1
|
Kashkoulinejad Kouhi T. Exosome-mediated communication between T cells and dendritic cells: Implications for therapeutic strategies. Cytokine 2025; 189:156914. [PMID: 40073808 DOI: 10.1016/j.cyto.2025.156914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/16/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Cell communication is crucial for coordinating physiological functions in multicellular organisms, with exosomes playing a significant role. Exosomes mediate intercellular communication by transporting proteins, lipids, and nucleic acids between cells. These small, membrane-bound vesicles, derived from the endosomal pathway, are integral to various biological processes, including signal transmission and cellular behavior modulation. Recent advances highlight the potential of exosomes, especially dendritic cell-derived exosomes (DEXs), for diagnostic and therapeutic applications, particularly in cancer immunotherapy. DEXs are distinguished by their ability to present antigens and stimulate immune responses more effectively than exosomes from other cell types. They carry a cargo rich in immunostimulatory molecules and MHC-peptide complexes, which facilitate robust T-cell activation and enhance tumor-specific immune responses. The unique properties of DEXs, such as their ability to cross biological barriers and resist tumor-induced immunosuppression, position them as promising candidates for therapeutic applications. Here, I review the reports on the bidirectional interaction between dendritic cells and T cells through exosomes and their role in medicine.
Collapse
Affiliation(s)
- Tahereh Kashkoulinejad Kouhi
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; CTOAM | Cancer Treatment Options & Management, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Luo Y, Yuan Y, Liu D, Peng H, Shen L, Chen Y. Targeting novel immune checkpoints in the B7-H family: advancing cancer immunotherapy from bench to bedside. Trends Cancer 2025:S2405-8033(25)00055-X. [PMID: 40113530 DOI: 10.1016/j.trecan.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
The B7-H family of immune checkpoint molecules is a crucial component of the immune regulatory network for tumors, offering new opportunities to modulate the tumor microenvironment (TME). The B7-H family - which includes B7-H2 (inducible T cell costimulatory ligand, ICOSL), B7-H3, B7-H4, B7-H5 (V-domain immunoglobulin suppressor of T cell activation, VISTA), B7-H6, and B7-H7 (HHLA2) - is known for its diverse roles in regulating innate and adaptive immunity. These molecules can exhibit co-stimulatory or co-inhibitory effects on T cells, influencing processes such as T cell activation, differentiation, and effector functions, and they are involved in the recruitment and polarization of various immune cells. This review explores the structural characteristics, receptor-ligand interactions, and signaling pathways associated with each B7-H family member. We also discuss the family's impact on tumor immunity and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yiming Luo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Early Drug Development Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Haoxin Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China; Department of Gastrointestinal Cancer, Beijing GoBroad Hospital, Beijing 102200, China.
| |
Collapse
|
3
|
Maggi E, Landolina N, Munari E, Mariotti FR, Tumino N, Vacca P, Azzarone B, Moretta L. T cells in the microenvironment of solid pediatric tumors: the case of neuroblastoma. Front Immunol 2025; 16:1544137. [PMID: 40092980 PMCID: PMC11906424 DOI: 10.3389/fimmu.2025.1544137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Neuroblastoma (NB) is an immunologically "cold" tumor with poor or no inflamed substrates as most of solid pediatric tumors (SPT). Consistent data indicate that NB tumor microenvironment (TME) is dominated by myeloid cells, with little (but variable) T cell infiltration. The obstacles to lymphocyte infiltration and to their anti-tumor activity are due to different tumor immune evasion strategies, including loss of HLA Class I molecules, high expression of immune checkpoint molecular ligands leading to exhaustion of T effector (and NK) cells, induction of T regulatory, myeloid and stromal cells and secretion of immunosuppressive mediators. In odds with adult solid tumors, NB displays weak immunogenicity caused by intrinsic low mutational burden and scant expression of neoepitopes in the context of MHC-class I antigens which, in turn, are particularly poorly expressed on NB cells, thus inducing low anti-tumor T cell responses. In addition, NB is generated from embryonal cells and is the result of transcriptional abnormalities and not of the accumulation of genetic mutations over time, thus further explaining the low immunogenicity. The poor expression of immunogenic molecules on tumor cells is associated with the high production of immunosuppressive factors which further downregulate lymphocyte infiltration and activity, thus explaining the limited efficacy of new drugs in NB, as immune checkpoint inhibitors. This review is focused on examining the role of T effector and regulatory cells infiltrating TME of NB, taking into account their repertoire, phenotype, function, plasticity and, importantly, predictive value for defining novel targets for therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | | | - Nicola Tumino
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Mariuzza RA, Singh P, Karade SS, Shahid S, Sharma VK. Recognition of Self and Viral Ligands by NK Cell Receptors. Immunol Rev 2025; 329:e13435. [PMID: 39748148 PMCID: PMC11695704 DOI: 10.1111/imr.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily. NK receptors include Ly49s, KIRs, LILRs, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such MICA and ULBP. Other NK receptors recognize tumor-associated antigens (NKp30, NKp44, NKp46), cell-cell adhesion proteins (KLRG1, CD96), or genetically coupled C-type lectin-like ligands (NKp65, NKR-P1). Additionally, cytomegaloviruses have evolved various immunoevasins, such as m157, m12, and UL18, which bind NK receptors and act as decoys to enable virus-infected cells to escape NK cell-mediated lysis. We review the remarkable progress made in the past 25 years in determining structures of representatives of most known NK receptors bound to MHC, MHC-like, and non-MHC ligands. Together, these structures reveal the multiplicity of solutions NK receptors have developed to recognize these molecules, and thereby mediate crucial interactions for regulating NK cytolytic activity by self and viral ligands.
Collapse
Affiliation(s)
- Roy A. Mariuzza
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Pragya Singh
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- College of Natural and Mathematical SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Sharanbasappa S. Karade
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Salman Shahid
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Vijay Kumar Sharma
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
5
|
Rados M, Landegger A, Schmutzler L, Rabidou K, Taschner-Mandl S, Fetahu IS. Natural killer cells in neuroblastoma: immunological insights and therapeutic perspectives. Cancer Metastasis Rev 2024; 43:1401-1417. [PMID: 39294470 PMCID: PMC11554946 DOI: 10.1007/s10555-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Natural killer (NK) cells have multifaceted roles within the complex tumor milieu. They are pivotal components of innate immunity and shape the dynamic landscape of tumor-immune cell interactions, and thus can be leveraged for use in therapeutic interventions. NK-based immunotherapies have had remarkable success in hematological malignancies, but these therapies are met with many challenges in solid tumors, including neuroblastoma (NB), a childhood tumor arising from the sympathetic nervous system. With a focus on NB, this review outlines the mechanisms employed by NK cells to recognize and eliminate malignant cells, delving into the dynamic relationship between ligand-receptor interactions, cytokines, and other molecules that facilitate the cross talk between NK and NB cells. We discuss the immunomodulatory functions of NK cells and the mechanisms that contribute to loss of this immunosurveillance in NB, with a focus on how this dynamic has been utilized in recent immunotherapy advancements for NB.
Collapse
Affiliation(s)
- Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Lukas Schmutzler
- Department of Otorhinolaryngology - Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Kimberlie Rabidou
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, USA
| | | | - Irfete S Fetahu
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Zhou Y, Na C, Li Z. Novel insights into immune cells modulation of tumor resistance. Crit Rev Oncol Hematol 2024; 202:104457. [PMID: 39038527 DOI: 10.1016/j.critrevonc.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor resistance poses a significant challenge to effective cancer treatment, making it imperative to explore new therapeutic strategies. Recent studies have highlighted the profound involvement of immune cells in the development of tumor resistance. Within the tumor microenvironment, macrophages undergo polarization into the M2 phenotype, thus promoting the emergence of drug-resistant tumors. Neutrophils contribute to tumor resistance by forming extracellular traps. While T cells and natural killer (NK) cells exert their impact through direct cytotoxicity against tumor cells. Additionally, dendritic cells (DCs) have been implicated in preventing tumor drug resistance by stimulating T cell activation. In this review, we provide a comprehensive summary of the current knowledge regarding immune cell-mediated modulation of tumor resistance at the molecular level, with a particular focus on macrophages, neutrophils, DCs, T cells, and NK cells. The targeting of immune cell modulation exhibits considerable potential for addressing drug resistance, and an in-depth understanding of the molecular interactions between immune cells and tumor cells holds promise for the development of innovative therapies. Furthermore, we explore the clinical implications of these immune cells in the treatment of drug-resistant tumors. This review emphasizes the exploration of novel approaches that harness the functional capabilities of immune cells to effectively overcome drug-resistant tumors.
Collapse
Affiliation(s)
- Yi Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Chuhan Na
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| |
Collapse
|
8
|
Lee S, Kim JH, Jang IH, Jo S, Lee SY, Oh SC, Kim SM, Kong L, Ko J, Kim TD. Harnessing B7-H6 for Anticancer Immunotherapy: Expression, Pathways, and Therapeutic Strategies. Int J Mol Sci 2024; 25:10326. [PMID: 39408655 PMCID: PMC11476788 DOI: 10.3390/ijms251910326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapies have evolved from traditional chemotherapy to more precise molecular-targeted immunotherapies, which have been associated with improved side effects and outcomes. These modern strategies rely on cancer-specific biomarkers that differentiate malignant from normal cells. The B7 family of immune checkpoint molecules is crucial for cancer immune evasion and a prime therapeutic target. B7-H6, a recently identified member of the B7 family, has emerged as a promising therapeutic target. Unlike other B7 proteins, B7-H6 is not expressed in healthy tissues but is upregulated in several cancers. It binds to NKp30, activating natural killer (NK) cells and triggering immune responses against cancer cells. This review explores the expression of B7-H6 in different cancers, the factors that regulate its expression, and its intrinsic and extrinsic pathways. Additionally, we discuss potential anticancer therapies targeting B7-H6, highlighting its significance in advancing precision medicine. Understanding the role of B7-H6 in cancer immunity may inform the development of appropriate therapies that exploit its cancer-specific expression.
