1
|
Yang L, Kim J, Chen L, Wei W, Wang J. Detection of >400 Cluster of Differentiation Biomarkers and Pathway Proteins in Single Immune Cells by Cyclic Multiplex In Situ Tagging for Single-Cell Proteomic Studies. Anal Chem 2024; 96:17387-17395. [PMID: 39422499 DOI: 10.1021/acs.analchem.4c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The identification and characterization of immune cell subpopulations are critical to reveal cell development throughout life and immune responses to environmental factors. Next-generation sequencing technologies have dramatically advanced single-cell genomics and transcriptomics for immune cell classification. However, gene expression is often not correlated with protein expression, and immunotyping is mostly accepted in protein format. Current single-cell proteomic technologies are either limited in multiplex capacity or not sensitive enough to detect the critical functional proteins. Herein, we present a single-cell cyclic multiplex in situ tagging (CycMIST) technology to simultaneously measure >400 proteins, a scale of >10 times than similar technologies. Such an ultrahigh multiplexity is achieved by reiterative staining of the single cells coupled with a MIST array for detection. This technology has been thoroughly validated through comparison with flow cytometry and fluorescence immunostaining techniques. Both peripheral blood mononuclear cells (PBMCs) and T cells are analyzed by the CycMIST technology, and almost the entire spectrum of cluster of differentiation (CD) surface markers has been measured. The landscape of fluctuation of CD protein expression in single cells has been uncovered by our technology. Further study found T cell activation signatures and protein-protein networks. This study represents the highest multiplexity of single immune cell marker measurement targeting functional proteins. With additional information from intracellular proteins of the same single cells, our technology can potentially facilitate mechanistic studies of immune responses under various disease conditions.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Juho Kim
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Long Chen
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Wei Wei
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
2
|
Whalen RM, Anderson AN, Jones JA, Sims Z, Chang YH, Nederlof MA, Wong MH, Gibbs SL. Ultra high content analyses of circulating and tumor associated hybrid cells reveal phenotypic heterogeneity. Sci Rep 2024; 14:7350. [PMID: 38538742 PMCID: PMC10973471 DOI: 10.1038/s41598-024-57381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 07/03/2024] Open
Abstract
Persistently high, worldwide mortality from cancer highlights the unresolved challenges of disease surveillance and detection that impact survival. Development of a non-invasive, blood-based biomarker would transform survival from cancer. We demonstrate the functionality of ultra-high content analyses of a newly identified population of tumor cells that are hybrids between neoplastic and immune cells in patient matched tumor and peripheral blood specimens. Using oligonucleotide conjugated antibodies (Ab-oligo) permitting cyclic immunofluorescence (cyCIF), we present analyses of phenotypes among tumor and peripheral blood hybrid cells. Interestingly, the majority of circulating hybrid cell (CHC) subpopulations were not identified in tumor-associated hybrids. These results highlight the efficacy of ultra-high content phenotypic analyses using Ab-oligo based cyCIF applied to both tumor and peripheral blood specimens. The combination of a multiplex phenotypic profiling platform that is gentle enough to analyze blood to detect and evaluate disseminated tumor cells represents a novel approach to exploring novel tumor biology and potential utility for developing the population as a blood-based biomarker in cancer.
Collapse
Affiliation(s)
- Riley M Whalen
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA
| | - Ashley N Anderson
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA
| | - Jocelyn A Jones
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
| | - Zachary Sims
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | | | - Melissa H Wong
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA.
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA.
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.
| |
Collapse
|
3
|
Franzén B, Auer G, Lewensohn R. Minimally invasive biopsy-based diagnostics in support of precision cancer medicine. Mol Oncol 2024. [PMID: 38519839 DOI: 10.1002/1878-0261.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Precision cancer medicine (PCM) to support the treatment of solid tumors requires minimally invasive diagnostics. Here, we describe the development of fine-needle aspiration biopsy-based (FNA) molecular cytology which will be increasingly important in diagnostics and adaptive treatment. We provide support for FNA-based molecular cytology having a significant potential to replace core needle biopsy (CNB) as a patient-friendly potent technique for tumor sampling for various tumor types. This is not only because CNB is a more traumatic procedure and may be associated with more complications compared to FNA-based sampling, but also due to the recently developed molecular methods used with FNA. Recent studies show that image-guided FNA in combination with ultrasensitive molecular methods also offers opportunities for characterization of the tumor microenvironment which can aid therapeutic decisions. Here we provide arguments for an increased implementation of molecular FNA-based sampling as a patient-friendly diagnostic method, which may, due to its repeatability, facilitate regular sampling that is needed during different treatment lines, to provide tumor information, supporting treatment decisions, shortening lead times in healthcare, and benefit healthcare economics.
Collapse
Affiliation(s)
- Bo Franzén
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Cancer Centre Karolinska (CCK) Foundation, Karolinska University Hospital, Stockholm, Sweden
| | - Gert Auer
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
KIM S, KAMARULZAMAN L, TANIGUCHI Y. Recent methodological advances towards single-cell proteomics. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:306-327. [PMID: 37673661 PMCID: PMC10749393 DOI: 10.2183/pjab.99.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023]
Abstract
Studying the central dogma at the single-cell level has gained increasing attention to reveal hidden cell lineages and functions that cannot be studied using traditional bulk analyses. Nonetheless, most single-cell studies exploiting genomic and transcriptomic levels fail to address information on proteins that are central to many important biological processes. Single-cell proteomics enables understanding of the functional status of individual cells and is particularly crucial when the specimen is composed of heterogeneous entities of cells. With the growing importance of this field, significant methodological advancements have emerged recently. These include miniaturized and automated sample preparation, multi-omics analyses, and combined analyses of multiple techniques such as mass spectrometry and microscopy. Moreover, artificial intelligence and single-molecule detection technologies have advanced throughput and improved sensitivity limitations, respectively, over conventional methods. In this review, we summarize cutting-edge methodologies for single-cell proteomics and relevant emerging technologies that have been reported in the last 5 years, and provide an outlook on this research field.
Collapse
Affiliation(s)
- Sooyeon KIM
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Latiefa KAMARULZAMAN
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yuichi TANIGUCHI
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Zhao W, Zhou Y, Feng YZ, Niu X, Zhao Y, Zhao J, Dong Y, Tan M, Xianyu Y, Chen Y. Computer Vision-Based Artificial Intelligence-Mediated Encoding-Decoding for Multiplexed Microfluidic Digital Immunoassay. ACS NANO 2023; 17:13700-13714. [PMID: 37458511 DOI: 10.1021/acsnano.3c02941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Digital immunoassays with multiplexed capacity, ultrahigh sensitivity, and broad affordability are urgently required in clinical diagnosis, food safety, and environmental monitoring. In this work, a multidimensional digital immunoassay has been developed through microparticle-based encoding and artificial intelligence-based decoding, enabling multiplexed detection with high sensitivity and convenient operation. The information encoded in the features of microspheres, including their size, number, and color, allows for the simultaneous identification and accurate quantification of multiple targets. Computer vision-based artificial intelligence can analyze the microscopy images for information decoding and output identification results visually. Moreover, the optical microscopy imaging can be well integrated with the microfluidic platform, allowing for encoding-decoding through the computer vision-based artificial intelligence. This microfluidic digital immunoassay can simultaneously analyze multiple inflammatory markers and antibiotics within 30 min with high sensitivity and a broad detection range from pg/mL to μg/mL, which holds great promise as an intelligent bioassay for next-generation multiplexed biosensing.
Collapse
Affiliation(s)
- Weiqi Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei China
| | - Yang Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei China
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, Hubei China
| | - Yao-Ze Feng
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, Hubei China
| | - Xiaohu Niu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, Hubei China
| | - Yongkun Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei China
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, Hubei China
| | - Junpeng Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei China
| | - Yongzhen Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, Liaoning China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei China
| |
Collapse
|
6
|
Hao L, Zhao RT, Welch NL, Tan EKW, Zhong Q, Harzallah NS, Ngambenjawong C, Ko H, Fleming HE, Sabeti PC, Bhatia SN. CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics. NATURE NANOTECHNOLOGY 2023; 18:798-807. [PMID: 37095220 PMCID: PMC10359190 DOI: 10.1038/s41565-023-01372-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Synthetic biomarkers, bioengineered sensors that generate molecular reporters in diseased microenvironments, represent an emerging paradigm in precision diagnostics. Despite the utility of DNA barcodes as a multiplexing tool, their susceptibility to nucleases in vivo has limited their utility. Here we exploit chemically stabilized nucleic acids to multiplex synthetic biomarkers and produce diagnostic signals in biofluids that can be 'read out' via CRISPR nucleases. The strategy relies on microenvironmental endopeptidase to trigger the release of nucleic acid barcodes and polymerase-amplification-free, CRISPR-Cas-mediated barcode detection in unprocessed urine. Our data suggest that DNA-encoded nanosensors can non-invasively detect and differentiate disease states in transplanted and autochthonous murine cancer models. We also demonstrate that CRISPR-Cas amplification can be harnessed to convert the readout to a point-of-care paper diagnostic tool. Finally, we employ a microfluidic platform for densely multiplexed, CRISPR-mediated DNA barcode readout that can potentially evaluate complex human diseases rapidly and guide therapeutic decisions.
