New-Delhi, India
| | - Anjali Lathwal
- Department of Computational Biology, IIIT- Delhi, New-Delhi, India
| | | |
Collapse
|
27
|
Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol 2019; 11:564-577. [PMID: 31282934 PMCID: PMC6736412 DOI: 10.1093/jmcb/mjz060] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/05/2023] Open
Abstract
The last 40 years have witnessed how p53 rose from a viral binding protein to a central factor in both stress responses and tumor suppression. The exquisite regulation of p53 functions is of vital importance for cell fate decisions. Among the multiple layers of mechanisms controlling p53 function, posttranslational modifications (PTMs) represent an efficient and precise way. Major p53 PTMs include phosphorylation, ubiquitination, acetylation, and methylation. Meanwhile, other PTMs like sumoylation, neddylation, O-GlcNAcylation, adenosine diphosphate (ADP)-ribosylation, hydroxylation, and β-hydroxybutyrylation are also shown to play various roles in p53 regulation. By independent action or interaction, PTMs affect p53 stability, conformation, localization, and binding partners. Deregulation of the PTM-related pathway is among the major causes of p53-associated developmental disorders or diseases, especially in cancers. This review focuses on the roles of different p53 modification types and shows how these modifications are orchestrated to produce various outcomes by modulating p53 activities or targeted to treat different diseases caused by p53 dysregulation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
28
|
Zhou S, Wen H, Li H. Magnolol induces apoptosis in osteosarcoma cells via G0/G1 phase arrest and p53-mediated mitochondrial pathway. J Cell Biochem 2019; 120:17067-17079. [PMID: 31155771 DOI: 10.1002/jcb.28968] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022]
Abstract
Osteosarcoma is a highly invasive primary malignancy of bone. Magnolol is biologically active, which shows antitumor effects in a variety of cancer cell lines. However, it has not been elucidated magnolol's effects on human osteosarcoma cells (HOC). This study aimed to determine antitumor activity of magnolol and illustrate the molecular mechanism in HOC. Magnolol showed significant inhibition effect of growth on MG-63 and 143B cells and induced apoptosis and cell cycle arrest at G0/G1. In osteosarcoma cells, magnolol upregulated expressions of proapoptosis proteins and suppressed expressions of antiapoptosis proteins. Additionally, under the pretreatment of pifithrin-a (PFT-a, a p53 inhibitor), the magnolol-induced apoptosis was significantly reversed. The results above indicated that magnolol induces apoptosis in osteosarcoma cells may via G0/G1 phase arrest and p53-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haiyan Wen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Liu F, Di Wang X. miR-150-5p represses TP53 tumor suppressor gene to promote proliferation of colon adenocarcinoma. Sci Rep 2019; 9:6740. [PMID: 31043658 PMCID: PMC6494853 DOI: 10.1038/s41598-019-43231-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in regulation of numerous biological processes and pathogenesis of a variety of diseases. In addition, miRNAs contribute to carcinogenesis by acting as oncogenic or tumor suppressive. Circulating miRNAs including miR-150-5p are associated with colorectal cancer progression, and the putative targets of miR-150-5p include tumor suppressor gene, TP53. Here we sought to investigate the role of miR-150-5p-TP53 signaling pathway in proliferation of colon cancer and to determine expression levels of miR-miR-150-5p and TP53 in colon adenocarcinoma and adjacent non-cancerous tissue samples, or in human colon adenocarcinoma cell lines. MTT assay was used to determine proliferation and apoptosis in cell lines. Furthermore, we used Western blot to determine levels of cell cycle regulators with anti-miR-150-5p or apoptosis with overexpression of TP53. Our results show that expression levels of miR-150-5p were significantly elevated in clinical specimens from cancer patients. We further showed that inhibition of miR-150-5p increased TP53, and in turn, suppression of proliferation of colon adenocarcinoma. Moreover, inhibition of miR-150-5p or overexpression of TP53 caused cell arrest or apoptosis in colon adenocarcinoma. Our results support that miR-150-5p-TP53 pathway plays an important role in regulation of proliferation, cell arrest, and apoptosis in colon cancer, and could be an attractive target for therapy.
Collapse
Affiliation(s)
- Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, East Street of Yinghua, Chaoyang District, Beijng, 100029, China
| | - Xiao Di Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, East Street of Yinghua, Chaoyang District, Beijng, 100029, China.