Collapse
Affiliation(s)
- Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seona Jo
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Lingzu Kong
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
9
|
Rani D, Kaur S, Shahjahan, Dey JK, Dey SK. Engineering immune response to regulate cardiovascular disease and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:381-417. [PMID: 38762276 DOI: 10.1016/bs.apcsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are major contributors to global morbidity and mortality. This book chapter delves into the intricate relationship between the immune system and the pathogenesis of both cardiovascular and cancer diseases, exploring the roles of innate and adaptive immunities, immune regulation, and immunotherapy in these complex conditions. The innate immune system acts as the first line of defense against tissue damage and infection, with a significant impact on the initiation and progression of CVD and cancer. Endothelial dysfunction, a hallmark in CVD, shares commonalities with the tumor microenvironment in cancer, emphasizing the parallel involvement of the immune system in both conditions. The adaptive immune system, particularly T cells, contributes to prolonged inflammation in both CVD and cancer. Regulatory T cells and the intricate balance between different T cell subtypes influence disease progression, wound healing, and the outcomes of ischemic injury and cancer immunosurveillance. Dysregulation of immune homeostasis can lead to chronic inflammation, contributing to the development and progression of both CVD and cancer. Thus, immunotherapy emerged as a promising avenue for preventing and managing these diseases, with strategies targeting immune cell modulation, cytokine manipulation, immune checkpoint blockade, and tolerance induction. The impact of gut microbiota on CVD and cancer too is explored in this chapter, highlighting the role of gut leakiness, microbial metabolites, and the potential for microbiome-based interventions in cardiovascular and cancer immunotherapies. In conclusion, immunomodulatory strategies and immunotherapy hold promise in reshaping the landscape of cardiovascular and cancer health. Additionally, harnessing the gut microbiota for immune modulation presents a novel approach to prevent and manage these complex diseases, emphasizing the importance of personalized and precision medicine in healthcare. Ongoing research and clinical trials are expected to further elucidate the complex immunological underpinnings of CVD and cancer thereby refining these innovative approaches.
Collapse
Affiliation(s)
- Diksha Rani
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Smaranjot Kaur
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India.
| |
Collapse
|
10
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
11
|
Patwekar M, Sehar N, Patwekar F, Medikeri A, Ali S, Aldossri RM, Rehman MU. Novel immune checkpoint targets: A promising therapy for cancer treatments. Int Immunopharmacol 2024; 126:111186. [PMID: 37979454 DOI: 10.1016/j.intimp.2023.111186] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
The immune system frequently comprises immunological checkpoints. They serve as a barrier to keep the immune system from overreacting and damaging cells that are robust. Immune checkpoint inhibitors (ICIs) are utilized in immunotherapy to prevent the synergy of partner proteins of checkpoint proteins with auxiliary proteins. Moreover, the T cells may target malignant cells since the "off" signal cannot be conveyed. ICIs, which are mostly composed of monoclonal antibodies (mAbs) against cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and anti- programmed death-1/programmed ligand 1 (anti-PD-1/PD-L1), might transform the context of cancer therapy. Further, more patients continued to exhibit adaptive resistance, even though several ICIs demonstrated convincing therapeutic benefits in selective tumor types. Immune checkpoint therapy's overall effectiveness is still lacking at this time. A popular area of study involves investigating additional immune checkpoint molecules. Recent research has found a number of fresh immune checkpoint targets, including NKG2A ligands, TIGIT, B7-H6 ligands, Galectin 3, TIM3, and so on. These targets have been focus of the study, and recent investigational approaches have shown encouraging outcomes. In this review article, we covered the development and present level understanding of these recently identified immune checkpoint molecules, its effectiveness and limitations.
Collapse
Affiliation(s)
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, 110062, India
| | - Faheem Patwekar
- Luqman College of Pharmacy, Gulbarga, 585102, Karnataka, India
| | | | - Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Rana M Aldossri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
12
|
Chen H, Zhang Y, Shen Y, Jiang L, Zhang G, Zhang X, Xu Y, Fu F. Deficiency of N-linked glycosylation impairs immune function of B7-H6. Front Immunol 2023; 14:1255667. [PMID: 38035117 PMCID: PMC10684670 DOI: 10.3389/fimmu.2023.1255667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
B7-H6 is a novel immune checkpoint molecule that triggers NK cell cytotoxicity, but the role of N-glycosylation in B7-H6 is poorly understood. We here identified the existence of N-glycosylation of B7-H6 in different cell lines and exogenous expression cells by PNGase F digestion and tunicamycin blockage. Subsequently, we demonstrated that B7-H6 contains 6 functional N-linked glycosylation sites by single site mutation and electrophoresis. Phylogenetical and structural analysis revealed that N43 and N208 glycan are conserved in jawed vertebrates and may thus contribute more to the biological functions. We further demonstrated that N43 and N208 glycosylation are essential for B7-H6 to trigger NK cell activation. Mechanistically, we found that N43 and N208 glycan contributed to the stability and membrane expression of B7-H6 protein. Lack of N208 glycosylation led to membrane B7-H6 shedding, while N43 mutation resulted in impaired B7-H6/NKp30 binding affinity. Together, our findings highlight the significance of N-linked glycosylation in B7-H6 biological functions and suggest potential targets for modulating NK cell-mediated immunity.
Collapse
Affiliation(s)
- Hanqing Chen
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hematology, the First affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Zhang
- Department of Respiratory and Critical Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Jiang
- Suzhou Red Cross Blood Center, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Xu
- Department of Hematology, the First affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fengqing Fu
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Tan G, Spillane KM, Maher J. The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer. BIOLOGY 2023; 12:1079. [PMID: 37626965 PMCID: PMC10452210 DOI: 10.3390/biology12081079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.
Collapse
Affiliation(s)
- Ge Tan
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | | | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
14
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Yu Y. The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers (Basel) 2023; 15:cancers15082323. [PMID: 37190251 DOI: 10.3390/cancers15082323] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic tumors cause the most deaths in cancer patients. Treating metastasis remains the primary goal of current cancer research. Although the immune system prevents and kills the tumor cells, the function of the immune system in metastatic cancer has been unappreciated for decades because tumors are able to develop complex signaling pathways to suppress immune responses, leading them to escape detection and elimination. Studies showed NK cell-based therapies have many advantages and promise for fighting metastatic cancers. We here review the function of the immune system in tumor progression, specifically focusing on the ability of NK cells in antimetastasis, how metastatic tumors escape the NK cell attack, as well as the recent development of effective antimetastatic immunotherapies.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Gutierrez-Silerio GY, Bueno-Topete MR, Vega-Magaña AN, Bastidas-Ramirez BE, Gutierrez-Franco J, Escarra-Senmarti M, Pedraza-Brindis EJ, Peña-Rodriguez M, Ramos-Marquez ME, Delgado-Rizo V, Banu N, Alejandre-Gonzalez AG, Fafutis-Morris M, Haramati J, Del Toro-Arreola S. Non-fitness status of peripheral NK cells defined by decreased NKp30 and perforin, and increased soluble B7H6, in cervical cancer patients. Immunology 2023; 168:538-553. [PMID: 36271832 DOI: 10.1111/imm.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The NKp30 receptor is one of the three natural cytotoxic receptors reported in NK cells. This receptor is codified by the NCR3 gene, which encodes three isoforms, a consequence of the alternative splicing of exon 4. A greater expression of the three isoforms (A, B, and C), along with low levels of the NKp30 ligand B7H6, has been reported as a positive prognostic factor in different cancer types. Here, in patients with cervical cancer and precursor lesions, we report an altered immune-phenotype, characterized by non-fitness markers, that correlated with increased disease stage, from CIN 1 to FIGO IV. While overall NK cell numbers increased, loss of NKp30+ NK cells, especially in the CD56dim subpopulation, was found. Perforin levels were decreased in these cells. Decreased expression of the NKp30 C isoform and overexpression of soluble B7H6 was found in cervical cancer patients when compared against healthy subjects. PBMCs from healthy subjects downregulated NKp30 isoforms after co-culture with B7H6-expressing tumour cells. Taken together, these findings describe a unique down-modulation or non-fitness status of the immune response in cervical cancer, the understanding of which will be important for the design of novel immunotherapies against this disease.