Collapse
Affiliation(s)
- Liangliang Hao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renee T Zhao
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole L Welch
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Edward Kah Wei Tan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qian Zhong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nour Saida Harzallah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chayanon Ngambenjawong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Henry Ko
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather E Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Pardis C Sabeti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Anderson AN, Gibbs SL. Shooting for multiplexed pathology with Orion. NATURE CANCER 2023; 4:930-932. [PMID: 37495737 PMCID: PMC11262064 DOI: 10.1038/s43018-023-00590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Pathological diagnosis relies on morphological assessment of tissue using histological staining and molecular phenotyping through immunostaining that must be performed on separate tissue sections. Orion is a newly reported methodology that facilitates multiplexed immunostaining with histological staining on the same slide.
Collapse
Affiliation(s)
- Ashley N Anderson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Summer L Gibbs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
8
|
Röbeck P, Franzén B, Cantera-Ahlman R, Dragomir A, Auer G, Jorulf H, Jacobsson SP, Viktorsson K, Lewensohn R, Häggman M, Ladjevardi S. Multiplex protein analysis and ensemble machine learning methods of fine needle aspirates from prostate cancer patients reveal potential diagnostic signatures associated with tumour grade. Cytopathology 2023; 34:286-294. [PMID: 36840380 DOI: 10.1111/cyt.13226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Improved molecular diagnosis is needed in prostate cancer (PC). Fine needle aspiration (FNA) is a minimally invasive biopsy technique, less traumatic compared to core needle biopsy, and could be useful for diagnosis of PC. Molecular biomarkers (BMs) in FNA-samples can be assessed for prediction, eg of immunotherapy efficacy before treatment as well as at treatment decision time points during disease progression. METHODS In the present pilot study, the expression levels of 151 BM proteins were analysed by proximity extension assay in FNA-samples from 16 patients, including benign prostate lesions (n = 3) and cancers (n = 13). An ensemble data analysis strategy was applied using several machine learning models. RESULTS Twelve potentially predictive BM proteins correlating with International Society of Urological Pathology grade groups were identified, among them vimentin, tissue factor pathway inhibitor 2, and integrin beta-5. The validity of the results was supported by network analysis that showed functional associations between most of the identified putative BMs. We also showed that multiple immune checkpoint targets can be assessed (eg PD-L1, CD137, and Galectin-9), which may support the selection of immunotherapy in advanced PC. Results are promising but need further validation in a larger cohort. CONCLUSIONS Our pilot study represents a "proof of concept" and shows that multiplex profiling of potential diagnostic and predictive BM proteins is feasible on tumour material obtained by FNA sampling of prostate cancer. Moreover, our results demonstrate that an ensemble data analysis strategy may facilitate the identification of BM signatures in pilot studies when the patient cohort is limited.
Collapse
Affiliation(s)
- Pontus Röbeck
- Department of Urology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Bo Franzén
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rafaele Cantera-Ahlman
- Department of Urology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anca Dragomir
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gert Auer
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Jorulf
- Department of Urology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sven P Jacobsson
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Kristina Viktorsson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, Solna, Sweden
| | - Michael Häggman
- Department of Urology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sam Ladjevardi
- Department of Urology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Gebreyesus ST, Muneer G, Huang CC, Siyal AA, Anand M, Chen YJ, Tu HL. Recent advances in microfluidics for single-cell functional proteomics. LAB ON A CHIP 2023; 23:1726-1751. [PMID: 36811978 DOI: 10.1039/d2lc01096h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-cell proteomics (SCP) reveals phenotypic heterogeneity by profiling individual cells, their biological states and functional outcomes upon signaling activation that can hardly be probed via other omics characterizations. This has become appealing to researchers as it enables an overall more holistic view of biological details underlying cellular processes, disease onset and progression, as well as facilitates unique biomarker identification from individual cells. Microfluidic-based strategies have become methods of choice for single-cell analysis because they allow facile assay integrations, such as cell sorting, manipulation, and content analysis. Notably, they have been serving as an enabling technology to improve the sensitivity, robustness, and reproducibility of recently developed SCP methods. Critical roles of microfluidics technologies are expected to further expand rapidly in advancing the next phase of SCP analysis to reveal more biological and clinical insights. In this review, we will capture the excitement of the recent achievements of microfluidics methods for both targeted and global SCP, including efforts to enhance the proteomic coverage, minimize sample loss, and increase multiplexity and throughput. Furthermore, we will discuss the advantages, challenges, applications, and future prospects of SCP.
Collapse
Affiliation(s)
- Sofani Tafesse Gebreyesus
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | | | - Asad Ali Siyal
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Mihir Anand
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
McMahon NP, Jones JA, Anderson AN, Dietz MS, Wong MH, Gibbs SL. Flexible Cyclic Immunofluorescence (cyCIF) Using Oligonucleotide Barcoded Antibodies. Cancers (Basel) 2023; 15:827. [PMID: 36765785 PMCID: PMC9913741 DOI: 10.3390/cancers15030827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Advances in our understanding of the complex, multifaceted interactions between tumor epithelia, immune infiltrate, and tumor microenvironmental cells have been driven by highly multiplexed imaging technologies. These techniques are capable of labeling many more biomarkers than conventional immunostaining methods. However, multiplexed imaging techniques suffer from low detection sensitivity, cell loss-particularly in fragile samples-, and challenges with antibody labeling. Herein, we developed and optimized an oligonucleotide antibody barcoding strategy for cyclic immunofluorescence (cyCIF) that can be amplified to increase the detection efficiency of low-abundance antigens. Stained fluorescence signals can be readily removed using ultraviolet light treatment, preserving tissue and fragile cell sample integrity. We also extended the oligonucleotide barcoding strategy to secondary antibodies to enable the inclusion of difficult-to-label primary antibodies in a cyCIF panel. Using both the amplification oligonucleotides to label DNA barcoded antibodies and in situ hybridization of multiple fluorescently labeled oligonucleotides resulted in signal amplification and increased signal-to-background ratios. This procedure was optimized through the examination of staining parameters including staining oligonucleotide concentration, staining temperature, and oligonucleotide sequence design, resulting in a robust amplification technique. As a proof-of-concept, we demonstrate the flexibility of our cyCIF strategy by simultaneously imaging with the original oligonucleotide conjugated antibody (Ab-oligo) cyCIF strategy, the novel Ab-oligo cyCIF amplification strategy, as well as direct and indirect immunofluorescence to generate highly multiplexed images.
Collapse
Affiliation(s)
- Nathan P. McMahon
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jocelyn A. Jones
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashley N. Anderson
- Department of Cell, Development & Cancer Biology Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Matthew S. Dietz
- Department of Cell, Development & Cancer Biology Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Development & Cancer Biology Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
11
|
Ko J, Wilkovitsch M, Oh J, Kohler RH, Bolli E, Pittet MJ, Vinegoni C, Sykes DB, Mikula H, Weissleder R, Carlson JCT. Spatiotemporal multiplexed immunofluorescence imaging of living cells and tissues with bioorthogonal cycling of fluorescent probes. Nat Biotechnol 2022; 40:1654-1662. [PMID: 35654978 PMCID: PMC9669087 DOI: 10.1038/s41587-022-01339-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Cells in complex organisms undergo frequent functional changes, but few methods allow comprehensive longitudinal profiling of living cells. Here we introduce scission-accelerated fluorophore exchange (SAFE), a method for multiplexed temporospatial imaging of living cells with immunofluorescence. SAFE uses a rapid bioorthogonal click chemistry to remove immunofluorescent signals from the surface of labeled cells, cycling the nanomolar-concentration reagents in seconds and enabling multiple rounds of staining of the same samples. It is non-toxic and functional in both dispersed cells and intact living tissues. We demonstrate multiparameter (n ≥ 14), non-disruptive imaging of murine peripheral blood mononuclear and bone marrow cells to profile cellular differentiation. We also show longitudinal multiplexed imaging of bone marrow progenitor cells as they develop into neutrophils over 6 days and real-time multiplexed cycling of living mouse hepatic tissues. We anticipate that SAFE will find broad utility for investigating physiologic dynamics in living systems.