| |
Collapse
|
30
|
Abstract
Reliable identification of molecular biomarkers is essential for accurate patient stratification. While state-of-the-art machine learning approaches for sample classification continue to push boundaries in terms of performance, most of these methods are not able to integrate different data types and lack generalization power, limiting their application in a clinical setting. Furthermore, many methods behave as black boxes, and we have very little understanding about the mechanisms that lead to the prediction. While opaqueness concerning machine behavior might not be a problem in deterministic domains, in health care, providing explanations about the molecular factors and phenotypes that are driving the classification is crucial to build trust in the performance of the predictive system. We propose Pathway-Induced Multiple Kernel Learning (PIMKL), a methodology to reliably classify samples that can also help gain insights into the molecular mechanisms that underlie the classification. PIMKL exploits prior knowledge in the form of a molecular interaction network and annotated gene sets, by optimizing a mixture of pathway-induced kernels using a Multiple Kernel Learning (MKL) algorithm, an approach that has demonstrated excellent performance in different machine learning applications. After optimizing the combination of kernels to predict a specific phenotype, the model provides a stable molecular signature that can be interpreted in the light of the ingested prior knowledge and that can be used in transfer learning tasks. The reliable classification of biomedical samples to predict phenotypic differences requires not only robust methods, but also interpretable approaches that can explain the reasons behind a prediction. A team led by María Rodríguez Martínez at IBM Research - Zürich has developed PIMKL, a methodology that exploits prior knowledge and enables the integration of multiple types of data with varying predictive power. Even when noisy datasets are simultaneously analyzed, PIMKL is able to discard uninformative data and achieve strong prediction power. Importantly, PIMKL produces a molecular signature that enables the interpretation of the results in terms of known biological functions. This signature can be transferred to other cohorts without loss of performance, demonstrating surprising robustness across cohorts. Interpretable algorithms can effectively help gain insights about disease mechanisms and build trust in a model.
Collapse
|
31
|
Seltzsam S, Ziemann F, Dreffke K, Preising S, Arenz A, Schötz U, Engenhart-Cabillic R, Dikomey E, Wittig A. In HPV-Positive HNSCC Cells, Functional Restoration of the p53/p21 Pathway by Proteasome Inhibitor Bortezomib Does Not Affect Radio- or Chemosensitivity. Transl Oncol 2018; 12:417-425. [PMID: 30554133 PMCID: PMC6370941 DOI: 10.1016/j.tranon.2018.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) associated squamous cell carcinomas of the head and neck region (HPV+ HNSCCs) harbor diverging biological features as compared to classical noxa-induced (HPV−) HNSCC. One striking difference between subtypes is that the tumor suppressor gene TP53 is usually not mutated in HPV+ HNSCCs. However, p53 is inhibited by viral oncoprotein E6, leading to premature proteasomal degradation. We asked whether bortezomib (BZM), a clinically approved inhibitor of the proteasome, can functionally restore p53 and investigated in how far this will result in an enhanced radio- or chemosensitivity of HPV+ HNSCC cell lines. For all four HPV+ cell lines tested, BZM led to functional restoration of p53 and transactivation of downstream protein p21. In HPV+ cells, BZM also restored the radiation-induced p53/p21 transactivation. Consistently, in HPV+ cells, a restored G1 arrest as well as enhanced apoptosis were seen when BZM was given prior to irradiation (IR) or cisplatin (CDDP). BZM alone reduced the clonogenic survival of both HPV− and HPV+ cells. However, if BZM was combined with IR or CDDP, BZM did not significantly enhance radio- or chemosensitivity of HPV+ or HPV− HNSCC cell lines.
Collapse
Affiliation(s)
- Steve Seltzsam
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Frank Ziemann
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Kristin Dreffke
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Stefanie Preising
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Andrea Arenz
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Ulrike Schötz
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany; Laboratory for Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Andrea Wittig
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany; Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstrasse 18, 07743 Jena, Germany.
| |
Collapse
|
32
|
Kashyap D, Sharma A, Tuli HS, Sak K, Garg VK, Buttar HS, Setzer WN, Sethi G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Li YY, Yang C, Zhou P, Zhang S, Yao Y, Li D. Genome-scale analysis to identify prognostic markers and predict the survival of lung adenocarcinoma. J Cell Biochem 2018; 119:8909-8921. [PMID: 30105759 DOI: 10.1002/jcb.27144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022]
Abstract
Lung cancer is one of the most malignant cancers worldwide, and lung adenocarcinoma (LAC) remains the most common histologic subtype. However, the functional significance of RNA expression-based prognosis prediction in LAC is still unclear and needs to be further studied. By utilizing the Cox multivariate regression, we established a risk score staging system to predict the outcome of patients with LAC and subsequently identified 10 genes, including PTPRH, OGFRP1, LDHA, AL365203.1, LINC02178, AL512488.1, LINC01312, AL353746.1, DRAXINP1, and LINC02310, which were closely related to the prognosis of patients with LAC. The identified genes allowed us to classify patients into high-risk group with poor outcome and low-risk group with better outcome. Compared with other clinical factors, the risk score performs better in predicting the outcome of LAC patients. We used Gene-Set Enrichment Analysis to identify the differences between the 2 groups in biological pathways. In conclusion, we identified 10 genes by utilizing Cox regression model and developed a risk staging model for LAC, which might prove significant for the clinical management of LAC patients.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chun Yang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Beilun Branch of Zhejiang University, Ningbo, China
| | - Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shijie Zhang
- General Office, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Okolotowicz KJ, Dwyer M, Ryan D, Cheng J, Cashman EA, Moore S, Mercola M, Cashman JR. Novel tertiary sulfonamides as potent anti-cancer agents. Bioorg Med Chem 2018; 26:4441-4451. [PMID: 30075999 DOI: 10.1016/j.bmc.2018.07.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
For adult women in the United States, breast cancer is the most prevalent form of cancer. Compounds that target dysregulated signal transduction can be efficacious anti-cancer therapies. A prominent signaling pathway frequently dysregulated in breast cancer cells is the Wingless-related integration site (Wnt) pathway. The purpose of the work was to optimize a "hit" from a screening campaign. 76,000 compounds were tested in a Wnt transcription assay and revealed potent and reproducible "hit," compound 1. Medicinal chemistry optimization of 1 led to more potent and drug-like molecules, 19, 24 and 25 (i.e., Wnt pathway IC50 values = 11, 18 and 7 nM, respectively). The principal results showed compounds 19, 24 and 25 were potent anti-proliferative agents in breast cancer cell lines, MCF-7 (i.e., IC50 values = 10, 7 and 4 nM, respectively) and MDA-MB 231 (i.e., IC50 values = 13, 13 and 16 nM, respectively). Compound 19 synergized anti-proliferation with chemotherapeutic Doxorubicin in vitro. A major conclusion was that compound 19 enhanced anti-proliferation of Doxorubicin in vitro and in a xenograft animal model of breast cancer.