Collapse
Affiliation(s)
- Gloria Yareli Gutierrez-Silerio
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.,Laboratorio de Endocrinología y Nutrición, Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Alejandra Natali Vega-Magaña
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.,Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Blanca Estela Bastidas-Ramirez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Gutierrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Mexico
| | | | - Eliza Julia Pedraza-Brindis
- Departamento Academia de Aparatos y Sistemas I, Unidad Académica de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Guadalajara, Mexico
| | - Marcela Peña-Rodriguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Martha Eloisa Ramos-Marquez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Vidal Delgado-Rizo
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Nehla Banu
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.,Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Alan Guillermo Alejandre-Gonzalez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
17
|
Erbe AK, Diccianni MB, Mody R, Naranjo A, Zhang FF, Birstler J, Kim K, Feils AS, Hung JT, London WB, Shulkin BL, Mathew V, Parisi MT, Servaes S, Asgharzadeh S, Maris JM, Park J, Yu AL, Sondel PM, Bagatell R. KIR/KIR-ligand genotypes and clinical outcomes following chemoimmunotherapy in patients with relapsed or refractory neuroblastoma: a report from the Children's Oncology Group. J Immunother Cancer 2023; 11:e006530. [PMID: 36822669 PMCID: PMC9950969 DOI: 10.1136/jitc-2022-006530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND In the Children's Oncology Group ANBL1221 phase 2 trial for patients with first relapse/first declaration of refractory high-risk neuroblastoma, irinotecan and temozolomide (I/T) combined with either temsirolimus (TEMS) or immunotherapy (the anti-GD2 antibody dinutuximab (DIN) and granulocyte macrophage colony stimulating factory (GM-CSF)) was administered. The response rate among patients treated with I/T/DIN/GM-CSF in the initial cohort (n=17) was 53%; additional patients were enrolled to permit further evaluation of this chemoimmunotherapy regimen. Potential associations between immune-related biomarkers and clinical outcomes including response and survival were evaluated. METHODS Patients were evaluated for specific immunogenotypes that influence natural killer (NK) cell activity, including killer immunoglobulin-like receptors (KIRs) and their ligands, Fc gamma receptors, and NCR3. Total white cells and leucocyte subsets were assessed via complete blood counts, and flow cytometry of peripheral blood mononuclear cells was performed to assess the potential association between immune cell subpopulations and surface marker expression and clinical outcomes. Appropriate statistical tests of association were performed. The Bonferroni correction for multiple comparisons was performed where indicated. RESULTS Of the immunogenotypes assessed, the presence or absence of certain KIR and their ligands was associated with clinical outcomes in patients treated with chemoimmunotherapy rather than I/T/TEMS. While median values of CD161, CD56, and KIR differed in responders and non-responders, statistical significance was not maintained in logistic regression models. White cell and neutrophil counts were associated with differences in survival outcomes, however, increases in risk of event in patients assigned to chemoimmunotherapy were not clinically significant. CONCLUSIONS These findings are consistent with those of prior studies showing that KIR/KIR-ligand genotypes are associated with clinical outcomes following anti-GD2 immunotherapy in children with neuroblastoma. The current study confirms the importance of KIR/KIR-ligand genotype in the context of I/T/DIN/GM-CSF chemoimmunotherapy administered to patients with relapsed or refractory disease in a clinical trial. These results are important because this regimen is now widely used for treatment of patients at time of first relapse/first declaration of refractory disease. Efforts to assess the role of NK cells and genes that influence their function in response to immunotherapy are ongoing. TRIAL REGISTRATION NUMBER NCT01767194.
Collapse
Affiliation(s)
- Amy K Erbe
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Mitch B Diccianni
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Rajen Mody
- C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Michigan, USA
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, Florida, USA
| | - Fan F Zhang
- Children's Oncology Group Statistics and Data Center, Monrovia, California, USA
| | - Jen Birstler
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - Arika S Feils
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wendy B London
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Barry L Shulkin
- Departments of Diagnostic Imaging and Comprehensive Cancer Center, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Varsha Mathew
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Marguerite T Parisi
- Department of Pediatrics, Seattle Children's Hospital and the University, Seattle, Washington, USA
| | - Sabah Servaes
- Department of Pediatrics, The Children's Hospital, Philadelphia, Pennsylvania, USA
| | - Shahab Asgharzadeh
- Department Cancer and Blood Disease Institute, Childrens Hospital of Los Angeles, Los Angeles, California, USA
| | - John M Maris
- Department of Pediatrics, The Children's Hospital, Philadelphia, Pennsylvania, USA
| | - Julie Park
- Department of Pediatrics, Seattle Children's Hospital and the University, Seattle, Washington, USA
| | - Alice L Yu
- Department of Pediatrics, University of California, San Diego, California, USA
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Rochelle Bagatell
- Department of Pediatrics, The Children's Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Al Olabi R, Hendy AEA, Alkassab MB, Alnajm K, Elias M, Ibrahim M, Carlyle JR, Makrigiannis AP, Rahim MMA. The inhibitory NKR-P1B receptor regulates NK cell-mediated mammary tumor immunosurveillance in mice. Oncoimmunology 2023; 12:2168233. [PMID: 36704449 PMCID: PMC9872954 DOI: 10.1080/2162402x.2023.2168233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are an important component of anti-cancer immunity, and their activity is regulated by an array of activating and inhibitory receptors. In mice, the inhibitory NKR-P1B receptor is expressed in NK cells and recognizes the C-type lectin-related protein-b (Clr-b) ligand. NKR-P1B:Clr-b interactions represent a 'missing-self' recognition system to monitor cellular levels of Clr-b on healthy and diseased cells. Here, we report an important role for NKR-P1B:Clr-b interactions in tumor immunosurveillance in MMTV-PyVT mice, which develop spontaneous mammary tumors. MMTV-PyVT mice on NKR-P1B-deficient genetic background developed mammary tumors earlier than on wild-type (WT) background. A greater proportion of tumor-infiltrating NK cells downregulate expression of the transcription factor Eomesodermin (EOMES) in NKR-P1B-deficient mice compared to WT mice. Tumor-infiltrating NK cells also downregulated CD49b expression but gain CD49a expression and exhibit effector functions, such as granzyme B upregulation and proliferation in mammary tumors. However, unlike the EOMES+ NK cells, the EOMES‒ NK cell subset is unable to respond to further in vitro stimulation and exhibits phenotypic alterations associated with immune dysfunction. These alterations included increased expression of PD-1, LAG-3, and TIGIT and decreased expression of NKp46, Ly49C/I, CD11b, and KLRG-1. Furthermore, tumor-infiltrating NKR-P1B-deficient NK cells exhibited an elevated dysfunctional immune phenotype compared to WT NK cells. These findings demonstrate that the NKR-P1B receptor plays an important role in mammary tumor surveillance by regulating anti-cancer immune responses and functional homeostasis in NK cells.
Collapse
Affiliation(s)
- Raghd Al Olabi
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Abd El Aziz Hendy
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | | | - Karla Alnajm
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Manahel Elias
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Mary Ibrahim
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - James R. Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew P. Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mir Munir A Rahim
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada,CONTACT Mir Munir A Rahim Department of Biomedical Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
19
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
20
|
Abstract
Cancer is a leading cause of mortality worldwide, with around 10 million deaths every year. Despite huge advances due to immunotherapy, the majority of cancer patients present primary or secondary resistance to these treatments. In this Found in Translation, we focus on the approaches developed to harness the anti-tumor function of NK cells, suggesting promising strategies to complete the therapeutic arsenal of cancer immunotherapies.
Collapse
Affiliation(s)
- Laura Chiossone
- Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France
- Aix Marseille University, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'immunologie de Marseille-Luminy, Marseille, France
- Assistance Publique des Hôpitaux de Marseille, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| |
Collapse
|
21
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
22
|
Hintzen G, Dulat HJ, Rajkovic E. Engaging innate immunity for targeting the epidermal growth factor receptor: Therapeutic options leveraging innate immunity versus adaptive immunity versus inhibition of signaling. Front Oncol 2022; 12:892212. [PMID: 36185288 PMCID: PMC9518002 DOI: 10.3389/fonc.2022.892212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a key player in the normal tissue physiology and the pathology of cancer. Therapeutic approaches have now been developed to target oncogenic genetic aberrations of EGFR, found in a subset of tumors, and to take advantage of overexpression of EGFR in tumors. The development of small-molecule inhibitors and anti-EGFR antibodies targeting EGFR activation have resulted in effective but limited treatment options for patients with mutated or wild-type EGFR-expressing cancers, while therapeutic approaches that deploy effectors of the adaptive or innate immune system are still undergoing development. This review discusses EGFR-targeting therapies acting through distinct molecular mechanisms to destroy EGFR-expressing cancer cells. The focus is on the successes and limitations of therapies targeting the activation of EGFR versus those that exploit the cytotoxic T cells and innate immune cells to target EGFR-expressing cancer cells. Moreover, we discuss alternative approaches that may have the potential to overcome limitations of current therapies; in particular the innate cell engagers are discussed. Furthermore, this review highlights the potential to combine innate cell engagers with immunotherapies, to maximize their effectiveness, or with unspecific cell therapies, to convert them into tumor-specific agents.
Collapse
|
23
|
Gout DY, Groen LS, van Egmond M. The present and future of immunocytokines for cancer treatment. Cell Mol Life Sci 2022; 79:509. [PMID: 36066630 PMCID: PMC9448690 DOI: 10.1007/s00018-022-04514-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022]
Abstract
Monoclonal antibody (mAb) therapy has successfully been introduced as treatment of several lymphomas and leukemias. However, solid tumors reduce the efficacy of mAb therapy because of an immune-suppressive tumor micro-environment (TME), which hampers activation of effector immune cells. Pro-inflammatory cytokine therapy may counteract immune suppression in the TME and increase mAb efficacy, but untargeted pro-inflammatory cytokine therapy is limited by severe off-target toxicity and a short half-life of cytokines. Antibody-cytokine fusion proteins, also referred to as immunocytokines, provide a solution to either issue, as the antibody both acts as local delivery platform and increases half-life. The antibody can furthermore bridge local cytotoxic immune cells, like macrophages and natural killer cells with tumor cells, which can be eliminated after effector cells are activated via the cytokine. Currently, a variety of different antibody formats as well as a handful of cytokine payloads are used to generate immunocytokines. However, many potential formats and payloads are still left unexplored. In this review, we describe current antibody formats and cytokine moieties that are used for the development of immunocytokines, and highlight several immunocytokines in (pre-)clinical studies. Furthermore, potential future routes of development are proposed.