Collapse
Affiliation(s)
- Jina Ko
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Evangelia Bolli
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Zurich, Switzerland
- AGORA Cancer Center, Lausanne, Switzerland
| | - Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Jonathan C T Carlson
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Urbiola-Salvador V, Miroszewska D, Jabłońska A, Qureshi T, Chen Z. Proteomics approaches to characterize the immune responses in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119266. [PMID: 35390423 DOI: 10.1016/j.bbamcr.2022.119266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Despite the dynamic development of cancer research, annually millions of people die of cancer. The human immune system is the major 'guard' against tumor development. Unfortunately, cancer cells have the ability to evade the immune system and continue to grow. The proper understanding of the intricate immune response in tumorigenesis remains the holy grail of cancer immunology and designing effective immunotherapy. To decode the immune responses in cancer, in recent years, proteomics studies have received considerable attention. Proteomics studies focus on the detection and quantification of proteins, which are the effectors of biological functions, and as such, are proven to reflect the cell state more accurately, in comparison to genomic or transcriptomic studies. In this review, we discuss the proteomics studies applied to characterize the immune responses in cancer and tumor immune microenvironment heterogeneity. Further, we describe emerging single-cell proteomics approaches that have the potential to be applied in cancer immunity studies.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Talha Qureshi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Zhi Chen
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
14
|
Oh J, Yoo TY, Saal TM, Tsay L, Faquin WC, Carlson JC, Deschler DG, Pai SI, Weissleder R. Multiplexed single-cell analysis of FNA allows accurate diagnosis of salivary gland tumors. Cancer Cytopathol 2022; 130:581-594. [PMID: 35666645 PMCID: PMC9542730 DOI: 10.1002/cncy.22594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022]
Abstract
Diagnosing salivary gland tumors (SGTs) through fine-needle aspiration (FNA) biopsies is challenging due to the overlapping cytomorphologic features between benign and malignant tumors. The authors developed an innovative, multiplexed cycling technology for the rapid analyses of single cells obtained from FNA that can facilitate the molecular analyses and diagnosis of SGTs. Antibodies against 29 protein markers associated with 7 SGT subtypes were validated and chemically modified via custom linker-bio-orthogonal probes (FAST). Single-cell homogenates and FNA samples were profiled by FAST cyclic imaging and computational analysis. A prediction model was generated using a training set of 151,926 cells from primary SGTs (N = 26) and validated on a separate cohort (N = 30). Companion biomarker testing, such as neurotrophic tyrosine receptor kinase (NTRK), was also assessed with the FAST technology. The FAST molecular diagnostic assay was able to distinguish between benign and malignant SGTs with an accuracy of 0.86 for single-cell homogenate samples and 0.88 for FNA samples. Profiling of multiple markers as compared to a single marker increased the diagnostic accuracy (0.82 as compared to 0.65-0.74, respectively), independent of the cell number sampled. NTRK expression was also assessed by the FAST assay, highlighting the potential therapeutic application of this technology. Application of the novel multiplexed single-cell technology facilitates rapid biomarker testing from FNA samples at low cost. The customizable and modular FAST-FNA approach has relevance to multiple pathologies and organ systems where cytologic samples are often scarce and/or indeterminate resulting in improved diagnostic workflows and timely therapeutic clinical decision-making.
Collapse
Affiliation(s)
- Juhyun Oh
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusetts
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Tae Yeon Yoo
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusetts
| | - Talia M. Saal
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusetts
| | - Lisa Tsay
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusetts
| | - William C. Faquin
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Jonathan C.T. Carlson
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusetts
- Mass General Cancer CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Daniel G. Deschler
- Department of OtolaryngologyMassachusetts Eye and Ear InfirmaryBostonMassachusetts
- Department of Otology and LaryngologyHarvard Medical SchoolBostonMassachusetts
| | - Sara I. Pai
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusetts
- Mass General Cancer CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusetts
- Department of SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusetts
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusetts
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusetts
- Mass General Cancer CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
15
|
Peterson HM, Chin LK, Iwamoto Y, Oh J, Carlson JCT, Lee H, Im H, Weissleder R. Integrated Analytical System for Clinical Single-Cell Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200415. [PMID: 35508767 PMCID: PMC9284190 DOI: 10.1002/advs.202200415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/31/2022] [Indexed: 05/23/2023]
Abstract
High-dimensional analyses of cancers can potentially be used to better define cancer subtypes, analyze the complex tumor microenvironment, and perform cancer cell pathway analyses for drug trials. Unfortunately, integrated systems that allow such analyses in serial fine needle aspirates within a day or at point-of-care currently do not exist. To achieve this, an integrated immunofluorescence single-cell analyzer (i2SCAN) for deep profiling of directly harvested cells is developed. By combining a novel cellular imaging system, highly cyclable bioorthogonal FAST antibody panels, and integrated computational analysis, it is shown that same-day analysis is possible in thousands of harvested cells. It is demonstrated that the i2SCAN approach allows comprehensive analysis of breast cancer samples obtained by fine needle aspiration or core tissues. The method is a rapid, robust, and low-cost solution to high-dimensional analysis of scant clinical specimens.
Collapse
Affiliation(s)
- Hannah M. Peterson
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Lip Ket Chin
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Yoshi Iwamoto
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Juhyun Oh
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Jonathan C. T. Carlson
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer CenterMassachusetts General HospitalBostonMA02114USA
| | - Hakho Lee
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Hyungsoon Im
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer CenterMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
- Department of Systems BiologyHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
16
|
Chin LK, Li H, Choi JH, Iwamoto Y, Oh J, Min J, Beak SK, Yoo D, Castro CM, Lee D, Im H. Hydrogel Stamping for Rapid, Multiplexed, Point-of-Care Immunostaining of Cells and Tissues. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27613-27622. [PMID: 35671240 DOI: 10.1021/acsami.2c05071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the era of precision oncology, multicolor fluorescence imaging has become a core technology for multiplexed molecular analysis of cellular and tissue specimens. However, conventional solution-based staining is labor-intensive and time-consuming and requires considerable expertise to yield optimal results, which creates difficulties for employing this technology in resource-limited settings. Here, we report a new immunostaining method based on hydrogel stamping, which is simple, fast, easy to use, and reproducible. We showed that a hydrophilic hydrogel stamp could effectively transfer fluorescent antibodies to targets and withdraw an excess solution when the reaction is completed, obviating the need for extra washing. This unique property allows for quality immunostaining in 5 min for cells using one-eighth of antibody consumption compared to the conventional solution-based method. Furthermore, we implemented fluorescence quenching and immunocycling with hydrogel staining for multiplexed analysis of 9 protein markers at a single cell level. Finally, we applied the immunocycling method to human breast cancer tissue samples and showed quality immunostaining over a large area (∼2 cm2) in 30 min for molecular subtyping of breast cancer. The hydrogel immunostaining could open new opportunities for rapid, automated, and multiplexed profiling in compact point-of-care systems for molecular cancer diagnosis.