Collapse
Affiliation(s)
- Karl J Okolotowicz
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Mary Dwyer
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Daniel Ryan
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Jiongjia Cheng
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Emily A Cashman
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Stephanie Moore
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, 300 Pasteur Dr., MC-5501, Stanford, CA 94305, USA
| | - John R Cashman
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA.
| |
Collapse
|
35
|
Slattery ML, Mullany LE, Wolff RK, Sakoda LC, Samowitz WS, Herrick JS. The p53-signaling pathway and colorectal cancer: Interactions between downstream p53 target genes and miRNAs. Genomics 2018; 111:762-771. [PMID: 29860032 DOI: 10.1016/j.ygeno.2018.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We examined expression of genes in the p53-signaling pathway. We determine if genes that have significantly different expression in carcinoma tissue compared to normal mucosa also have significantly differentially expressed miRNAs. We utilize a sample of 217 CRC cases. METHODS We focused on fold change (FC) > 1.50 or <0.67 for genes and miRNAs, that were statistically significant after adjustment for multiple comparisons. We evaluated the linear association between the differential expression of miRNA and mRNA. miRNA:mRNA seed-region matches also were determined. RESULTS Eleven dysregulated genes were associated with 37 dysregulated miRNAs; all were down-stream from the TP53 gene. MiR-150-5p (HR = 0.82) and miR-196b-5p (HR 0.73) significantly reduced the likelihood of dying from CRC when miRNA expression increased in rectal tumors. CONCLUSIONS Our data suggest that activation of p53 from cellular stress, could target downstream genes that in turn could influence cell cycle arrest, apoptosis, and angiogenesis through mRNA:miRNA interactions.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States.
| | - Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| |
Collapse
|
36
|
Zhao D, Tahaney WM, Mazumdar A, Savage MI, Brown PH. Molecularly targeted therapies for p53-mutant cancers. Cell Mol Life Sci 2017; 74:4171-4187. [PMID: 28643165 PMCID: PMC5664959 DOI: 10.1007/s00018-017-2575-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/30/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
Abstract
The tumor suppressor p53 is lost or mutated in approximately half of human cancers. Mutant p53 not only loses its anti-tumor transcriptional activity, but also often acquires oncogenic functions to promote tumor proliferation, invasion, and drug resistance. Traditional strategies have been taken to directly target p53 mutants through identifying small molecular compounds to deplete mutant p53, or to restore its tumor suppressive function. Accumulating evidence suggest that cancer cells with mutated p53 often exhibit specific functional dependencies on secondary genes or pathways to survive, providing alternative targets to indirectly treat p53-mutant cancers. Targeting these genes or pathways, critical for survival in the presence of p53 mutations, holds great promise for cancer treatment. In addition, mutant p53 often exhibits novel gain-of-functions to promote tumor growth and metastasis. Here, we review and discuss strategies targeting mutant p53, with focus on targeting the mutant p53 protein directly, and on the progress of identifying genes and pathways required in p53-mutant cells.