Collapse
Affiliation(s)
- Dennis Y Gout
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lotte S Groen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands.,LUMICKS, Paalbergweg 3, 1105 AG, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands. .,Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, The Netherlands. .,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands. .,Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Hingorani P, Krailo M, Buxton A, Hutson P, Sondel PM, Diccianni M, Yu A, Morris CD, Womer RB, Crompton B, Randall RL, Teot LA, DuBois SG, Janeway KA, Gorlick RG, Isakoff MS. Phase 2 study of anti-disialoganglioside antibody, dinutuximab, in combination with GM-CSF in patients with recurrent osteosarcoma: A report from the Children's Oncology Group. Eur J Cancer 2022; 172:264-275. [PMID: 35809374 PMCID: PMC9631806 DOI: 10.1016/j.ejca.2022.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Novel effective therapies are urgently needed in recurrent osteosarcoma. GD2 is expressed in human osteosarcoma tumours and cell lines. This study evaluated the disease control rate (DCR) in patients with recurrent osteosarcoma treated with the anti-GD2 antibody dinutuximab plus cytokine therapy as compared to historical outcomes. METHODS AOST1421 was a single-arm Phase 2 study for patients with recurrent pulmonary osteosarcoma in complete surgical remission. Patients received up to five cycles of dinutuximab (70 mg/m2/cycle) with granulocyte-macrophage colony-stimulating factor (GM-CSF). Two different dinutuximab infusion schedules were studied: 35 mg/m2/day over 20 h (2 days) and 17.5 mg/m2/day over 10 h (4 days). Primary end point was DCR, defined as a proportion of patients event free at 12 months from enrolment. The historical benchmark was 12-month DCR of 20% (95% CI 10-34%). Dinutuximab would be considered effective if ≥ 16/39 patients remained event free. Secondary objectives included toxicity evaluation and pharmacokinetics. RESULTS Thirty-nine eligible patients were included in the outcome analysis. Dinutuximab did not demonstrate evidence of efficacy as 11/39 patients remained event free for a DCR of 28.2% (95% CI 15-44.9%). One of 136 administered therapy cycles met criteria for unacceptable toxicity when a patient experienced sudden death of unknown cause. Other ≥ Grade 3 toxicities included pain, diarrhoea, hypoxia, and hypotension. Pharmacokinetic parameters were similar in the two schedules. CONCLUSIONS The combination of dinutuximab with GM-CSF did not significantly improve DCR in recurrent osteosarcoma. Dinutuximab toxicity and pharmacokinetics in adolescent and young adult osteosarcoma patients were similar to younger patients. Other strategies for targeting GD2 in osteosarcoma are being developed.
Collapse
Affiliation(s)
| | - Mark Krailo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Paul Hutson
- UW School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Paul M Sondel
- Pediatrics, Human Oncology and Genetics, University of Wisconsin, Madison, WI, USA
| | | | - Alice Yu
- University of California, San Diego, CA, USA
| | - Carol D Morris
- Johns Hopkins University/ Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Richard B Womer
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Crompton
- Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - R Lor Randall
- University of California Davis Comprehensive Cancer Center, San Diego, CA, USA
| | - Lisa A Teot
- Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Steven G DuBois
- Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Katherine A Janeway
- Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
25
|
Medjouel Khlifi H, Guia S, Vivier E, Narni-Mancinelli E. Role of the ITAM-Bearing Receptors Expressed by Natural Killer Cells in Cancer. Front Immunol 2022; 13:898745. [PMID: 35757695 PMCID: PMC9231431 DOI: 10.3389/fimmu.2022.898745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphoid cells (ILCs) capable of recognizing and directly killing tumor cells. They also secrete cytokines and chemokines, which participate in the shaping of the adaptive response. NK cells identify tumor cells and are activated through a net positive signal from inhibitory and activating receptors. Several activating NK cell receptors are coupled to adaptor molecules containing an immunoreceptor tyrosine-based activation motif (ITAM). These receptors include CD16 and the natural cytotoxic receptors NKp46, NKp44, NKp30 in humans. The powerful antitumor NK cell response triggered by these activating receptors has made them attractive targets for exploitation in immunotherapy. In this review, we will discuss the different activating receptors associated with ITAM-bearing cell surface receptors expressed on NK cells, their modulations in the tumor context and the various therapeutic tools developed to boost NK cell responses in cancer patients.
Collapse
Affiliation(s)
- Hakim Medjouel Khlifi
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Sophie Guia
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.,Innate Pharma Research Laboratories, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
26
|
Mohammadi A, Najafi S, Amini M, Mansoori B, Baghbanzadeh A, Hoheisel JD, Baradaran B. The potential of B7-H6 as a therapeutic target in cancer immunotherapy. Life Sci 2022; 304:120709. [PMID: 35697295 DOI: 10.1016/j.lfs.2022.120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022]
Abstract
Immune checkpoints are vital molecules that regulate T-cell function by activation or inhibition. Among the immune checkpoint molecules, the B7-family proteins are significantly involved in the immune escape of tumor cells. By binding to inhibitory receptors, they can suppress T-cell-mediated immunity. B7-family proteins are found at various stages of tumor microenvironment formation and promote tumorigenesis and tumor progression. B7-H6 (encoded by gene NCR3LG1) is a prominent member of the family. It has unique immunogenic properties and is involved in natural killer (NK) cell immunosurveillance by binding to the NKp30 receptor. High B7-H6 expression in certain tumor types and shortage of or low expression in healthy cells - except in cases of inflammatory or microbial stimulation - have made the protein an attractive target of research activities in recent years. The avoidance of NK-mediated B7-H6 detection is a mechanism through which tumor cells escape immune surveillance. The stimulation of tumorigenesis occurs by suppressing caspase cascade initiation and anti-apoptosis activity stimulation via the STAT3 pathway. The B7-H6-NKp30 complex on the tumor membrane activates the NK cells and releases both tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). B7-H6 is highly expressed in a wide range of tumor cells, including glioma, hematologic malignant tumors, and breast cancer cells. Clinical examination of cancer patients indicated that the expression of B7-H6 is related to distant metastasis status and permits postoperative prognosis. Because of its unique properties, B7-H6 has a high potential be utilized as a biological marker for cancer diagnosis and prognosis, as well as a target for novel treatment options.
Collapse
Affiliation(s)
- Alaleh Mohammadi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Targeted Therapy of B7 Family Checkpoints as an Innovative Approach to Overcome Cancer Therapy Resistance: A Review from Chemotherapy to Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113545. [PMID: 35684481 PMCID: PMC9182385 DOI: 10.3390/molecules27113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
It is estimated that there were 18.1 million cancer cases worldwide in 2018, with about 9 million deaths. Proper diagnosis of cancer is essential for its effective treatment because each type of cancer requires a specific treatment procedure. Cancer therapy includes one or more approaches such as surgery, radiotherapy, chemotherapy, and immunotherapy. In recent years, immunotherapy has received much attention and immune checkpoint molecules have been used to treat several cancers. These molecules are involved in regulating the activity of T lymphocytes. Accumulated evidence shows that targeting immune checkpoint regulators like PD-1/PD-L1 and CTLA-4 are significantly useful in treating cancers. According to studies, these molecules also have pivotal roles in the chemoresistance of cancer cells. Considering these findings, the combination of immunotherapy and chemotherapy can help to treat cancer with a more efficient approach. Among immune checkpoint molecules, the B7 family checkpoints have been studied in various cancer types such as breast cancer, myeloma, and lymphoma. In these cancers, they cause the cells to become resistant to the chemotherapeutic agents. Discovering the exact signaling pathways and selective targeting of these checkpoint molecules may provide a promising avenue to overcome cancer development and therapy resistance. Highlights: (1) The development of resistance to cancer chemotherapy or immunotherapy is the main obstacle to improving the outcome of these anti-cancer therapies. (2) Recent investigations have described the involvement of immune checkpoint molecules in the development of cancer therapy resistance. (3) In the present study, the molecular participation of the B7 immune checkpoint family in anticancer therapies has been highlighted. (4) Targeting these immune checkpoint molecules may be considered an efficient approach to overcoming this obstacle.
Collapse
|
28
|
Busà R, Bulati M, Badami E, Zito G, Maresca DC, Conaldi PG, Ercolano G, Ianaro A. Tissue-Resident Innate Immune Cell-Based Therapy: A Cornerstone of Immunotherapy Strategies for Cancer Treatment. Front Cell Dev Biol 2022; 10:907572. [PMID: 35757002 PMCID: PMC9221069 DOI: 10.3389/fcell.2022.907572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer immunotherapy has led to impressive advances in cancer treatment. Unfortunately, in a high percentage of patients is difficult to consistently restore immune responses to eradicate established tumors. It is well accepted that adaptive immune cells, such as B lymphocytes, CD4+ helper T lymphocytes, and CD8+ cytotoxic T-lymphocytes (CTLs), are the most effective cells able to eliminate tumors. However, it has been recently reported that innate immune cells, including natural killer cells (NK), dendritic cells (DC), macrophages, myeloid-derived suppressor cells (MDSCs), and innate lymphoid cells (ILCs), represent important contributors to modulating the tumor microenvironment and shaping the adaptive tumor response. In fact, their role as a bridge to adaptive immunity, make them an attractive therapeutic target for cancer treatment. Here, we provide a comprehensive overview of the pleiotropic role of tissue-resident innate immune cells in different tumor contexts. In addition, we discuss how current and future therapeutic approaches targeting innate immune cells sustain the adaptive immune system in order to improve the efficacy of current tumor immunotherapies.
Collapse
Affiliation(s)
- Rosalia Busà
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Matteo Bulati
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Ester Badami
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | - Giovanni Zito
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | | | - Pier Giulio Conaldi
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- *Correspondence: Giuseppe Ercolano,
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
Cancer evolution: special focus on the immune aspect of cancer. Semin Cancer Biol 2022; 86:420-435. [PMID: 35589072 DOI: 10.1016/j.semcancer.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Cancer is an evolutionary disease. Intra-tumor heterogeneity (ITH), which describes the diversity within individual tumors, sets the foundation for evolution. The fitness of tumor cells is determined by their microenvironment, which exerts intense selection pressure that generally favors cells with survival and proliferation advantages. It has been revealed that host immunity dramatically influences the evolutionary trajectory of cancer. As technologies advance, a refined map of the immune system's involvement in cancer evolution has gradually come to our knowledge. Here we specifically view cancer through the lens of evolutionary immunological biology. We will cover the neoplastic evolution under immunosurveillance, including how the host immunity shapes the tumor evolutionary trajectory and how progressive tumors modulate the host immunity to survive. A comprehensive understanding of the interplay between cancer evolution and cancer immunity provides clues to combating cancer strategically.