Collapse
Affiliation(s)
- Lip Ket Chin
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Huiyan Li
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph N1G2W1, Canada
| | - Jae-Hyeok Choi
- Noul Co. Limited, Gyeonggi-do, Yongin 16942, Republic of Korea
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Jouha Min
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Suk Kyung Beak
- Noul Co. Limited, Gyeonggi-do, Yongin 16942, Republic of Korea
| | - Dahyeon Yoo
- Noul Co. Limited, Gyeonggi-do, Yongin 16942, Republic of Korea
| | - Cesar M Castro
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Dongyoung Lee
- Noul Co. Limited, Gyeonggi-do, Yongin 16942, Republic of Korea
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
17
|
Yang L, Ball A, Liu J, Jain T, Li YM, Akhter F, Zhu D, Wang J. Cyclic microchip assay for measurement of hundreds of functional proteins in single neurons. Nat Commun 2022; 13:3548. [PMID: 35729174 PMCID: PMC9213506 DOI: 10.1038/s41467-022-31336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Despite the fact that proteins carry out nearly all cellular functions and mark the differences of cells, the existing single-cell tools can only analyze dozens of proteins, a scale far from full characterization of cells and tissue yet. Herein, we present a single-cell cyclic multiplex in situ tagging (CycMIST) technology that affords the comprehensive functional proteome profiling of single cells. We demonstrate the technology by detecting 182 proteins that include surface markers, neuron function proteins, neurodegeneration markers, signaling pathway proteins, and transcription factors. Further studies on cells derived from the 5XFAD mice, an Alzheimer's Disease (AD) model, validate the utility of our technology and reveal the deep heterogeneity of brain cells. Through comparison with control mouse cells, we have identified differentially expressed proteins in AD pathology. Our technology could offer new insights into cell machinery and thus may advance many fields including drug discovery, molecular diagnostics, and clinical studies.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Avery Ball
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jesse Liu
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tanya Jain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
18
|
Andreou C, Weissleder R, Kircher MF. Multiplexed imaging in oncology. Nat Biomed Eng 2022; 6:527-540. [PMID: 35624151 DOI: 10.1038/s41551-022-00891-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/06/2021] [Indexed: 01/24/2023]
Abstract
In oncology, technologies for clinical molecular imaging are used to diagnose patients, establish the efficacy of treatments and monitor the recurrence of disease. Multiplexed methods increase the number of disease-specific biomarkers that can be detected simultaneously, such as the overexpression of oncogenic proteins, aberrant metabolite uptake and anomalous blood perfusion. The quantitative localization of each biomarker could considerably increase the specificity and the accuracy of technologies for clinical molecular imaging to facilitate granular diagnoses, patient stratification and earlier assessments of the responses to administered therapeutics. In this Review, we discuss established techniques for multiplexed imaging and the most promising emerging multiplexing technologies applied to the imaging of isolated tissues and cells and to non-invasive whole-body imaging. We also highlight advances in radiology that have been made possible by multiplexed imaging.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Moritz F Kircher
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.,Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Gao T, Zhao S, Sun J, Huang Q, Long S, Lv M, Ma J, Guo Z, Li G. Single-Cell Quantitative Phenotyping via the Aptamer-Mounted Nest-PCR (Apt-nPCR). Anal Chem 2022; 94:2383-2390. [DOI: 10.1021/acs.analchem.1c03865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Songyan Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junhua Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiongbo Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shipeng Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Mingming Lv
- Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, P. R. China
| | - Jiehua Ma
- Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, P. R. China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
20
|
Oligonucleotide conjugated antibody strategies for cyclic immunostaining. Sci Rep 2021; 11:23844. [PMID: 34903759 PMCID: PMC8668956 DOI: 10.1038/s41598-021-03135-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
Abstract
A number of highly multiplexed immunostaining and imaging methods have advanced spatial proteomics of cancer for improved treatment strategies. While a variety of methods have been developed, the most widely used methods are limited by harmful signal removal techniques, difficulties with reagent production and antigen sensitivity. Multiplexed immunostaining employing oligonucleotide (oligos)-barcoded antibodies is an alternative approach that is growing in popularity. However, challenges remain in consistent conjugation of oligos to antibodies with maintained antigenicity as well as non-destructive, robust and cost-effective signal removal methods. Herein, a variety of oligo conjugation and signal removal methods were evaluated in the development of a robust oligo conjugated antibody cyclic immunofluorescence (Ab-oligo cyCIF) methodology. Both non- and site-specific conjugation strategies were assessed to label antibodies, where site-specific conjugation resulted in higher retained binding affinity and antigen-specific staining. A variety of fluorescence signal removal methods were also evaluated, where incorporation of a photocleavable link (PCL) resulted in full fluorescence signal removal with minimal tissue disruption. In summary, this work resulted in an optimized Ab-oligo cyCIF platform capable of generating high dimensional images to characterize the spatial proteomics of the hallmarks of cancer.
Collapse
|
21
|
Tezel G. Multiplex protein analysis for the study of glaucoma. Expert Rev Proteomics 2021; 18:911-924. [PMID: 34672220 PMCID: PMC8712406 DOI: 10.1080/14789450.2021.1996232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Glaucoma, a leading cause of irreversible blindness in the world, is a chronic neurodegenerative disease of multifactorial origin. Extensive research is ongoing to better understand, prevent, and treat progressive degeneration of retinal ganglion cells in glaucoma. While experimental models of glaucoma and postmortem tissues of human donors are analyzed for pathophysiological comprehension and improved treatment of this blinding disease, clinical samples of intraocular biofluids and blood collected from glaucoma patients are analyzed to identify predictive, diagnostic, and prognostic biomarkers. Multiplexing techniques for protein analysis offer a valuable approach for translational glaucoma research. AREAS COVERED This review provides an overview of the increasing applications of multiplex protein analysis for glaucoma research and also highlights current research challenges in the field and expected solutions from emerging technological advances. EXPERT OPINION Analytical techniques for multiplex analysis of proteins can help uncover neurodegenerative processes for enhanced treatment of glaucoma and can help identify molecular biomarkers for improved clinical testing and monitoring of this complex disease. This evolving field and continuously growing availability of new technologies are expected to broaden the comprehension of this complex neurodegenerative disease and speed up the progress toward new therapeutics and personalized patient care to prevent blindness from glaucoma.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, New York, NY, USA
| |
Collapse
|
22
|
Lau RP, Kim TH, Rao J. Advances in Imaging Modalities, Artificial Intelligence, and Single Cell Biomarker Analysis, and Their Applications in Cytopathology. Front Med (Lausanne) 2021; 8:689954. [PMID: 34277664 PMCID: PMC8282905 DOI: 10.3389/fmed.2021.689954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Several advances in recent decades in digital imaging, artificial intelligence, and multiplex modalities have improved our ability to automatically analyze and interpret imaging data. Imaging technologies such as optical coherence tomography, optical projection tomography, and quantitative phase microscopy allow analysis of tissues and cells in 3-dimensions and with subcellular granularity. Improvements in computer vision and machine learning have made algorithms more successful in automatically identifying important features to diagnose disease. Many new automated multiplex modalities such as antibody barcoding with cleavable DNA (ABCD), single cell analysis for tumor phenotyping (SCANT), fast analytical screening technique fine needle aspiration (FAST-FNA), and portable fluorescence-based image cytometry analyzer (CytoPAN) are under investigation. These have shown great promise in their ability to automatically analyze several biomarkers concurrently with high sensitivity, even in paucicellular samples, lending themselves well as tools in FNA. Not yet widely adopted for clinical use, many have successfully been applied to human samples. Once clinically validated, some of these technologies are poised to change the routine practice of cytopathology.
Collapse
Affiliation(s)
- Ryan P. Lau
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | | | | |
Collapse
|
23
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
McMahon NP, Solanki A, Wang LG, Montaño AR, Jones JA, Samkoe KS, Tichauer KM, Gibbs SL. TRIPODD: a Novel Fluorescence Imaging Platform for In Situ Quantification of Drug Distribution and Therapeutic Response. Mol Imaging Biol 2021; 23:650-664. [PMID: 33751366 DOI: 10.1007/s11307-021-01589-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Personalized medicine has largely failed to produce curative therapies in advanced cancer patients. Evaluation of in situ drug target availability (DTA) concomitant with local protein expression is critical to an accurate assessment of therapeutic efficacy, but tools capable of both are currently lacking. PROCEDURE We developed and optimized a fluorescence imaging platform termed TRIPODD (Therapeutic Response Imaging through Proteomic and Optical Drug Distribution), resulting in the only methodology capable of simultaneous quantification of single-cell DTA and protein expression with preserved spatial context within a tumor. Using TRIPODD, we demonstrate the feasibility of combining two complementary fluorescence imaging techniques, intracellular paired agent imaging (iPAI) and cyclic immunofluorescence (cyCIF), conducted with oligonucleotide-conjugated antibodies (Ab-oligos) on tissue samples. RESULTS We successfully performed sequential imaging on a single tissue section of iPAI to capture single-cell DTA and local protein expression heterogeneity using Ab-oligo cyCIF. Fluorescence imaging data acquisition was followed by spatial registration resulting in high dimensional data correlating DTA to protein expression at the single-cell level where uptake of a targeted probe alone was not well correlated to protein expression. CONCLUSION Herein, we demonstrated the utility of TRIPODD as a powerful imaging platform capable of interpreting tumor heterogeneity for a mechanistic understanding of therapeutic response and resistance through quantification of drug target availability and proteomic response with preserved spatial context at single-cell resolution.