Collapse
Affiliation(s)
- Dekuang Zhao
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
| | - William M Tahaney
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
| | - Michelle I Savage
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
| | - Powel H Brown
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
37
|
Shin D, Kim EH, Lee J, Roh JL. RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems. Redox Biol 2017; 13:219-227. [PMID: 28582730 PMCID: PMC5925444 DOI: 10.1016/j.redox.2017.05.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022] Open
Abstract
Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53–MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we found a novel resistance mechanism of RITA treatment and an effective combined treatment to overcome RITA resistance in head and neck cancer (HNC) cells. The effects of RITA and 3-methyladenine (3-MA) were tested in different HNC cell lines, including cisplatin-resistant and acquired RITA-resistant HNC cells. The effects of each drug alone and in combination were assessed by measuring cell viability, apoptosis, cell cycle, glutathione, reactive oxygen species, protein expression, genetic inhibition of p62 and Nrf2, and a mouse xenograft model of cisplatin-resistant HNC. RITA induced apoptosis of HNC cells at different levels without significantly inhibiting normal cell viability. Following RITA treatment, RITA-resistant HNC cells exhibited a sustained expression of other autophagy-related proteins, overexpressed p62, and displayed activation of the Keap1-Nrf2 antioxidant pathway. The autophagy inhibitor 3-MA sensitized resistant HNC cells to RITA treatment via the dual inhibition of molecules related to the autophagy and antioxidant systems. Silencing of the p62 gene augmented the combined effects. The effective antitumor activity of RITA plus 3-MA was also confirmed in vivo in mouse xenograft models transplanted with resistant HNC cells, showing increased oxidative stress and DNA damage. The results indicate that RITA plus 3-MA can help overcome RITA resistance in HNC cells. Condensed abstract This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual inhibition of autophagy and antioxidant systems in vitro and in vivo. RITA induces apoptosis of HNC cells at different levels. RITA resistance is related to the sustained expression of autophagy proteins and p62. Keap1-Nrf2 antioxidant system is also engaged in the RITA resistance mechanism. The autophagy inhibitor 3-MA sensitizes resistant HNC cells to RITA treatment. RITA plus 3-MA induces apoptosis of resistant HNC cells via dual inhibition of autophagy and Nrf2 system in vitro and in vivo.
Collapse
Affiliation(s)
- Daiha Shin
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaewang Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Lu W, Cheng F, Yan W, Li X, Yao X, Song W, Liu M, Shen X, Jiang H, Chen J, Li J, Huang J. Selective targeting p53 WT lung cancer cells harboring homozygous p53 Arg72 by an inhibitor of CypA. Oncogene 2017; 36:4719-4731. [PMID: 28394340 PMCID: PMC5562848 DOI: 10.1038/onc.2017.41] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 02/05/2023]
Abstract
TP53 plays essential roles in tumor initiation and progression, and is frequently mutated in cancer. However, pharmacological stabilization and reactivation of p53 have not been actively explored for targeted cancer therapies. Herein, we identify a novel Cyclophilin A (CypA) small molecule inhibitor (HL001) that induces non-small cell lung cancer (NSCLC) cell cycle arrest and apoptosis via restoring p53 expression. We find that HL001 stabilizes p53 through inhibiting the MDM2-mediated p53 ubiquitination. Further mechanistic studies reveal that the downregulation of G3BP1 and the induction of reactive oxygen species and DNA damage by HL001 contribute to p53 stabilization. Surprisingly, HL001 selectively suppresses tumor growth in p53 wild-type NSCLC harboring Arg72 homozygous alleles (p53-72R) through disrupting interaction between MDM2 and p53-72R in a CypA-dependent manner. Moreover, combining HL001 with cisplatin synergistically enhance tumor regression in orthotopic NSCLC mouse model. Collectively, this study demonstrates that pharmacologic inhibition of CypA offers a potential therapeutic strategy via specific activation of p53-72R in NSCLC.
Collapse
Affiliation(s)
- W Lu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - F Cheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - W Yan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - X Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - X Yao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - W Song
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - X Shen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - H Jiang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - J Chen
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cell and Development Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - J Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
39
|
Shakya R, Tarulli GA, Sheng L, Lokman NA, Ricciardelli C, Pishas KI, Selinger CI, Kohonen-Corish MRJ, Cooper WA, Turner AG, Neilsen PM, Callen DF. Mutant p53 upregulates alpha-1 antitrypsin expression and promotes invasion in lung cancer. Oncogene 2017; 36:4469-4480. [PMID: 28368395 DOI: 10.1038/onc.2017.66] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 02/05/2017] [Accepted: 02/05/2017] [Indexed: 12/13/2022]
Abstract
Missense mutations in the TP53 tumor-suppressor gene inactivate its antitumorigenic properties and endow the incipient cells with newly acquired oncogenic properties that drive invasion and metastasis. Although the oncogenic effect of mutant p53 transcriptome has been widely acknowledged, the global influence of mutant p53 on cancer cell proteome remains to be fully elucidated. Here, we show that mutant p53 drives the release of invasive extracellular factors (the 'secretome') that facilitates the invasion of lung cancer cell lines. Proteomic characterization of the secretome from mutant p53-inducible H1299 human non-small cell lung cancer cell line discovered that the mutant p53 drives its oncogenic pathways through modulating the gene expression of numerous targets that are subsequently secreted from the cells. Of these genes, alpha-1 antitrypsin (A1AT) was identified as a critical effector of mutant p53 that drives invasion in vitro and in vivo, together with induction of epithelial-mesenchymal transition markers expression. Mutant p53 upregulated A1AT transcriptionally through the involvement with its family member p63. Conditioned medium containing secreted A1AT enhanced cell invasion, while an A1AT-blocking antibody attenuated the mutant p53-driven migration and invasion. Importantly, high A1AT expression correlated with increased tumor stage, elevated p53 staining and shorter overall survival in lung adenocarcinoma patients. Collectively, these findings suggest that A1AT is an indispensable target of mutant p53 with prognostic and therapeutic potential in mutant p53-expressing tumors.