Collapse
|
30
|
Detection of Specific Immune Cell Subpopulation Changes Associated with Systemic Immune Inflammation–Index Level in Germ Cell Tumors. Life (Basel) 2022; 12:life12050678. [PMID: 35629346 PMCID: PMC9147028 DOI: 10.3390/life12050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
The tumor microenvironment (TME) and the host inflammatory response are closely interconnected. The interplay between systemic inflammation and the local immune response may influence tumor development and progression in various types of cancer. The systemic immune–inflammation index (SII) represents a prognostic marker for germ cell tumors (GCTs). The aim of the present study was to detect specific immune cell subpopulation changes which were associated with the SII level in chemotherapy-naïve GCT patients. In total, 51 GCT patients, prior to cisplatin-based chemotherapy, were included in the present study. Immunophenotyping of peripheral blood leukocyte subpopulations was performed using flow cytometry. The SII level was correlated with the percentage of various leukocyte subpopulations. The obtained results demonstrated that SII levels above the cut-off value of SII ≥ 1003 were associated with higher neutrophil percentages. An inverse correlation was found between the SII and the peripheral lymphocyte percentage that logically reflects the calculations of the SII index. Furthermore, the presented data also showed that in the lymphocyte subpopulation, the association with the SII was driven by T-cell subpopulations. In innate immunity–cell subpopulations, we observed a correlation between SII level and neutrophils as well as associations with eosinophil, basophil, natural killer cell and dendritic cell percentages. We suppose that the described interactions represent a manifestation of cancer-induced immune suppression. The results of the present study contribute to the elucidation of the interrelationship between tumor cells and the innate/adaptive immune system of the host.
Collapse
|
31
|
Xue JS, Ding ZN, Meng GX, Yan LJ, Liu H, Li HC, Yao SY, Tian BW, Dong ZR, Chen ZQ, Hong JG, Wang DX, Li T. The Prognostic Value of Natural Killer Cells and Their Receptors/Ligands in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:872353. [PMID: 35464489 PMCID: PMC9021421 DOI: 10.3389/fimmu.2022.872353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Natural killer (NK) cells play major roles in eliminating tumor cells. Preliminary studies have shown that NK cells and their receptors/ligands have prognostic value in malignant tumors. However, the relevance of NK cells and their receptors/ligands level to the prognosis of hepatocellular carcinoma (HCC) remains unclear. Methods Several electronic databases were searched from database inception to November 8, 2021. Random effects were introduced to this meta-analysis. The relevance of NK cells and their receptors/ligands level to the prognosis of HCC was evaluated using hazard ratios (HRs) with 95% confidence interval (95%CI). Results 26 studies were included in the analysis. The pooled results showed that high NK cells levels were associated with better overall survival (HR=0.70, 95%CI 0.57–0.86, P=0.001) and disease-free survival (HR=0.61, 95%CI 0.40-0.93, P=0.022) of HCC patients. In subgroup analysis for overall survival, CD57+ NK cells (HR=0.70, 95%CI 0.55-0.89, P=0.004) had better prognostic value over CD56+ NK cells (HR=0.69, 95%CI 0.38-1.25, P=0.224), and intratumor NK cells had better prognostic value (HR=0.71, 95%CI 0.55-0.90, P=0.005) over peripheral NK cells (HR=0.66, 95%CI 0.41-1.06, P=0.088). In addition, high level of NK cell inhibitory receptors predicted increased recurrence of HCC, while the prognostic role of NK cell activating receptors remained unclear. Conclusion NK cells and their inhibitory receptors have prognostic value for HCC. The prognostic role of NK cell activating receptors is unclear and more high-quality prospective studies are essential to evaluate the prognostic value of NK cells and their receptors/ligands for HCC.
Collapse
Affiliation(s)
- Jun-Shuai Xue
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Sheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.,Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
32
|
Mylod E, McKenna E, Davern M, Barr MP, Donlon NE, Bibby BAS, Bhardwaj A, Reynolds JV, Lysaght J, Maher SG, Conroy MJ. Investigating the susceptibility of treatment-resistant oesophageal tumours to natural killer cell-mediated responses. Clin Exp Med 2022; 23:411-425. [PMID: 35364779 DOI: 10.1007/s10238-022-00811-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
The majority of oesophageal adenocarcinoma (OAC) patients do not respond to multimodal treatment regimens and face dismal survival rates. Natural killer (NK) cells are crucial anti-tumour immune cells, and this study investigated the susceptibility of treatment-resistant OAC cells to these potent tumour killers. Natural killer receptor (NKR) ligand expression by OE33CisP (cisplatin-sensitive) and OE33CisR (cisplatin-resistant) cells was investigated. The immunomodulatory effects of OE33CisP and OE33CisR cells on NK cell phenotype and function were assessed. Finally, the impact of chemotherapy regimens on NKR ligand shedding was examined. Our data revealed significantly less surface expression of activating ligands B7-H6, MICA/B, ULBP-3 and activating/inhibitory ligands PVRL-1 and PVRL-4 by OE33CisR cells, compared to OE33CisP cells. Co-culture with OE33CisR cells reduced the frequencies of NKp30+ and NKp46+ NK cells and increased frequencies of TIGIT+, FasL+ and TRAIL+ NK cells. Frequencies of IFN-γ-producing NK cells increased while frequencies of TIM-3+ NK cells decreased after culture with OE33CisP and OE33CisR cells. Frequencies of circulating NKp30+ NK cells were significantly lower in OAC patients with the poorest treatment response and in patients who received FLOT chemotherapy, while B7-H6 shedding by OAC tumour cells was induced by FLOT. Overall, OE33CisR cells express less activating NKR ligands than OE33CisP cells and have differential effects on NKR expression by NK cells. However, neither cell line significantly dampened NK cell cytokine production, death receptor expression or degranulation. In addition, our data indicate that FLOT chemotherapy may promote B7-H6 shedding and immune evasion with detrimental consequences in OAC patients.
Collapse
Affiliation(s)
- Eimear Mylod
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Ellen McKenna
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Maria Davern
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Martin P Barr
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Noel E Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Becky A S Bibby
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, UK
| | - Anshul Bhardwaj
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
- National Oesophageal and Gastric Centre, St. James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Stephen G Maher
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Melissa J Conroy
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
33
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
34
|
Zhu Z, Teng KY, Zhou J, Xu Y, Zhang L, Zhao H, Zhang X, Tian L, Li Z, Lu T, Ma S, Li Z, Dai Z, Wang J, Chen X, Wu X, Pan Y, Shi W, You Z, Chen H, Chung V, Yu J, He S, Zhao X, Cao L, Li D. B7H6 Serves as a Negative Prognostic Marker and an Immune Modulator in Human Pancreatic Cancer. Front Oncol 2022; 12:814312. [PMID: 35311080 PMCID: PMC8929685 DOI: 10.3389/fonc.2022.814312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer (PC), the third leading cause of cancer-related death in the U.S., is frequently found too late to be cured by traditional chemotherapy. Expression of B7 homolog 6 (B7H6), a member of the B7 family of immunoreceptors, has been found in PC and several other cancers. B7H6 is a ligand for cytotoxicity triggering receptor 3 (NKp30), which is expressed on NK cells. Here, we demonstrate that B7H6 can be detected in PC tissues but not normal organs. Its expression in patients associated significantly with tumor differentiation grade and lymphatic metastasis. The soluble form of B7H6 was detected in the PC patients’ sera, and its concentration associated with tumor differentiation grade and tumor, node, metastasis (TNM) stages. Also, higher levels of B7H6 in PC patients’ malignant tissues or serum correlated with shorter overall survival. In vitro, downregulation of B7H6 by CRISPR/Cas9 or siRNA technology had no significant impact on the viability or mobility of PC cells. Instead, knocking out B7H6 sensitized PC cells to NK-mediated cytotoxicity and cytokine production. These results indicate that B7H6 not only serves as a negative prognostic marker but also acts as an immune modulator in PC.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunyun Xu
- Pediatric Clinical Research Institute, Children's Hospital Affiliated to Soochow University, Suzhou, China
| | - Lifeng Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Zhiyao Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Zhenyu Dai
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Jing Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Xingyu Chen
- Department of General Surgery, Taizhou Fourth People's Hospital, Taizhou, China
| | - Xing Wu
- Department of General Surgery, The First People's Hospital of Huzhou, Huzhou, China
| | - Yihan Pan
- College of Liberal Arts, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Weiqiang Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiqun You
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hanyu Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Vincent Chung
- Department of Medical Oncology, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Cao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
35
|
Zheng G, Han T, Hu X, Yang Z, Wang J, Wen Z, Li H, Wang H. NCAPG Promotes Tumor Progression and Modulates Immune Cell Infiltration in Glioma. Front Oncol 2022; 12:770628. [PMID: 35372056 PMCID: PMC8964493 DOI: 10.3389/fonc.2022.770628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Glioma is one of the most deadly types of brain cancer. As it is highly invasive, the prognosis for glioma patients remains dismal, with median survival rarely exceeding 16 months. Thus, developing a new prognostic biomarker for glioma and investigating its molecular mechanisms is necessary for the development of an efficient treatment strategy. In this study, we analyzed a cohort of 1,131 glioma patients using RNA-seq data from The Cancer Genome Atlas (TCGA project) and Gene Expression Omnibus (GSE4290 and GSE16011 datasets), and validated the results using the RNA-seq data of 1,018 gliomas from the Chinese Glioma Genome Atlas (CGGA project). We used the R language as the main tool for statistical analysis and data visualization. We found that NCAPG, a mitosis-associated chromosomal condensing protein, is highly expressed in glioma tissues. Furthermore, the expression of NCAPG increased significantly with the increase in tumor grade, and high NCAPG expression was found to be a predictor of poor overall survival in glioma patients (P < 0.001). This result shows that NCAPG expression could be an independent prognostic factor. Importantly, when the expression of NCAPG was knocked down, the CCK-8 assay revealed that the proliferation of glioma cells (LN-229 and T98G cell lines) decreased significantly compared with the control group. In addition, the healing rates of these cells were significantly lower in the si-NCAPG group than in the control group (P < 0.001). We then used the CIBERSORT algorithm to analyze the expression levels of 22 subpopulations of immune cells and found that NCAPG was significantly negatively correlated with natural killer cell activation. In addition, it was positively correlated with MHC-I molecules and ADAM17. Our study is first in comprehensively describing the high expression of NCAPG in glioma. It also shows that NCAPG can function as an independent prognostic predictor of glioma, and that targeting NCAPG can be a new strategy for the treatment of glioma patients.