Collapse
Affiliation(s)
- Nathan P McMahon
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Allison Solanki
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Antonio R Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Jocelyn A Jones
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering at Dartmouth College, Dartmouth College, Hanover, NH, USA.,Department of Surgery, Geisel School of Medicine at Dartmouth College, Dartmouth College, Hanover, NH, 03755, USA
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA. .,Knight Cancer Institute, Oregon Health & Science University, Collaborative Life Sciences Building, 2730 S Moody Ave, Mail Code: CL3SG, Portland, OR, 97201, USA.
| |
Collapse
|
25
|
Abstract
Emerging evidences have implicated extracellular vesicles (EVs), nanoparticles secreted by cells, in regulating cancer progression. Several seminal studies on EVs have added an additional layer to the previously unanswered questions in understanding the complexity of diseases such as cancer. It has been observed that EV content is highly heterogenous and it likely reflects the dynamic state of the parent cell. Hence, these nano-sized vesicles have been proposed as reservoirs of cancer biomarkers for diagnostic and prognostic purposes. Due to their presence in almost all biological fluids, ability to display membrane, and sometimes cytosolic, cargo of its host cell and increase in their number during disease states has supported the potential utility of EVs as an alternative to current methods of cancer diagnosis. The following chapter will discuss the use of cancer cell-derived EVs as a resource of tumor specific biomarkers for the early diagnosis of disease. In addition, EVs could also be used in personalised medicine as a resource of predictive biomarkers to understand a patient's response to therapy. Overall, EVs could be exploited as a source of cancer biomarkers and could aid in treatment and stratification options to improve patient survival and quality of life.
Collapse
|
26
|
Huang Y, Cheng Z, Han R, Gao X, Qian L, Wen Y, Zhang X, Liu G. Target-induced molecular-switch on triple-helix DNA-functionalized carbon nanotubes for simultaneous visual detection of nucleic acids and proteins. Chem Commun (Camb) 2020; 56:13657-13660. [PMID: 33064111 DOI: 10.1039/d0cc05986b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an easy and efficient approach based on a target-induced molecular-switch on triple-helix DNA (THD)-functionalized carbon nanotubes (CNTs) for the simultaneous visual detection of nucleic acids and proteins with a lateral flow nucleic acid biosensor. The assay had the capability to detect a minimum of 25 pM target DNA and 0.25 nM thrombin simultaneously within 20 min.
Collapse
Affiliation(s)
- Yan Huang
- Research Center for Biomedical and Health Science, Anhui Science and Technology University, Fengyang 233100, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wilkovitsch M, Haider M, Sohr B, Herrmann B, Klubnick J, Weissleder R, Carlson JCT, Mikula H. A Cleavable C 2-Symmetric trans-Cyclooctene Enables Fast and Complete Bioorthogonal Disassembly of Molecular Probes. J Am Chem Soc 2020; 142:19132-19141. [PMID: 33119297 PMCID: PMC7662912 DOI: 10.1021/jacs.0c07922] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Bioorthogonal chemistry is bridging the divide between static chemical connectivity and the dynamic physiologic regulation of molecular state, enabling in situ transformations that drive multiple technologies. In spite of maturing mechanistic understanding and new bioorthogonal bond-cleavage reactions, the broader goal of molecular ON/OFF control has been limited by the inability of existing systems to achieve both fast (i.e., seconds to minutes, not hours) and complete (i.e., >99%) cleavage. To attain the stringent performance characteristics needed for high fidelity molecular inactivation, we have designed and synthesized a new C2-symmetric trans-cyclooctene linker (C2TCO) that exhibits excellent biological stability and can be rapidly and completely cleaved with functionalized alkyl-, aryl-, and H-tetrazines, irrespective of click orientation. By incorporation of C2TCO into fluorescent molecular probes, we demonstrate highly efficient extracellular and intracellular bioorthogonal disassembly via omnidirectional tetrazine-triggered cleavage.
Collapse
Affiliation(s)
- Martin Wilkovitsch
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Maximilian Haider
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Barbara Sohr
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Barbara Herrmann
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Jenna Klubnick
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jonathan C. T. Carlson
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Cancer
Center, Massachusetts General Hospital and
Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
28
|
Pai SI, Faquin WC, Sadow PM, Pittet MJ, Weissleder R. New technology on the horizon: Fast analytical screening technique FNA (FAST-FNA) enables rapid, multiplex biomarker analysis in head and neck cancers. Cancer Cytopathol 2020; 128:782-791. [PMID: 32841527 PMCID: PMC8276888 DOI: 10.1002/cncy.22305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 01/26/2023]
Abstract
PD-L1 profiling was recently approved by the US Food and Drug Administration as a companion diagnostic for anti-PD1 treatment in patients with head and neck cancer, ushering in a new era for precision medicine. However, the routine development and implementation of such testing is still limited by current clinical workflows and the lack of better and more comprehensive alternatives. In this review, the authors discuss the real-world challenges of clinically based biomarker testing and highlight the advantages of developing fine-needle aspiration (FNA)-based biomarker testing that would enable frequent and serial tumor sampling. A conceptual and technological innovation is introduced, fast analytical screening technique (FAST)-FNA (FAST chemistry-enabled FNA), which is being developed to inform immunotherapy treatment options in patients with head and neck cancer and to assist with the development of the next generation of predictive biomarkers.
Collapse
Affiliation(s)
- Sara I. Pai
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - William C. Faquin
- Division of Head and Neck Pathology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter M. Sadow
- Division of Head and Neck Pathology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mikael J. Pittet
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Wen Y, Liu J, He H, Li SSC, Liu Z. Single-Cell Analysis of Signaling Proteins Provides Insights into Proapoptotic Properties of Anticancer Drugs. Anal Chem 2020; 92:12498-12508. [PMID: 32790289 DOI: 10.1021/acs.analchem.0c02344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Single-cell DNA analysis technology has provided unprecedented insights into many physiological and pathological processes. In contrast, technologies that allow protein analysis in single cells have lagged behind. Herein, a method called single-cell Plasmonic ImmunoSandwich Assay (scPISA) that is capable of measuring signaling proteins and protein complexes in single living cells is described. scPISA is straightforward, comprising specific in-cell extraction and ultrasensitive plasmonic detection. It is applied to evaluate the efficacy and kinetics of cytotoxic drugs. It reveals that different drugs exhibit distinct proapoptotic properties at the single-cell level. A set of new parameters is thus proposed for comprehensive and quantitative evaluation of the efficacy of anticancer drugs. It discloses that metformin can dramatically enhance the overall anticancer efficacy when combined with actinomycin D, although it itself is significantly less effective. Furthermore, scPISA reveals that survivin interacts with cytochrome C and caspase-3 in a dynamic fashion in single cells during continuous drug treatment. As compared with conventional assays, scPISA exhibits several significant advantages, such as ultrahigh sensitivity, single-cell resolution, fast speed, and so on. Therefore, this approach may provide a powerful tool for wide, important applications from basic research to clinical applications, particularly precision medicine.
Collapse
Affiliation(s)
- Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shawn S C Li
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
30
|
Pham T, Tyagi A, Wang YS, Guo J. Single-cell proteomic analysis. WIREs Mech Dis 2020; 13:e1503. [PMID: 32748522 DOI: 10.1002/wsbm.1503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
The ability to comprehensively profile proteins in every individual cell of complex biological systems is crucial to advance our understanding of normal physiology and disease pathogenesis. Conventional bulk cell experiments mask the cell heterogeneity in the population, while the single-cell imaging methods suffer from the limited multiplexing capacities. Recent advances in microchip-, mass spectrometry-, and reiterative staining-based technologies have enabled comprehensive protein profiling in single cells. These approaches will bring new insights into a variety of biological and biomedical fields, such as signaling network regulation, cell heterogeneity, tissue architecture, disease diagnosis, and treatment monitoring. In this article, we will review the recent advances in the development of single-cell proteomic technologies, describe their advantages, discuss the current limitations and challenges, and propose potential solutions. We will also highlight the wide applications of these technologies in biology and medicine. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Thai Pham
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Ankush Tyagi
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yu-Sheng Wang
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
31
|
Multiplex profiling of serum proteins in solution using barcoded antibody fragments and next generation sequencing. Commun Biol 2020; 3:339. [PMID: 32620783 PMCID: PMC7334203 DOI: 10.1038/s42003-020-1068-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
The composition of serum proteins is reflecting the current health status and can, with the right tools, be used to detect early signs of disease, such as an emerging cancer. An earlier diagnosis of cancer would greatly increase the chance of an improved outcome for the patients. However, there is still an unmet need for proficient tools to decipher the information in the blood proteome, which calls for further technological development. Here, we present a proof-of-concept study that demonstrates an alternative approach for multiplexed protein profiling of serum samples in solution, using DNA barcoded scFv antibody fragments and next generation sequencing. The outcome shows high accuracy when discriminating samples derived from pancreatic cancer patients and healthy controls and represents a scalable alternative for serum analysis. Brofelth, Ekstrand et al use DNA barcoded scFv antibody fragments and next generation sequencing for multiplex profiling of proteins in serum from pancreatic cancer patients with high accuracy. This approach can potentially be used in high throughput precision diagnosis.