Collapse
Affiliation(s)
- R Shakya
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - G A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - L Sheng
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - N A Lokman
- Discipline of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Proteomics Centre, School of Molecular and Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - C Ricciardelli
- Discipline of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - K I Pishas
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - C I Selinger
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - M R J Kohonen-Corish
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, UNSW Australia, Sydney, New South Wales, Australia.,School of Medicine, University of Western Sydney, Parramatta, New South Wales, Australia
| | - W A Cooper
- School of Medicine, University of Western Sydney, Parramatta, New South Wales, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - A G Turner
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - P M Neilsen
- Swinburne University of Technology Sarawak Campus, Kuching, Sarawak, Malaysia
| | - D F Callen
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
40
|
Chen Z, Wang L, Yao D, Yang T, Cao WM, Dou J, Pang JC, Guan S, Zhang H, Yu Y, Zhao Y, Wang Y, Xu X, Shi Y, Patel R, Zhang H, Vasudevan SA, Liu S, Yang J, Nuchtern JG. Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis. Sci Rep 2016; 6:38011. [PMID: 27991505 PMCID: PMC5171816 DOI: 10.1038/srep38011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in children. Unlike in most adult tumors, tumor suppressor protein 53 (p53) mutations occur with a relatively low frequency in NB and the downstream function of p53 is intact in NB cell lines. Wip1 is a negative regulator of p53 and hindrance of Wip1 activity by novel inhibitor GSK2830371 is a potential strategy to activate p53’s tumor suppressing function in NB. Yet, the in vivo efficacy and the possible mechanisms of GSK2830371 in NB have not yet been elucidated. Here we report that novel Wip1 inhibitor GSK2830371 induced Chk2/p53-mediated apoptosis in NB cells in a p53-dependent manner. In addition, GSK2830371 suppressed the colony-formation potential of p53 wild-type NB cell lines. Furthermore, GSK2830371 enhanced doxorubicin- (Dox) and etoposide- (VP-16) induced cytotoxicity in a subset of NB cell lines, including the chemoresistant LA-N-6 cell line. More importantly, GSK2830371 significantly inhibited tumor growth in an orthotopic xenograft NB mouse model by inducing Chk2/p53-mediated apoptosis in vivo. Taken together, this study suggests that GSK2830371 induces Chk2/p53-mediated apoptosis both in vitro and in vivo in a p53 dependent manner.
Collapse
Affiliation(s)
- Zhenghu Chen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Long Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Dayong Yao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Urology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianshu Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Wen-Ming Cao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jun Dou
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Jonathan C Pang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shan Guan
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yongfeng Wang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xin Xu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yan Shi
- Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Roma Patel
- Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hong Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sanjeev A Vasudevan
- Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shangfeng Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China.,Department of Stomatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jed G Nuchtern
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
41
|
Carrà G, Crivellaro S, Taulli R, Guerrasio A, Saglio G, Morotti A. Mechanisms of p53 Functional De-Regulation: Role of the IκB-α/p53 Complex. Int J Mol Sci 2016; 17:ijms17121997. [PMID: 27916821 PMCID: PMC5187797 DOI: 10.3390/ijms17121997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 02/06/2023] Open
Abstract
TP53 is one of the most frequently-mutated and deleted tumor suppressors in cancer, with a dramatic correlation with dismal prognoses. In addition to genetic inactivation, the p53 protein can be functionally inactivated in cancer, through post-transductional modifications, changes in cellular compartmentalization, and interactions with other proteins. Here, we review the mechanisms of p53 functional inactivation, with a particular emphasis on the interaction between p53 and IκB-α, the NFKBIA gene product.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| |
Collapse
|
42
|
Leung AWY, de Silva T, Bally MB, Lockwood WW. Synthetic lethality in lung cancer and translation to clinical therapies. Mol Cancer 2016; 15:61. [PMID: 27686855 PMCID: PMC5041331 DOI: 10.1186/s12943-016-0546-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is a heterogeneous disease consisting of multiple histological subtypes each driven by unique genetic alterations. Despite the development of targeted therapies that inhibit the oncogenic mutations driving a subset of lung cancer cases, there is a paucity of effective treatments for the majority of lung cancer patients and new strategies are urgently needed. In recent years, the concept of synthetic lethality has been established as an effective approach for discovering novel cancer-specific targets as well as a method to improve the efficacy of existing drugs which provide partial but insufficient benefits for patients. In this review, we discuss the concept of synthetic lethality, the various types of synthetic lethal interactions in the context of oncology and the approaches used to identify these interactions, including recent advances that have transformed the ability to discover novel synthetic lethal combinations on a global scale. Lastly, we describe the specific synthetic lethal interactions identified in lung cancer to date and explore the pharmacological challenges and considerations in translating these discoveries to the clinic.