Collapse
Affiliation(s)
- Guangrong Zheng
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaomu Hu
- Department of Pathology, Huashan Hospital, FuDan University, Shanghai, China
| | - Zhou Yang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jin Wang
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zhenyi Wen
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hongjin Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Sezgin G, Görüroğlu Öztürk Ö, Özkan A, Küpeli S, Bayram İ. Clinical Impact of KIR2DS3 and KIR2DL3 Genes in Neuroblastoma Patients. Med Princ Pract 2022; 31:532-539. [PMID: 35537400 PMCID: PMC9841757 DOI: 10.1159/000524656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/09/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Neuroblastoma is a common fatal tumor of childhood. Natural killer (NK) cells can exert direct cytotoxicity on tumor cells. The killer immunoglobulin-like receptor (KIR) family of NK cell receptors is involved in activation/inhibition of NK cells. In the KIR gene cluster, six of them (3DS1, 2DS1-5) encode receptors triggering activation, while seven of them (3DL1-3, 2DL1-3, 2DL5) encode receptors triggering inhibition. We aimed to assess the distribution of genetic polymorphisms of KIRs on the clinical course of neuroblastoma and provide guidance on potential therapeutic options. METHODS Our study group included 50 neuroblastoma patients and 100 healthy children as controls. Twenty-eight patients were boys, and twenty-two were girls; median age was 36 months. Fourteen patients had stage 1, 2, 3, or 4S disease, and 36 patients had stage 4 disease. Isolated DNA from the peripheral blood was amplified for sequence-specific oligonucleotide probe analysis of 16 KIR genes. The Fisher's exact test was used to evaluate the variation of KIR gene distribution. RESULTS All patients had a lower frequency of KIR2DS3 compared to the control group (p = 0.005). Evaluation of individual KIR genes/genotypes in patients with early stages (stage 1, 2, 3, and 4S) versus stage 4 disease revealed that the frequency of KIR2DS3 was increased in early stages (p = 0.023). Inhibitory KIR2DL3 was increased in the patient group compared to controls (p = 0.038). Furthermore, the frequency of KIR2DL3 was higher in stage 4 neuroblastoma patients compared to the patients with early stages (p = 0.023). CONCLUSION Our data suggest a role for KIR2DS3 and KIR2DL3 in development of neuroblastoma. Thus, modulation of KIR2SD3 and/or KIR2DL3 expression or function might present a novel therapeutic strategy for neuroblastoma.
Collapse
Affiliation(s)
- Gülay Sezgin
- Division of Pediatric Oncology/Pediatric BMT Unit, Çukurova University Medical School, Adana, Turkey
- *Gülay Sezgin,
| | | | - Ayşe Özkan
- Division of Pediatric Oncology/Pediatric BMT Unit, Çukurova University Medical School, Adana, Turkey
| | - Serhan Küpeli
- Division of Pediatric Oncology/Pediatric BMT Unit, Çukurova University Medical School, Adana, Turkey
| | - İbrahim Bayram
- Division of Pediatric Oncology/Pediatric BMT Unit, Çukurova University Medical School, Adana, Turkey
| |
Collapse
|
37
|
Velichinskii RA, Streltsova MA, Kust SA, Sapozhnikov AM, Kovalenko EI. The Biological Role and Therapeutic Potential of NK Cells in Hematological and Solid Tumors. Int J Mol Sci 2021; 22:ijms222111385. [PMID: 34768814 PMCID: PMC8584101 DOI: 10.3390/ijms222111385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
NK cells are an attractive target for cancer immunotherapy due to their potent antitumor activity. The main advantage of using NK cells as cytotoxic effectors over T cells is a reduced risk of graft versus host disease. At present, several variants of NK-cell-based therapies are undergoing clinical trials and show considerable effectiveness for hematological tumors. In these types of cancers, the immune cells themselves often undergo malignant transformation, which determines the features of the disease. In contrast, the current use of NK cells as therapeutic agents for the treatment of solid tumors is much less promising. Most studies are at the stage of preclinical investigation, but few progress to clinical trials. Low efficiency of NK cell migration and functional activity in the tumor environment are currently considered the major barriers to NK cell anti-tumor therapies. Various therapeutic combinations, genetic engineering methods, alternative sources for obtaining NK cells, and other techniques are aiming at the development of promising NK cell anticancer therapies, regardless of tumorigenesis. In this review, we compare the role of NK cells in the pathogenesis of hematological and solid tumors and discuss current prospects of NK-cell-based therapy for hematological and solid tumors.
Collapse
|
38
|
Schoenberg MB, Li X, Li X, Han Y, Börner N, Koch D, Guba MO, Werner J, Bazhin AV. The interactions between major immune effector cells and Hepatocellular Carcinoma: A systematic review. Int Immunopharmacol 2021; 101:108220. [PMID: 34673334 DOI: 10.1016/j.intimp.2021.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common liver neoplasm with high morbidity and mortality. Tumor immunotherapy might be promising adjuvant therapy for HCC after surgery. To better develop HCC immunotherapy, comprehensive understanding of cell-cell interactions between immune effector cells and HCC cells remains crucial. AIM To review the existing studies to summarize the cell-cell interactions between major immune effector cells and HCC cells providing new data for HCC immunotherapy. METHODS A systematic review was conducted by searching PubMed database covering all papers published in recent five years up to January 2020. The guidelines of the preferred reporting items for systematic reviews were firmly followed. RESULTS There are 9 studies researching the interactions between CD8+ T lymphocytes and HCC cells and 22 studies researching that between natural killer (NK) cells and HCC cells. Among the 9 studies, 6 studies reported that CD8+ T lymphocytes showed cytotoxicity towards HCC cells while 3 studies found CD8+ T lymphocytes were impaired by HCC cells. Among the 22 studies, 20 studies presented that NK cells could inhibit HCC cells. Two studies were found to report NK cell dysfunction in HCC. CONCLUSION Based on the systematic analysis, we concluded that CD8+ T lymphocytes and NK cells can inhibit HCC cells. While in turn, HCC cells can also result in the dysfunction of those effector cells through various mechanisms. Organoids and direct contact cell co-culture with primary HCC cells and TILs should be the most innovative way to investigate the interactions and develop novel immunotherapy.
Collapse
Affiliation(s)
- Markus Bo Schoenberg
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Xiaokang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Dermatology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinyu Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yongsheng Han
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dominik Koch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Otto Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; Transplantation Center Munich, Hospital of the LMU, Campus Grosshadern, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
39
|
Roma S, Carpen L, Raveane A, Bertolini F. The Dual Role of Innate Lymphoid and Natural Killer Cells in Cancer. from Phenotype to Single-Cell Transcriptomics, Functions and Clinical Uses. Cancers (Basel) 2021; 13:cancers13205042. [PMID: 34680190 PMCID: PMC8533946 DOI: 10.3390/cancers13205042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs), a family of innate immune cells including natural killers (NKs), play a multitude of roles in first-line cancer control, in escape from immunity and in cancer progression. In this review, we summarize preclinical and clinical data on ILCs and NK cells concerning their phenotype, function and clinical applications in cellular therapy trials. We also describe how single-cell transcriptome sequencing has been used and forecast how it will be used to better understand ILC and NK involvement in cancer control and progression as well as their therapeutic potential. Abstract The role of innate lymphoid cells (ILCs), including natural killer (NK) cells, is pivotal in inflammatory modulation and cancer. Natural killer cell activity and count have been demonstrated to be regulated by the expression of activating and inhibitory receptors together with and as a consequence of different stimuli. The great majority of NK cell populations have an anti-tumor activity due to their cytotoxicity, and for this reason have been used for cellular therapies in cancer patients. On the other hand, the recently classified helper ILCs are fundamentally involved in inflammation and they can be either helpful or harmful in cancer development and progression. Tissue niche seems to play an important role in modulating ILC function and conversion, as observed at the transcriptional level. In the past, these cell populations have been classified by the presence of specific cellular receptor markers; more recently, due to the advent of single-cell RNA sequencing (scRNA-seq), it has been possible to also explore them at the transcriptomic level. In this article we review studies on ILC (and NK cell) classification, function and their involvement in cancer. We also summarize the potential application of NK cells in cancer therapy and give an overview of the most recent studies involving ILCs and NKs at scRNA-seq, focusing on cancer. Finally, we provide a resource for those who wish to start single-cell transcriptomic analysis on the context of these innate lymphoid cell populations.
Collapse
|
40
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
41
|
Yao Y, Fu C, Zhou L, Mi QS, Jiang A. DC-Derived Exosomes for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13153667. [PMID: 34359569 PMCID: PMC8345209 DOI: 10.3390/cancers13153667] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022] Open
Abstract
As the initiators of adaptive immune responses, DCs play a central role in regulating the balance between CD8 T cell immunity versus tolerance to tumor antigens. Exploiting their function to potentiate host anti-tumor immunity, DC-based vaccines have been one of most promising and widely used cancer immunotherapies. However, DC-based cancer vaccines have not achieved the promised success in clinical trials, with one of the major obstacles being tumor-mediated immunosuppression. A recent discovery on the critical role of type 1 conventional DCs (cDC1s) play in cross-priming tumor-specific CD8 T cells and determining the anti-tumor efficacy of cancer immunotherapies, however, has highlighted the need to further develop and refine DC-based vaccines either as monotherapies or in combination with other therapies. DC-derived exosomes (DCexos) have been heralded as a promising alternative to DC-based vaccines, as DCexos are more resistance to tumor-mediated suppression and DCexo vaccines have exhibited better anti-tumor efficacy in pre-clinical animal models. However, DCexo vaccines have only achieved limited clinical efficacy and failed to induce tumor-specific T cell responses in clinical trials. The lack of clinical efficacy might be partly due to the fact that all current clinical trials used peptide-loaded DCexos from monocyte-derived DCs. In this review, we will focus on the perspective of expanding current DCexo research to move DCexo cancer vaccines forward clinically to realize their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Yao
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
- Correspondence: (Q.-S.M.); (A.J.); Tel.: +313-876-1017 (Q.-S.M.); +313-876-7292 (A.J.)