Collapse
|
32
|
Yang L, George J, Wang J. Deep Profiling of Cellular Heterogeneity by Emerging Single-Cell Proteomic Technologies. Proteomics 2020; 20:e1900226. [PMID: 31729152 PMCID: PMC7225074 DOI: 10.1002/pmic.201900226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/14/2019] [Indexed: 12/20/2022]
Abstract
The ability to comprehensively profile cellular heterogeneity in functional proteome is crucial in advancing the understanding of cell behavior, organism development, and disease mechanisms. Conventional bulk measurement by averaging the biological responses across a population often loses the information of cellular variations. Single-cell proteomic technologies are becoming increasingly important to understand and discern cellular heterogeneity. The well-established methods for single-cell protein analysis based on flow cytometry and fluorescence microscopy are limited by the low multiplexing ability owing to the spectra overlap of fluorophores for labeling antibodies. Recent advances in mass spectrometry (MS), microchip, and reiterative staining-based techniques for single-cell proteomics have enabled the evaluation of cellular heterogeneity with high throughput, increased multiplexity, and improved sensitivity. In this review, the principles, developments, advantages, and limitations of these advanced technologies in analysis of single-cell proteins, along with their biological applications to study cellular heterogeneity, are described. At last, the remaining challenges, possible strategies, and future opportunities that will facilitate the improvement and broad applications of single-cell proteomic technologies in cell biology and medical research are discussed.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| | - Justin George
- Department of Chemistry, State University of New York, University at Albany, Albany, NY 12222
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| |
Collapse
|
33
|
Wu LR, Fang JZ, Khodakov D, Zhang DY. Nucleic Acid Quantitation with Log-Linear Response Hybridization Probe Sets. ACS Sens 2020; 5:1604-1614. [PMID: 32475109 DOI: 10.1021/acssensors.0c00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Concentrations of different nucleic acid species in biological samples span many orders of magnitude. A real-time polymerase chain reaction maps the concentration of a target nucleic acid sequence log-linearly into cycle threshold to enable quantitation with a wide dynamic range but suffers from enzymatic biases. Here, we present a general design for constructing hybridization probe sets with highly log-linear response curves to enable accurate enzyme-free quantitation across large ranges (more than 6 logs) of target DNA concentrations. The sensitivity of each component probe is accurately adjusted via formulation stoichiometry to reduce the standard error of target quantitation down to 7%. As a proof of concept, we show multiplexed quantitation of three microRNA species in total RNA of the human brain and liver.
Collapse
Affiliation(s)
- Lucia R. Wu
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - John Z. Fang
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Dmitriy Khodakov
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
34
|
Ultra-high throughput single-cell analysis of proteins and RNAs by split-pool synthesis. Commun Biol 2020; 3:213. [PMID: 32382044 PMCID: PMC7205613 DOI: 10.1038/s42003-020-0896-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Single-cell omics provide insight into cellular heterogeneity and function. Recent technological advances have accelerated single-cell analyses, but workflows remain expensive and complex. We present a method enabling simultaneous, ultra-high throughput single-cell barcoding of millions of cells for targeted analysis of proteins and RNAs. Quantum barcoding (QBC) avoids isolation of single cells by building cell-specific oligo barcodes dynamically within each cell. With minimal instrumentation (four 96-well plates and a multichannel pipette), cell-specific codes are added to each tagged molecule within cells through sequential rounds of classical split-pool synthesis. Here we show the utility of this technology in mouse and human model systems for as many as 50 antibodies to targeted proteins and, separately, >70 targeted RNA regions. We demonstrate that this method can be applied to multi-modal protein and RNA analyses. It can be scaled by expansion of the split-pool process and effectively renders sequencing instruments as versatile multi-parameter flow cytometers. Maeve O’Huallachain et al. report a method that enables simultaneous, ultra-high throughput single-cell barcoding for targeted single-cell protein and RNA analysis. They show the utility of their method in analyses of mRNA and protein expression in human and mouse cells.
Collapse
|
35
|
McMahon NP, Jones JA, Kwon S, Chin K, Nederlof MA, Gray JW, Gibbs SL. Oligonucleotide conjugated antibodies permit highly multiplexed immunofluorescence for future use in clinical histopathology. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-18. [PMID: 32445299 PMCID: PMC7245007 DOI: 10.1117/1.jbo.25.5.056004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/24/2020] [Indexed: 05/30/2023]
Abstract
SIGNIFICANCE Advanced genetic characterization has informed cancer heterogeneity and the challenge it poses to effective therapy; however, current methods lack spatial context, which is vital to successful cancer therapy. Conventional immunolabeling, commonplace in the clinic, can provide spatial context to protein expression. However, these techniques are spectrally limited, resulting in inadequate capacity to resolve the heterogenous cell subpopulations within a tumor. AIM We developed and optimized oligonucleotide conjugated antibodies (Ab-oligo) to facilitate cyclic immunofluorescence (cyCIF), resulting in high-dimensional immunostaining. APPROACH We employed a site-specific conjugation strategy to label antibodies with unique oligonucleotide sequences, which were hybridized in situ with their complementary oligonucleotide sequence tagged with a conventional fluorophore. Antibody concentration, imaging strand concentration, and configuration as well as signal removal strategies were optimized to generate maximal staining intensity using our Ab-oligo cyCIF strategy. RESULTS We successfully generated 14 Ab-oligo conjugates and validated their antigen specificity, which was maintained in single color staining studies. With the validated antibodies, we generated up to 14-color imaging data sets of human breast cancer tissues. CONCLUSIONS Herein, we demonstrated the utility of Ab-oligo cyCIF as a platform for highly multiplexed imaging, its utility to measure tumor heterogeneity, and its potential for future use in clinical histopathology.
Collapse
Affiliation(s)
- Nathan P. McMahon
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
| | - Jocelyn A. Jones
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
| | - Sunjong Kwon
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
- Oregon Health and Science University, OHSU Center for Spatial Systems Biomedicine, Portland, Oregon, United States
| | - Koei Chin
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
- Oregon Health and Science University, OHSU Center for Spatial Systems Biomedicine, Portland, Oregon, United States
| | | | - Joe W. Gray
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
- Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, United States
- Oregon Health and Science University, OHSU Center for Spatial Systems Biomedicine, Portland, Oregon, United States
| | - Summer L. Gibbs
- Oregon Health and Science University, Biomedical Engineering Department, Portland, Oregon, United States
- Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, United States
- Oregon Health and Science University, OHSU Center for Spatial Systems Biomedicine, Portland, Oregon, United States
| |
Collapse
|
36
|
Ko J, Oh J, Ahmed MS, Carlson JCT, Weissleder R. Ultra-fast cycling for multiplexed cellular fluorescence imaging. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 132:6906-6913. [PMID: 34366494 PMCID: PMC8340598 DOI: 10.1002/ange.201915153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 11/11/2022]
Abstract
Rapid analysis of single and scant cell populations is essential in modern diagnostics, yet existing methods are often limited and slow. Here we describe an ultra-fast, highly efficient cycling method for the analysis of single cells based on unique linkers for tetrazine (Tz) / trans-cyclooctene (TCO) mediated quenching. Surprisingly, the quenching reaction rates were more than 3 orders of magnitude faster (t1/2 < 1 sec) than predicted. This allowed multi-cycle staining and immune cell profiling within an hour, leveraging the accelerated kinetics to open new diagnostic possibilities for rapid cellular analyses.
Collapse
Affiliation(s)
- Jina Ko
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Maaz S. Ahmed
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Jonathan C. T. Carlson
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
37
|
Ko J, Oh J, Ahmed MS, Carlson JCT, Weissleder R. Ultra-fast Cycling for Multiplexed Cellular Fluorescence Imaging. Angew Chem Int Ed Engl 2020; 59:6839-6846. [PMID: 32004403 DOI: 10.1002/anie.201915153] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/08/2020] [Indexed: 12/26/2022]
Abstract
Rapid analysis of single and scant cell populations is essential in modern diagnostics, yet existing methods are often limited and slow. Herein, we describe an ultra-fast, highly efficient cycling method for the analysis of single cells based on unique linkers for tetrazine (Tz)/trans-cyclooctene (TCO)-mediated quenching. Surprisingly, the quenching reaction rates were more than 3 orders of magnitude faster (t1/2 <1 s) than predicted. This allowed multi-cycle staining and immune cell profiling within an hour, leveraging the accelerated kinetics to open new diagnostic possibilities for rapid cellular analyses.