Collapse
Affiliation(s)
- Ada W. Y. Leung
- Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227-2211 Wesbrook Mall, Vancouver, BC V6T 2B5 Canada
| | - Tanya de Silva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227-2211 Wesbrook Mall, Vancouver, BC V6T 2B5 Canada
- Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227-2211 Wesbrook Mall, Vancouver, BC V6T 2B5 Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3 Canada
- Centre for Drug Research and Development, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3 Canada
| | - William W. Lockwood
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227-2211 Wesbrook Mall, Vancouver, BC V6T 2B5 Canada
- Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
| |
Collapse
|
43
|
Ferraiuolo M, Di Agostino S, Blandino G, Strano S. Oncogenic Intra-p53 Family Member Interactions in Human Cancers. Front Oncol 2016; 6:77. [PMID: 27066457 PMCID: PMC4814729 DOI: 10.3389/fonc.2016.00077] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
The p53 gene family members p53, p73, and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologs but hold peculiar functional properties. p53, p73, and p63 are tumor suppressor genes that promote differentiation, senescence, and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic “gain of function” activities correlated with the induction of proliferation, invasion, chemoresistance, and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53) with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor, Ets-1, NF-kB and YAP) or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response and DNA double-strand breaks response), enhanced invasion, and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild-type p53 (wt-p53) protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73, and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers.
Collapse
Affiliation(s)
- Maria Ferraiuolo
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy; Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Di Agostino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
44
|
Zhang X, Wang Y, Han S, Xiang H, Peng Y, Wu Y, Pan S, Zhang Y, Ruan J. RY10-4 Inhibits the Proliferation of Human Hepatocellular Cancer HepG2 Cells by Inducing Apoptosis In Vitro and In Vivo. PLoS One 2016; 11:e0151679. [PMID: 26974964 PMCID: PMC4790938 DOI: 10.1371/journal.pone.0151679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the anti-tumor activity of RY10-4, a small molecular that was designed and synthesized based on the structure of protoapigenone. A previous screening study showed that RY10-4 possessed anti-proliferative effects against HepG2 human hepatocellular carcinoma cells. However, the full range of RY10-4 anti-cancer effects on liver tumors and the underlying mechanisms have not been identified. Herein, employing flow cytometry, and Western blot analysis, we demonstrate that RY10-4 can induce cell cycle arrest, intracellular reactive oxygen species (ROS) production and apoptosis in HepG2 cells. In HepG2 cell xenograft tumor model, RY10-4 significantly inhibited the growth of tumors and induced apoptosis in tumor cells, with little side effects. Moreover, RY10-4 caused the suppression of STAT3 activation, which may be involved the apoptosis induction. In addition, RY10-4 inhibited the proliferation of Hep3B and HuH-7 human hepatocellular carcinoma cells in a concentration-dependent manner. Taken together, our results suggest that RY10-4 has a great potential to develop as chemotherapeutic agent for liver cancer.
Collapse
Affiliation(s)
- Xuenong Zhang
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, 443003, China
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- * E-mail: (YYW); (XZ)
| | - Yanyan Wang
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, 443003, China
- * E-mail: (YYW); (XZ)
| | - Shishi Han
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, 443003, China
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiyao Xiang
- Department of Clinical Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, 443003, China
| | - Yan Peng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, 443003, China
| | - Yinghua Wu
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, 443003, China
| | - Songwei Pan
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, 443003, China
| | - Ye Zhang
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, 443003, China
| | - Jinlan Ruan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
45
|
Bogen SL, Pan W, Gibeau CR, Lahue BR, Ma Y, Nair LG, Seigel E, Shipps GW, Tian Y, Wang Y, Lin Y, Liu M, Liu S, Mirza A, Wang X, Lipari P, Seidel-Dugan C, Hicklin DJ, Bishop WR, Rindgen D, Nomeir A, Prosise W, Reichert P, Scapin G, Strickland C, Doll RJ. Discovery of Novel 3,3-Disubstituted Piperidines as Orally Bioavailable, Potent, and Efficacious HDM2-p53 Inhibitors. ACS Med Chem Lett 2016; 7:324-9. [PMID: 26985323 DOI: 10.1021/acsmedchemlett.5b00472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/20/2016] [Indexed: 01/02/2023] Open
Abstract
A new subseries of substituted piperidines as p53-HDM2 inhibitors exemplified by 21 has been developed from the initial lead 1. Research focused on optimization of a crucial HDM2 Trp23-ligand interaction led to the identification of 2-(trifluoromethyl)thiophene as the preferred moiety. Further investigation of the Leu26 pocket resulted in potent, novel substituted piperidine inhibitors of the HDM2-p53 interaction that demonstrated tumor regression in several human cancer xenograft models in mice. The structure of HDM2 in complex with inhibitors 3, 10, and 21 is described.