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
- Correspondence: (Q.-S.M.); (A.J.); Tel.: +313-876-1017 (Q.-S.M.); +313-876-7292 (A.J.)
| |
Collapse
|
42
|
Liu X, Guo R, Xu Y. B7-H6 as a Diagnostic Biomarker for Cervical Squamous Cell Carcinoma. Genet Test Mol Biomarkers 2021; 25:463-470. [PMID: 34280008 DOI: 10.1089/gtmb.2020.0313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: B7-H6, a newly discovered member of the immunoglobulin superfamily, exerts antitumor effects by binding to NKP30 receptor on natural killer cells; it has important clinical implications. Cell surface ectodomain shedding of B7-H6 generates soluble B7-H6 (sB7-H6), which is highly expressed and serves as a valuable biomarker in multiple tumors, but the clinical significance and diagnostic value of B7-H6 in cervical squamous cell carcinoma (CSCC) remains unclear. Objective: To assess the expression and diagnostic value of B7-H6 in CSCC. Methods: In this study, 69 cervical specimens were analyzed for B7-H6 expression: 25 paired CSCC tissues were examined using quantitative real-time polymerase chain reaction, and 24 paraffin-embedded CSCC tissues and 20 normal tissues were analyzed immunohistochemically. Furthermore, plasma samples from 30 CSCC patients and 24 healthy controls were examined using ELISA. Results: B7-H6 mRNA and protein levels were significantly higher in CSCC tissues than in adjacent normal cervical tissues (p < 0.05). Immunohistochemical analysis revealed that high B7-H6 expression correlated with stromal invasion (p = 0.043), lymphovascular space involvement (p = 0.005), lymph node metastasis (p = 0.019), and International Federation of Gynecology and Obstetrics (FIGO) stage (p = 0.002). Moreover, ELISA results demonstrated that the sB7-H6 concentration in peripheral blood was higher in CSCC patients than in healthy controls (p < 0.0001). Notably, at the optimal cutoff point of 0.076 ng/mL, sB7-H6 showed 93.3% sensitivity and 62.5% specificity in the discrimination of CSCC patients from healthy controls. Conclusions: B7-H6 mRNA and protein levels are markedly increased in CSCC tissues and peripheral blood samples, and the B7-H6 level can be used as a biomarker for predicting the severity of CSCC disease and discriminating CSCC patients from healthy controls.
Collapse
Affiliation(s)
- Xuejing Liu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ruimeng Guo
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
43
|
Abstract
Immunotherapy has revolutionized cancer treatment, but efficacy remains limited in most clinical settings. Cancer is a systemic disease that induces many functional and compositional changes to the immune system as a whole. Immunity is regulated by interactions of diverse cell lineages across tissues. Therefore, an improved understanding of tumour immunology must assess the systemic immune landscape beyond the tumour microenvironment (TME). Importantly, the peripheral immune system is required to drive effective natural and therapeutically induced antitumour immune responses. In fact, emerging evidence suggests that immunotherapy drives new immune responses rather than the reinvigoration of pre-existing immune responses. However, new immune responses in individuals burdened with tumours are compromised even beyond the TME. Herein, we aim to comprehensively outline the current knowledge of systemic immunity in cancer.
Collapse
Affiliation(s)
- Kamir J Hiam-Galvez
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Breanna M Allen
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Matthew H Spitzer
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
44
|
Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors. Int J Mol Sci 2021; 22:ijms22115736. [PMID: 34072260 PMCID: PMC8199456 DOI: 10.3390/ijms22115736] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
The understanding of the tumor microenvironment (TME) has been expanding in recent years in the context of interactions among different cell types, through direct cell–cell communication as well as through soluble factors. It has become evident that the development of a successful antitumor response depends on several TME factors. In this context, the number, type, and subsets of immune cells, as well as the functionality, memory, and exhaustion state of leukocytes are key factors of the TME. Both the presence and functionality of immune cells, in particular T cells, are regulated by cellular and soluble factors of the TME. In this regard, one fundamental reason for failure of antitumor responses is hijacked immune cells, which contribute to the immunosuppressive TME in multiple ways. Specifically, reactive oxygen species (ROS), metabolites, and anti-inflammatory cytokines have central roles in generating an immunosuppressive TME. In this review, we focused on recent developments in the immune cell constituents of the TME, and the micromilieu control of antitumor responses. Furthermore, we highlighted the current challenges of T cell-based immunotherapies and potential future strategies to consider for strengthening their effectiveness.
Collapse
|
45
|
Liu Z, Chen X, Roberts R, Huang R, Mikailov M, Tong W. Unraveling Gene Fusions for Drug Repositioning in High-Risk Neuroblastoma. Front Pharmacol 2021; 12:608778. [PMID: 33967751 PMCID: PMC8105087 DOI: 10.3389/fphar.2021.608778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
High-risk neuroblastoma (NB) remains a significant therapeutic challenge facing current pediatric oncology patients. Structural variants such as gene fusions have shown an initial promise in enhancing mechanistic understanding of NB and improving survival rates. In this study, we performed a comprehensive in silico investigation on the translational ability of gene fusions for patient stratification and treatment development for high-risk NB patients. Specifically, three state-of-the-art gene fusion detection algorithms, including ChimeraScan, SOAPfuse, and TopHat-Fusion, were employed to identify the fusion transcripts in a RNA-seq data set of 498 neuroblastoma patients. Then, the 176 high-risk patients were further stratified into four different subgroups based on gene fusion profiles. Furthermore, Kaplan-Meier survival analysis was performed, and differentially expressed genes (DEGs) for the redefined high-risk group were extracted and functionally analyzed. Finally, repositioning candidates were enriched in each patient subgroup with drug transcriptomic profiles from the LINCS L1000 Connectivity Map. We found the number of identified gene fusions was increased from clinical the low-risk stage to the high-risk stage. Although the technical concordance of fusion detection algorithms was suboptimal, they have a similar biological relevance concerning perturbed pathways and regulated DEGs. The gene fusion profiles could be utilized to redefine high-risk patient subgroups with significant onset age of NB, which yielded the improved survival curves (Log-rank p value ≤ 0.05). Out of 48 enriched repositioning candidates, 45 (93.8%) have antitumor potency, and 24 (50%) were confirmed with either on-going clinical trials or literature reports. The gene fusion profiles have a discrimination power for redefining patient subgroups in high-risk NB and facilitate precision medicine-based drug repositioning implementation.
Collapse
Affiliation(s)
- Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Xi Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Ruth Roberts
- ApconiX, BioHub at Alderley Park, Alderley Edge, United Kingdom.,University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Mike Mikailov
- Office of Science and Engineering Labs, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
46
|
Thomas PL, Groves SM, Zhang YK, Li J, Gonzalez-Ericsson P, Sivagnanam S, Betts CB, Chen HC, Liu Q, Lowe C, Chen H, Boyd KL, Kopparapu PR, Yan Y, Coussens LM, Quaranta V, Tyson DR, Iams W, Lovly CM. Beyond Programmed Death-Ligand 1: B7-H6 Emerges as a Potential Immunotherapy Target in SCLC. J Thorac Oncol 2021; 16:1211-1223. [PMID: 33839362 DOI: 10.1016/j.jtho.2021.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors, atezolizumab and durvalumab, have received regulatory approval for the first-line treatment of patients with extensive-stage SCLC. Nevertheless, when used in combination with platinum-based chemotherapy, these PD-L1 inhibitors only improve overall survival by 2 to 3 months. This may be due to the observation that less than 20% of SCLC tumors express PD-L1 at greater than 1%. Evaluating the composition and abundance of checkpoint molecules in SCLC may identify molecules beyond PD-L1 that are amenable to therapeutic targeting. METHODS We analyzed RNA-sequencing data from SCLC cell lines (n = 108) and primary tumor specimens (n = 81) for expression of 39 functionally validated inhibitory checkpoint ligands. Furthermore, we generated tissue microarrays containing SCLC cell lines and patient with SCLC specimens to confirm expression of these molecules by immunohistochemistry. We annotated patient outcomes data, including treatment response and overall survival. RESULTS The checkpoint protein B7-H6 (NCR3LG1) exhibited increased protein expression relative to PD-L1 in cell lines and tumors (p < 0.05). Higher B7-H6 protein expression correlated with longer progression-free survival (p = 0.0368) and increased total immune infiltrates (CD45+) in patients. Furthermore, increased B7-H6 gene expression in SCLC tumors correlated with a decreased activated natural killer cell gene signature, suggesting a complex interplay between B7-H6 expression and immune signature in SCLC. CONCLUSIONS We investigated 39 inhibitory checkpoint molecules in SCLC and found that B7-H6 is highly expressed and associated with progression-free survival. In addition, 26 of 39 immune checkpoint proteins in SCLC tumors were more abundantly expressed than PD-L1, indicating an urgent need to investigate additional checkpoint targets for therapy in addition to PD-L1.