Collapse
Affiliation(s)
- Jina Ko
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
| | - Maaz S Ahmed
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
| | - Jonathan C T Carlson
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
38
|
Wang Y, Cao T, Ko J, Shen Y, Zong W, Sheng K, Cao W, Sun S, Cai L, Zhou Y, Zhang X, Zong C, Weissleder R, Weitz D. Dissolvable Polyacrylamide Beads for High-Throughput Droplet DNA Barcoding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903463. [PMID: 32328429 PMCID: PMC7175265 DOI: 10.1002/advs.201903463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Indexed: 05/24/2023]
Abstract
Droplet-based single cell sequencing technologies, such as inDrop, Drop-seq, and 10X Genomics, are catalyzing a revolution in the understanding of biology. Barcoding beads are key components for these technologies. What is limiting today are barcoding beads that are easy to fabricate, can efficiently deliver primers into drops, and thus achieve high detection efficiency. Here, this work reports an approach to fabricate dissolvable polyacrylamide beads, by crosslinking acrylamide with disulfide bridges that can be cleaved with dithiothreitol. The beads can be rapidly dissolved in drops and release DNA barcode primers. The dissolvable beads are easy to synthesize, and the primer cost for the beads is significantly lower than that for the previous barcoding beads. Furthermore, the dissolvable beads can be loaded into drops with >95% loading efficiency of a single bead per drop and the dissolution of beads does not influence reverse transcription or the polymerase chain reaction (PCR) in drops. Based on this approach, the dissolvable beads are used for single cell RNA and protein analysis.
Collapse
Affiliation(s)
- Yongcheng Wang
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- John A. Paulson School of Engineering and Applied Sciences and Department of PhysicsHarvard UniversityCambridgeMA02138USA
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMA02138USA
| | - Ting Cao
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- John A. Paulson School of Engineering and Applied Sciences and Department of PhysicsHarvard UniversityCambridgeMA02138USA
- Beijing National Laboratory for Molecular Sciences (BNLMS)MOE Key Laboratory of Bioorganic Chemistry and Molecular EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Jina Ko
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- Center for Systems BiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Yinan Shen
- John A. Paulson School of Engineering and Applied Sciences and Department of PhysicsHarvard UniversityCambridgeMA02138USA
| | - Will Zong
- John A. Paulson School of Engineering and Applied Sciences and Department of PhysicsHarvard UniversityCambridgeMA02138USA
| | - Kuanwei Sheng
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Wenjian Cao
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Sijie Sun
- John A. Paulson School of Engineering and Applied Sciences and Department of PhysicsHarvard UniversityCambridgeMA02138USA
| | - Liheng Cai
- John A. Paulson School of Engineering and Applied Sciences and Department of PhysicsHarvard UniversityCambridgeMA02138USA
| | - Ying‐Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)MOE Key Laboratory of Bioorganic Chemistry and Molecular EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xin‐Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)MOE Key Laboratory of Bioorganic Chemistry and Molecular EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Chenghang Zong
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of Systems BiologyHarvard Medical SchoolBostonMA02115USA
| | - David Weitz
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
- John A. Paulson School of Engineering and Applied Sciences and Department of PhysicsHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
39
|
Wang H, Xin X, Zheng C, Shen C. Single-Cell Analysis of Foot-and-Mouth Disease Virus. Front Microbiol 2020; 11:361. [PMID: 32194538 PMCID: PMC7066083 DOI: 10.3389/fmicb.2020.00361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/18/2020] [Indexed: 11/25/2022] Open
Abstract
With the rapid development of single-cell technologies, the mechanisms underlying viral infections and the interactions between hosts and viruses are starting to be explored at the single-cell level. The foot-and-mouth-disease (FMD) virus (FMDV) causes an acute and persistent infection that can result in the break-out of FMD, which can have serious effects on animal husbandry. Single-cell techniques have emerged as powerful approaches to analyze virus infection at the resolution of individual cells. In this review, the existing single-cell studies examining FMDV will be systematically summarized, and the central themes of these studies will be presented.
Collapse
Affiliation(s)
- Hailong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Chao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Smith LD, Liu Y, Zahid MU, Canady TD, Wang L, Kohli M, Cunningham BT, Smith AM. High-Fidelity Single Molecule Quantification in a Flow Cytometer Using Multiparametric Optical Analysis. ACS NANO 2020; 14:2324-2335. [PMID: 31971776 PMCID: PMC7295608 DOI: 10.1021/acsnano.9b09498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microfluidic techniques are widely used for high-throughput quantification and discrete analysis of micron-scale objects but are difficult to apply to molecular-scale targets. Instead, single-molecule methods primarily rely on low-throughput microscopic imaging of immobilized molecules. Here we report that commercial-grade flow cytometers can detect single nucleic acid targets following enzymatic extension and dense labeling with multiple distinct fluorophores. We focus on microRNAs, short nucleic acids that can be extended by rolling circle amplification (RCA). We labeled RCA-extended microRNAs with multicolor fluorophores to generate repetitive nucleic acid products with submicron sizes and tunable multispectral profiles. By cross-correlating the multiparametric optical features, signal-to-background ratios were amplified 1600-fold to allow single-molecule detection across 4 orders of magnitude of concentration. The limit of detection was measured to be 47 fM, which is 100-fold better than gold-standard methods based on polymerase chain reaction. Furthermore, multiparametric analysis allowed discrimination of different microRNA sequences in the same solution using distinguishable optical barcodes. Barcodes can apply both ratiometric and colorimetric signatures, which could facilitate high-dimensional multiplexing. Because of the wide availability of flow cytometers, we anticipate that this technology can provide immediate access to high-throughput multiparametric single-molecule measurements and can further be adapted to the diverse range of molecular amplification methods that are continually emerging.
Collapse
Affiliation(s)
- Lucas D Smith
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Holonyak Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yang Liu
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Holonyak Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Mohammad U Zahid
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Holonyak Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Taylor D Canady
- Holonyak Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Liang Wang
- Department of Tumor Biology , H. Lee Moffitt Cancer Center , Tampa , Florida 33612 , United States
| | - Manish Kohli
- Department of Genitourinary Oncology , H. Lee Moffitt Cancer Center , Tampa , Florida 33612 United States
| | - Brian T Cunningham
- Holonyak Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Electrical and Computer Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Cancer Center at Illinois , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Andrew M Smith
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Holonyak Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Cancer Center at Illinois , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Carle Illinois College of Medicine , Urbana , Illinois 61801 , United States
| |
Collapse
|
41
|
McMahon NP, Solanki A, Jones J, Kwon S, Chang YH, Chin K, Nederlof MA, Gray JW, Gibbs SL. Fluorescent Imaging for In Situ Measurement of Drug Target Engagement and Cell Signaling Pathways. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11219:112190O. [PMID: 32296256 PMCID: PMC7158854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Successful cancer treatment continues to elude modern medicine and its arsenal of therapeutic strategies. Therapy resistance is driven by significant tumor heterogeneity, complex interactions between malignant, microenvironmental and immune cells and cross talk between signaling pathways. Advances in molecular characterization technologies such as next generation sequencing have helped unravel this network of interactions and identify druggable therapeutic targets. Tyrosine kinase inhibitors (TKI) are a class of drugs seeking to inhibit signaling pathways critical to sustaining proliferative signaling, resisting cell death, and the other hallmarks of cancer. While tumors may initially respond to TKI therapy, disease progression is near universal due to mechanisms of acquired resistance largely involving cellular signaling pathway reprogramming. With the ultimate goal of improved TKI therapeutic efficacy our group has developed intracellular paired agent imaging (iPAI) to quantify drug target interactions and oligonucleotide conjugated antibody (Ab-oligo) cyclic immunofluorescence (cycIF) imaging to characterize perturbed signaling pathways in response to therapy. iPAI uses spectrally distinct, fluorescently labeled targeted and untargeted drug derivatives, correcting for non-specific drug distribution and facilitating quantitative assessment of the drug binding before and after therapy. Ab-oligo cycIF exploits in situ hybridization of complementary oligonucleotides for biomarker labeling while oligonucleotide modifications facilitate signal removal for sequential rounds of fluorescent tagging and imaging. Ab-oligo CycIF is capable of generating extreme multi-parametric images for quantifying total and phosphorylated protein expression to quantify protein activation, expression, and spatial distribution. Together iPAI and Ab-oligo cycIF can be applied to interrogate drug uptake and target binding as well as changes to heterogenous cell populations within tumors that drive variable therapeutic responses in patients.