Collapse
Affiliation(s)
- Stéphane L. Bogen
- Discovery
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Weidong Pan
- Discovery
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Craig R. Gibeau
- Discovery
Chemistry, Merck Research Laboratories, Boston, Massachusetts 02115, United States
| | - Brian R. Lahue
- Discovery
Chemistry, Merck Research Laboratories, Boston, Massachusetts 02115, United States
| | - Yao Ma
- Discovery
Chemistry, Merck Research Laboratories, Boston, Massachusetts 02115, United States
| | - Latha G. Nair
- Discovery
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Elise Seigel
- Discovery
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Gerald W. Shipps
- Discovery
Chemistry, Merck Research Laboratories, Boston, Massachusetts 02115, United States
| | - Yuan Tian
- Discovery
Chemistry, Merck Research Laboratories, Boston, Massachusetts 02115, United States
| | - Yaolin Wang
- Discovery
Biology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Yinghui Lin
- Discovery
Biology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Ming Liu
- Discovery
Biology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Suxing Liu
- Discovery
Biology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Asra Mirza
- Discovery
Biology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Xiaoying Wang
- Discovery
Biology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Philip Lipari
- Discovery
Biology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Cynthia Seidel-Dugan
- Discovery
Biology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Daniel J. Hicklin
- Discovery
Biology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - W. Robert Bishop
- Discovery
Biology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Diane Rindgen
- Pharmacokinetic,
Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Amin Nomeir
- Pharmacokinetic,
Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Winifred Prosise
- Structural
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Structural
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Giovanna Scapin
- Structural
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Corey Strickland
- Structural
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Ronald J. Doll
- Discovery
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
46
|
USP7 Enforces Heterochromatinization of p53 Target Promoters by Protecting SUV39H1 from MDM2-Mediated Degradation. Cell Rep 2016; 14:2528-37. [PMID: 26971997 DOI: 10.1016/j.celrep.2016.02.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/24/2015] [Accepted: 02/07/2016] [Indexed: 12/27/2022] Open
Abstract
The H3K9me3 repressive histone conformation of p53 target promoters is abrogated in response to p53 activation by MDM2-mediated SUV39H1 degradation. Here, we present evidence that the USP7 deubiquitinase protects SUV39H1 from MDM2-mediated ubiquitination in the absence of p53 stimulus. USP7 occupies p53 target promoters in unstressed conditions, a process that is abrogated with p53 activation associated with loss of the H3K9me3 mark on these same promoters. Mechanistically, USP7 forms a trimeric complex with MDM2 and SUV39H1, independent of DNA, and modulates MDM2-dependent SUV39H1 ubiquitination. Furthermore, we show that this protective function of USP7 on SUV39H1 is independent of p53. Finally, USP7 blocking cooperates with p53 in inducing apoptosis by enhancing p53 promoter occupancy and dependent transactivation of target genes. These results uncover a layer of the p53 transcriptional program mediated by USP7, which restrains relaxation of local chromatin conformation at p53 target promoters.
Collapse
|
47
|
Karan G, Wang H, Chakrabarti A, Karan S, Liu Z, Xia Z, Gundluru M, Moreton S, Saunthararajah Y, Jackson MW, Agarwal MK, Wald DN. Identification of a Small Molecule That Overcomes HdmX-Mediated Suppression of p53. Mol Cancer Ther 2016; 15:574-582. [PMID: 26883273 DOI: 10.1158/1535-7163.mct-15-0467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/02/2016] [Indexed: 11/16/2022]
Abstract
Inactivation of the p53 tumor suppressor by mutation or overexpression of negative regulators occurs frequently in cancer. As p53 plays a key role in regulating proliferation or apoptosis in response to DNA-damaging chemotherapies, strategies aimed at reactivating p53 are increasingly being sought. Strategies to reactivate wild-type p53 include the use of small molecules capable of releasing wild-type p53 from key, cellular negative regulators, such as Hdm2 and HdmX. Derivatives of the Hdm2 antagonist Nutlin-3 are in clinical trials. However, Nutlin-3 specifically disrupts Hdm2-p53, leaving tumors harboring high levels of HdmX resistant to Nutlin-3 treatment. Here, we identify CTX1, a novel small molecule that overcomes HdmX-mediated p53 repression. CTX1 binds directly to HdmX to prevent p53-HdmX complex formation, resulting in the rapid induction of p53 in a DNA damage-independent manner. Treatment of a panel of cancer cells with CTX1 induced apoptosis or suppressed proliferation and, importantly, CTX1 demonstrates promising activity as a single agent in a mouse model of circulating primary human leukemia. CTX1 is a small molecule HdmX inhibitor that demonstrates promise as a cancer therapeutic candidate. Mol Cancer Ther; 15(4); 574-82. ©2016 AACR.