Collapse
Affiliation(s)
- Portia L Thomas
- Department of Microbiology, Immunology & Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee; School of Graduate Studies & Research, Meharry Medical College, Nashville, Tennessee
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Yun-Kai Zhang
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jia Li
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula Gonzalez-Ericsson
- Breast Cancer Research Program, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Shamilene Sivagnanam
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Courtney B Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cindy Lowe
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelli L Boyd
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Prasad R Kopparapu
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yingjun Yan
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Darren R Tyson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Wade Iams
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Lovly
- School of Graduate Studies & Research, Meharry Medical College, Nashville, Tennessee; Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
47
|
Lee GH, An HJ, Kim TH, Kim G, Park KS, Park H, Lee TH, Kwon AY. Clinical Impact of Natural Killer Group 2D Receptor Expression and That of Its Ligand in Ovarian Carcinomas: A Retrospective Study. Yonsei Med J 2021; 62:288-297. [PMID: 33779082 PMCID: PMC8007423 DOI: 10.3349/ymj.2021.62.4.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Natural killer (NK) cells are innate immune cells with antitumor activity. NKG2D is the most important activating receptor expressed on the NK cell surface; this receptor binds to the ligands MICA/B and ULBPs to activate NK cells. The current study aimed to evaluate the expression of NKG2D by NK cells, and to the evaluate expression of its ligands in ovarian carcinomas; it also examined the clinical relevance of NK receptor/ligand expression by analyzing the relationship between expression, clinicopathological parameters, and prognosis. MATERIALS AND METHODS Formalin-fixed paraffin-embedded archival ovarian high-grade serous carcinoma (HGSC, n=79) tissue samples were used for tissue microarray analysis. The expressions of NK cell markers (CD56 and NKG2D) and NKG2D ligands (MICA/B, ULBP1, ULBP3, and ULBP2/5/6) in carcinoma tissues were evaluated by immunohistochemical staining, and the association between these results and clinical prognostic parameters was analyzed statistically. RESULTS ULBP1 was highly expressed in 51 cases (64.6%), and ULBP2/5/6 was highly expressed in 56 cases (70.9%) of HGSC. High expression of ULBP1 and ULBP2/5/6 was significantly associated with lower recurrence of HGSC, whereas high expression of ULBP3 was significantly associated with higher recurrence. Multivariate Cox regression analysis revealed that high expression of ULBP1 was associated with increased overall survival and a decreased hazard ratio (0.150, p=0.044), suggesting that it is an independent predictor of better survival. CONCLUSION High expression of ULBP1 predicts a better prognosis for HGSC, suggesting that ULBP1 expression could be a novel prognostic indicator in this subset of carcinomas.
Collapse
Affiliation(s)
- Gee Hoon Lee
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Korea
| | - Hee Jung An
- Institute for Clinical Research, CHA University School of Medicine, Seongnam, Korea
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Tae Hoen Kim
- Institute for Clinical Research, CHA University School of Medicine, Seongnam, Korea
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Gwangil Kim
- Institute for Clinical Research, CHA University School of Medicine, Seongnam, Korea
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Kyung Soon Park
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Korea
| | - Hyun Park
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Tae Ho Lee
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Korea
| | - Ah Young Kwon
- Institute for Clinical Research, CHA University School of Medicine, Seongnam, Korea
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| |
Collapse
|
48
|
Dondero A, Morini M, Cangelosi D, Mazzocco K, Serra M, Spaggiari GM, Rotta G, Tondo A, Locatelli F, Castellano A, Scuderi F, Sementa AR, Eva A, Conte M, Garaventa A, Bottino C, Castriconi R. Multiparametric flow cytometry highlights B7-H3 as a novel diagnostic/therapeutic target in GD2neg/low neuroblastoma variants. J Immunother Cancer 2021; 9:jitc-2020-002293. [PMID: 33795387 PMCID: PMC8021887 DOI: 10.1136/jitc-2020-002293] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background High-risk neuroblastomas (HR-NBs) are rare, aggressive pediatric cancers characterized by resistance to therapy and relapse in more than 30% of cases, despite using an aggressive therapeutic protocol including targeting of GD2. The mechanisms responsible for therapy resistance are unclear and might include the presence of GD2neg/low NB variants and/or the expression of immune checkpoint ligands such as B7-H3. Method Here, we describe a multiparametric flow cytometry (MFC) combining the acquisition of 106 nucleated singlets, Syto16pos CD45neg CD56pos cells, and the analysis of GD2 and B7-H3 surface expression. 41 bone marrow (BM) aspirates from 25 patients with NB, at the onset or relapse, are analyzed, comparing results with cytomorphological analysis (CA) and/or immunohistochemistry (IHC). Spike in experiments assesses the sensitivity of MFC. Kaplan-Meier analysis on 498 primary NBs selects novel prognostic markers possibly integrating the MFC panel. Results No false positive are detected, and MFC shows high sensitivity (0.0005%). Optimized MFC identifies CD45negCD56pos NB cells in 11 out of 12 (91.6%) of BM indicated as infiltrated by CA, 7 of which coexpress high levels of GD2 and B7-H3. MFC detects CD45negCD56posGD2neg/low NB variants expressing high surface levels of B7-H3 in two patients with HR-NB (stage M) diagnosed at 53 and 139 months of age. One of them has a non-MYCN amplified tumor with unusual THpos PHOX2Bneg phenotype, which relapsed 141 months post-diagnosis with BM infiltration and a humerus lesion. All GD2neg/low NB variants are detected in patients at relapse. Kaplan-Meier analysis highlights an interesting dichotomous prognostic value of MML5, ULBPs, PVR, B7-H6, and CD47, ligands involved in NB recognition by the immune system. Conclusions Our study validates a sensitive MFC analysis providing information on GD2 and B7-H3 surface expression and allowing fast, specific and sensitive evaluation of BM tumor burden. With other routinely used diagnostic and prognostic tools, MFC can improve diagnosis, prognosis, orienting novel personalized treatments in patients with GD2low/neg NB, who might benefit from innovative therapies combining B7-H3 targeting.
Collapse
Affiliation(s)
- Alessandra Dondero
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Clinical Bioinformatic, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Katia Mazzocco
- UOC Anatomia Patologica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | | | - Annalisa Tondo
- Department of Pediatric Oncology, Meyer Children's University Hospital, Firenze, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Aurora Castellano
- Department of Pediatric Hematology and Oncology, Bambino Gesu Pediatric Hospital, Roma, Italy
| | | | | | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Massimo Conte
- UOC Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Cristina Bottino
- Department of Experimental Medicine, University of Genova, Genova, Italy .,Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
49
|
Ponath V, Hoffmann N, Bergmann L, Mäder C, Alashkar Alhamwe B, Preußer C, Pogge von Strandmann E. Secreted Ligands of the NK Cell Receptor NKp30: B7-H6 Is in Contrast to BAG6 Only Marginally Released via Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22042189. [PMID: 33671836 PMCID: PMC7926927 DOI: 10.3390/ijms22042189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
NKp30 (Natural Cytotoxicity Receptor 1, NCR1) is a powerful cytotoxicity receptor expressed on natural killer (NK) cells which is involved in tumor cell killing and the regulation of antitumor immune responses. Ligands for NKp30, including BAG6 and B7-H6, are upregulated in virus-infected and tumor cells but rarely detectable on healthy cells. These ligands are released by tumor cells as part of the cellular secretome and interfere with NK cell activity. BAG6 is secreted via the exosomal pathway, and BAG6-positive extracellular vesicles (EV-BAG6) trigger NK cell cytotoxicity and cytokine release, whereas the soluble protein diminishes NK cell activity. However, the extracellular format and activity of B7-H6 remain elusive. Here, we used HEK293 as a model cell line to produce recombinant ligands and to study their impact on NK cell activity. Using this system, we demonstrate that soluble B7-H6 (sB7-H6), like soluble BAG6 (sBAG6), inhibits NK cell-mediated target cell killing. This was associated with a diminished cell surface expression of NKG2D and NCRs (NKp30, NKp40, and NKp46). Strikingly, a reduced NKp30 mRNA expression was observed exclusively in response to sBAG6. Of note, B7-H6 was marginally released in association with EVs, and EVs collected from B7-H6 expressing cells did not stimulate NK cell-mediated killing. The molecular analysis of EVs on a single EV level using nano flow cytometry (NanoFCM) revealed a similar distribution of vesicle-associated tetraspanins within EVs purified from wildtype, BAG6, or B7-H6 overexpressing cells. NKp30 is a promising therapeutic target to overcome NK cell immune evasion in cancer patients, and it is important to unravel how extracellular NKp30 ligands inhibit NK cell functions.
Collapse
|
50
|
Zhao L, Lian T, Li J, Wei S, Li H, Li C, Wang H. NCR3LG1 (B7-H6) is a potential prognostic factor for bladder cancer patients. Biomarkers 2021; 26:260-267. [PMID: 33523715 DOI: 10.1080/1354750x.2021.1883110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND NCR3LG1 (B7-H6) protein is selectively overexpressed on tumour and is associated with fatal disease progression of various cancer. However, its prognostic value in bladder cancer (BCa) has not been well elaborated. METHODS We examined the expression of NCR3LG1 in human BCa and analysed its clinical significance and prognostic value. Meanwhile, the expression of NCR3LG1 was intervened in human BCa cell line 253JBV to analyse subsequent effects on tumour. RESULTS According to TCGA data, the disease-free survival rate was statistically significant between the NCR3LG1 high expression group and the low expression group (Log Rank p = 0.006). Immunohistochemical staining showed that the expression of NCR3LG1 in BCa tissue was significantly higher than that in adjacent tissues (p < 0.0001), which was positively correlated with TNM staging (p = 0.008), histological grade (p = 0.022), and lymphoma metastasis of BCa (p = 0.032). The proliferation (p < 0.0001), invasion (p < 0.001) and migration ability (p < 0.001) of 253JBV cells are significantly inhibited by knocking down the expression of NCR3LG1, and the cell cycle arrest is induced at the G1 phase, which accelerates the apoptosis of BCa cells (p < 0.005). CONCLUSION Our findings indicate that NCR3LG1 is involved in the progression of human BCa and may become a potential prognostic biomarker for BCa.
Collapse
Affiliation(s)
- Linlin Zhao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Lian
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shiyao Wei
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hongjie Li
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Changying Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|