Collapse
Affiliation(s)
- Nathan P. McMahon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Allison Solanki
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Jocelyn Jones
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Sunjong Kwon
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | - Young-Hwan Chang
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
- Computational Biology Program, Oregon Health and Science University, Portland, OR 97201
| | - Koei Chin
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | | | - Joe W. Gray
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | - Summer L. Gibbs
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| |
Collapse
|
42
|
O’Donnell ST, Ross RP, Stanton C. The Progress of Multi-Omics Technologies: Determining Function in Lactic Acid Bacteria Using a Systems Level Approach. Front Microbiol 2020; 10:3084. [PMID: 32047482 PMCID: PMC6997344 DOI: 10.3389/fmicb.2019.03084] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic Acid Bacteria (LAB) have long been recognized as having a significant impact ranging from commercial to health domains. A vast amount of research has been carried out on these microbes, deciphering many of the pathways and components responsible for these desirable effects. However, a large proportion of this functional information has been derived from a reductionist approach working with pure culture strains. This provides limited insight into understanding the impact of LAB within intricate systems such as the gut microbiome or multi strain starter cultures. Whole genome sequencing of strains and shotgun metagenomics of entire systems are powerful techniques that are currently widely used to decipher function in microbes, but they also have their limitations. An available genome or metagenome can provide an image of what a strain or microbiome, respectively, is potentially capable of and the functions that they may carry out. A top-down, multi-omics approach has the power to resolve the functional potential of an ecosystem into an image of what is being expressed, translated and produced. With this image, it is possible to see the real functions that members of a system are performing and allow more accurate and impactful predictions of the effects of these microorganisms. This review will discuss how technological advances have the potential to increase the yield of information from genomics, transcriptomics, proteomics and metabolomics. The potential for integrated omics to resolve the role of LAB in complex systems will also be assessed. Finally, the current software approaches for managing these omics data sets will be discussed.
Collapse
Affiliation(s)
- Shane Thomas O’Donnell
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
43
|
|
44
|
Schildberg FA, Donnenberg VS. Stromal cells in health and disease. Cytometry A 2019; 93:871-875. [PMID: 30256523 DOI: 10.1002/cyto.a.23600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Frank A Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Centers, Pittsburgh, Pennsylvania.,McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Rodell CB, Koch PD, Weissleder R. Screening for new macrophage therapeutics. Theranostics 2019; 9:7714-7729. [PMID: 31695796 PMCID: PMC6831478 DOI: 10.7150/thno.34421] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Myeloid derived macrophages play a key role in many human diseases, and their therapeutic modulation via pharmacological means is receiving considerable attention. Of particular interest is the fact that these cells are i) dynamic phenotypes well suited to therapeutic manipulation and ii) phagocytic, allowing them to be efficiently targeted with nanoformulations. However, it is important to consider that macrophages represent heterogeneous populations of subtypes with often competing biological behaviors and functions. In order to develop next generation therapeutics, it is therefore essential to screen for biological effects through a combination of in vitro and in vivo assays. Here, we review the state-of-the-art techniques, including both cell based screens and in vivo imaging tools that have been developed for assessment of macrophage phenotype. We conclude with a forward-looking perspective on the growing need for noninvasive macrophage assessment and laboratory assays to be put into clinical practice and the potential broader impact of myeloid-targeted therapeutics.
Collapse
|
46
|
Ultrasensitive, multiplexed chemoproteomic profiling with soluble activity-dependent proximity ligation. Proc Natl Acad Sci U S A 2019; 116:21493-21500. [PMID: 31591248 DOI: 10.1073/pnas.1912934116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chemoproteomic methods can report directly on endogenous, active enzyme populations, which can differ greatly from measures of transcripts or protein abundance alone. Detection and quantification of family-wide probe engagement generally requires LC-MS/MS or gel-based detection methods, which suffer from low resolution, significant input proteome requirements, laborious sample preparation, and expensive equipment. Therefore, methods that can capitalize on the broad target profiling capacity of family-wide chemical probes but that enable specific, rapid, and ultrasensitive quantitation of protein activity in native samples would be useful for basic, translational, and clinical proteomic applications. Here we develop and apply a method that we call soluble activity-dependent proximity ligation (sADPL), which harnesses family-wide chemical probes to convert active enzyme levels into amplifiable barcoded oligonucleotide signals. We demonstrate that sADPL coupled to quantitative PCR signal detection enables multiplexed "writing" and "reading" of active enzyme levels across multiple protein families directly at picogram levels of whole, unfractionated proteome. sADPL profiling in a competitive format allows for highly sensitive detection of drug-protein interaction profiling, which allows for direct quantitative measurements of in vitro and in vivo on- and off-target drug engagement. Finally, we demonstrate that comparative sADPL profiling can be applied for high-throughput molecular phenotyping of primary human tumor samples, leading to the discovery of new connections between metabolic and proteolytic enzyme activity in specific tumor compartments and patient outcomes. We expect that this modular and multiplexed chemoproteomic platform will be a general approach for drug target engagement, as well as comparative enzyme activity profiling for basic and clinical applications.
Collapse
|
47
|
Li L, Han B, Wang Y, Zhao J, Cao Y. Simple and universal signal labeling of cell surface for amplified detection of cancer cells via mild reduction. Biosens Bioelectron 2019; 145:111714. [PMID: 31546202 DOI: 10.1016/j.bios.2019.111714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023]
Abstract
Membrane protein, a novel surface biomarker, plays an important role in cell recognition and disease diagnosis. Accurate recognition of membrane protein ensure high specificity of cell identification, while introducing signal molecules onto cell membrane is critical to achieve high sensitivity. In this work, we introduced a simple and universal signal labeling approach for cancer cell detection based on mild reduction-mediated cell engineering. This approach included the mild reduction of disulfide bonds within membrane proteins and the introduction of DNA bridge complex-templated silver nanoclusters (DNA bridge-AgNCs) through the thiol-maleimide conjugation. The mild reduction reactions on the cell surface significantly increased the binding sites for signal labeling, and DNA bridge-AgNCs served as a scaffold of signal amplification, resulting in a wide linear range from 50-2 × 106 cells, and a detection limit of 15 cells. In addition, the method also showed good selectivity in complex environment. Therefore, this method may have great application space in the field of cell detection and even disease diagnosis in the near future.
Collapse
Affiliation(s)
- Lingling Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, 200444, PR China
| | - Bing Han
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Ying Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China.
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China.
| |
Collapse
|
48
|
Chen P, Chen D, Li S, Ou X, Liu BF. Microfluidics towards single cell resolution protein analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem 2019; 30:2483-2501. [PMID: 31339691 DOI: 10.1021/acs.bioconjchem.9b00306] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a novel class of synthetic chimeric biomolecules that has been continually gaining traction in different fields of modern biotechnology. This is mainly due to the unique combination of the properties of their two constituents, exceptional targeting abilities and antibody biodistribution profiles, in addition to an extensive scope of oligonucleotide functional and structural roles. Combining these two classes of biomolecules in one chimeric construct has therefore become an important milestone in the development of numerous biotechnological applications, including imaging (DNA-PAINT), detection (PLA, PEA), and therapeutics (targeted siRNA/antisense delivery). Numerous synthetic approaches have been developed to access AOCs ranging from stochastic chemical bioconjugation to site-specific conjugation with reactive handles, introduced into antibody sequences through protein engineering. This Review gives a general overview of the current status of AOC applications with a specific emphasis on the synthetic methods used for their preparation. The reported synthetic techniques are discussed in terms of their practical aspects and limitations. The importance of the development of novel methods for the facile generation of AOCs possessing a defined constitution is highlighted as a priority in AOC research to ensure the advance of their new applications.
Collapse
Affiliation(s)
- Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| | - Oleksandr Koniev
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Sergii Kolodych
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| |
Collapse
|
50
|
Tellez-Gabriel M, Heymann MF, Heymann D. Circulating Tumor Cells as a Tool for Assessing Tumor Heterogeneity. Am J Cancer Res 2019; 9:4580-4594. [PMID: 31367241 PMCID: PMC6643448 DOI: 10.7150/thno.34337] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor heterogeneity is the major cause of failure in cancer prognosis and prediction. Accurately detecting heterogeneity for the development of biomarkers and the detection of the clones resistant to therapy is one of the main goals of contemporary medicine. Metastases belong to the natural history of cancer. The present review gives an overview on the origin of tumor heterogeneity. Recent progress has made it possible to isolate and characterize circulating tumor cells (CTCs), which are the drivers of the disease between the primary sites and metastatic foci. The most recent methods for characterizing CTCs are summarized and we discuss the power of CTC profiling for analyzing tumor heterogeneity in early and advanced diseases.
Collapse
|