Collapse
Affiliation(s)
| | - Huaiyu Wang
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | | | - Zhigang Liu
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH
| | | | | | | | - Yogen Saunthararajah
- Department of Translational Hematology & Oncology Research, Cleveland Clinic Foundation, Cleveland, OH
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH
| | - Mukesh K Agarwal
- Invenio Therapeutics, Lexington, KY.,MirX Pharmaceuticals, Cleveland, OH
| | - David N Wald
- Invenio Therapeutics, Lexington, KY.,Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH.,MirX Pharmaceuticals, Cleveland, OH
| |
Collapse
|
48
|
Hiraki M, Hwang SY, Cao S, Ramadhar TR, Byun S, Yoon KW, Lee JH, Chu K, Gurkar AU, Kolev V, Zhang J, Namba T, Murphy ME, Newman DJ, Mandinova A, Clardy J, Lee SW. Small-Molecule Reactivation of Mutant p53 to Wild-Type-like p53 through the p53-Hsp40 Regulatory Axis. ACTA ACUST UNITED AC 2015; 22:1206-16. [PMID: 26320861 DOI: 10.1016/j.chembiol.2015.07.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022]
Abstract
TP53 is the most frequently mutated gene in human cancer, and small-molecule reactivation of mutant p53 function represents an important anticancer strategy. A cell-based, high-throughput small-molecule screen identified chetomin (CTM) as a mutant p53 R175H reactivator. CTM enabled p53 to transactivate target genes, restored MDM2 negative regulation, and selectively inhibited the growth of cancer cells harboring mutant p53 R175H in vitro and in vivo. We found that CTM binds to Hsp40 and increases the binding capacity of Hsp40 to the p53 R175H mutant protein, causing a potential conformational change to a wild-type-like p53. Thus, CTM acts as a specific reactivator of the p53 R175H mutant form through Hsp40. These results provide new insights into the mechanism of reactivation of this specific p53 mutant.
Collapse
Affiliation(s)
- Masatsugu Hiraki
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - So-Young Hwang
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy R Ramadhar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanguine Byun
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kyoung Wan Yoon
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jung Hyun Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kiki Chu
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aditi U Gurkar
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Vihren Kolev
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jianming Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Takushi Namba
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - David J Newman
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
49
|
Taguchi A, Delgado O, Celiktaş M, Katayama H, Wang H, Gazdar AF, Hanash SM. Proteomic signatures associated with p53 mutational status in lung adenocarcinoma. Proteomics 2014; 14:2750-9. [PMID: 25331784 DOI: 10.1002/pmic.201400378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 12/22/2022]
Abstract
p53 is commonly mutated in lung adenocarcinoma. Mutant p53 loses wild-type function and some missense mutations further acquire oncogenic functions, while p53 wild-type may also induce pro-survival signaling. Therefore identification of signatures based on p53 mutational status has relevance to our understanding of p53 signaling pathways in cancer and identification of new therapeutic targets. To this end, we compared proteomic profiles of three cellular compartments (whole-cell extract, cell surface, and media) from 28 human lung adenocarcinoma cell lines that differ based on p53 mutational status. In total, 11,598, 11,569, and 9090 protein forms were identified in whole-cell extract, cell surface, and media, respectively. Bioinformatic analysis revealed that representative pathways associated with epithelial adhesion, immune and stromal cells, and mitochondrial function were highly significant in p53 missense mutations, p53 loss and wild-type p53 cell lines, respectively. Of note, mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), a transcription coactivator that promotes mitochondrial oxidative phosphorylation and mitochondrial biogenesis, was substantially higher in p53 wild-type cell lines compared to either cell lines with p53 loss or with missense mutation. Small interfering RNA targeting PGC1-α inhibited cell proliferation in p53 wild-type cell lines, indicative of PGC1-α and its downstream molecules as potential therapeutic targets in p53 wild-type lung adenocarcinoma.
Collapse
Affiliation(s)
- Ayumu Taguchi
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Ou Y, Wang SJ, Jiang L, Zheng B, Gu W. p53 Protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. J Biol Chem 2014; 290:457-66. [PMID: 25404730 DOI: 10.1074/jbc.m114.616359] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although p53 is frequently mutated in human cancers, about 80% of human melanomas retain wild-type p53. Here we report that PHGDH, the key metabolic enzyme that catalyzes the rate-limiting step of the serine biosynthesis pathway, is a target of p53 in human melanoma cells. p53 suppresses PHGDH expression and inhibits de novo serine biosynthesis. Notably, upon serine starvation, p53-mediated cell death is enhanced dramatically in response to Nutlin-3 treatment. Moreover, PHGDH has been found recently to be amplified frequently in human melanomas. We found that PHGDH overexpression significantly suppresses the apoptotic response, whereas RNAi-mediated knockdown of endogenous PHGDH promotes apoptosis under the same treatment. These results demonstrate an important role of p53 in regulating the serine biosynthesis pathway through suppressing PHGDH expression and reveal serine deprivation as a novel approach to sensitize p53-mediated apoptotic responses in human melanoma cells.
Collapse
Affiliation(s)
- Yang Ou
- From the Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Shang-Jui Wang
- From the Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Le Jiang
- From the Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Bin Zheng
- the Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Wei Gu
- From the Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| |
Collapse
|