1
|
Kamikawa T, Kimura N, Ishii S, Muraoka M, Kodama T, Taniguchi K, Yoshimoto M, Miura-Okuda M, Uchikawa R, Kato C, Shinozuka J, Akai S, Naoi S, Tomioka N, Nagaya N, Pang CL, Garvita G, Feng S, Shimada M, Kamata-Sakurai M, Aburatani H, Kitazawa T, Igawa T. SAIL66, a next generation CLDN6-targeting T-cell engager, demonstrates potent antitumor efficacy through dual binding to CD3/CD137. J Immunother Cancer 2024; 12:e009563. [PMID: 39401967 PMCID: PMC11474890 DOI: 10.1136/jitc-2024-009563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/26/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Ovarian cancer remains a formidable challenge in oncology, necessitating innovative therapeutic approaches. Claudin-6 (CLDN6), a member of the tight junction molecule CLDN family, exhibits negligible expression in healthy tissues but displays aberrant upregulation in various malignancies, including ovarian cancer. Although several therapeutic modalities targeting CLDN6 are currently under investigation, there is still a need for more potent therapeutic options. While T-cell engagers (TCEs) hold substantial promise as potent immunotherapeutic agents, their current efficacy and safety in terms of target antigen selection and T-cell exhaustion due to only CD3 stimulation without co-stimulation must be improved, particularly against solid tumors. To provide an efficacious treatment option for ovarian cancer, we generated SAIL66, a tri-specific antibody against CLDN6/CD3/CD137. METHODS Using our proprietary next-generation TCE technology (Dual-Ig), SAIL66 was designed to bind to CLDN6 with one Fab and CD3/CD137 with the other, thereby activating T cells through CD3 activation and CD137 co-stimulation. The preclinical characterization of SAIL66 was performed in a series of in vitro and in vivo studies which included comparisons to a conventional TCE targeting CLDN6 and CD3. RESULTS Despite the high similarity between CLDN6 and other CLDN family members, SAIL66 demonstrated high specificity for CLDN6, reducing the risk of off-target toxicity. In an in vitro co-culture assay with CLDN6-positive cancer cells, we confirmed that SAIL66 strongly activated the CD137 signal in the Jurkat reporter system, and preferentially induced activation of both CD4+ and CD8+ T cells isolated from human peripheral blood mononuclear cells compared to conventional TCEs. In vivo studies demonstrated that SAIL66 led to a more pronounced increase in intratumor T-cell infiltration and a decrease in exhausted T cells compared with conventional CLDN6 TCE by contribution of CD137 co-stimulation, resulting in better antitumor efficacy in tumor-bearing mouse models. CONCLUSION Our data demonstrate that SAIL66, designed to engage CLDN6, CD3, and CD137, has the potential to enhance antitumor activity and provide a potent therapeutic option for patients with ovarian and other solid tumors expressing CLDN6. Clinical trials are currently underway to evaluate the safety and efficacy of SAIL66.
Collapse
Affiliation(s)
| | - Naoki Kimura
- Chugai Pharmaceutical Co Ltd, Yokohama, Kanagawa, Japan
| | - Shinya Ishii
- Chugai Pharmaceutical Co Ltd, Yokohama, Kanagawa, Japan
| | | | | | | | - Moe Yoshimoto
- Chugai Pharmaceutical Co Ltd, Yokohama, Kanagawa, Japan
| | | | - Ryo Uchikawa
- Chugai Pharmaceutical Co Ltd, Yokohama, Kanagawa, Japan
| | - Chie Kato
- Chugai Pharmaceutical Co Ltd, Yokohama, Kanagawa, Japan
| | | | - Sho Akai
- Chugai Pharmaceutical Co Ltd, Yokohama, Kanagawa, Japan
| | - Sotaro Naoi
- Chugai Pharmabody Research Pte Ltd, Singapore
| | | | | | | | | | - Shu Feng
- Chugai Pharmabody Research Pte Ltd, Singapore
| | - Mei Shimada
- Chugai Pharmaceutical Co Ltd, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
2
|
Sanchez J, Claus C, McIntyre C, Tanos T, Boehnke A, Friberg LE, Jönsson S, Frances N. Combining mathematical modeling, in vitro data and clinical target expression to support bispecific antibody binding affinity selection: a case example with FAP-4-1BBL. Front Pharmacol 2024; 15:1472662. [PMID: 39444607 PMCID: PMC11497128 DOI: 10.3389/fphar.2024.1472662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The majority of bispecific costimulatory antibodies in cancer immunotherapy are capable of exerting tumor-specific T-cell activation by simultaneously engaging both tumor-associated targets and costimulatory receptors expressed by T cells. The amount of trimeric complex formed when the bispecific antibody is bound simultaneously to the T cell receptor and the tumor-associated target follows a bell-shaped curve with increasing bispecific antibody exposure/dose. The shape of the curve is determined by the binding affinities of the bispecific antibody to its two targets and target expression. Here, using the case example of FAP-4-1BBL, a fibroblast activation protein alpha (FAP)-directed 4-1BB (CD137) costimulator, the impact of FAP-binding affinity on trimeric complex formation and pharmacology was explored using mathematical modeling and simulation. We quantified (1) the minimum number of target receptors per cell required to achieve pharmacological effect, (2) the expected coverage of the patient population for 19 different solid tumor indications, and (3) the range of pharmacologically active exposures as a function of FAP-binding affinity. A 10-fold increase in FAP-binding affinity (from a dissociation constant [KD] of 0.7 nM-0.07 nM) was predicted to reduce the number of FAP receptors needed to achieve 90% of the maximum pharmacological effect from 13,400 to 4,000. Also, the number of patients with colon cancer that would achieve 90% of the maximum effect would increase from 6% to 39%. In this work, a workflow to select binding affinities for bispecific antibodies that integrates preclinical in vitro data, mathematical modeling and simulation, and knowledge on target expression in the patient population, is provided. The early implementation of this approach can increase the probability of success with cancer immunotherapy in clinical development.
Collapse
Affiliation(s)
- Javier Sanchez
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Christina Claus
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christine McIntyre
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Welwyn, Welwyn Garden City, United Kingdom
| | - Tamara Tanos
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Axel Boehnke
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | | | - Siv Jönsson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nicolas Frances
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
3
|
Rivas-Delgado A, Landego I, Falchi L. The landscape of T-cell engagers for the treatment of follicular lymphoma. Oncoimmunology 2024; 13:2412869. [PMID: 39398477 PMCID: PMC11468044 DOI: 10.1080/2162402x.2024.2412869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Follicular lymphoma (FL), the second most common subtype of non-Hodgkin lymphoma, relies on interactions with immune elements in the tumor microenvironment, including T-follicular helper cells and follicular dendritic cells, for its survival and progression. Despite its initial responsiveness to chemoimmunotherapy, FL is generally considered incurable. Strategies to improve immune-mediated control of FL could significantly benefit this population, particularly as it includes many elderly and comorbid patients. Immune cell engagers, especially bispecific antibodies (BsAbs), are crucial in targeting FL by bridging tumor and effector cells, thereby triggering T-cell activation and cytotoxic killing. CD3 × CD20 BsAbs have shown the most promise in clinical development for B-NHL patients, with structural variations affecting their target affinity and potency. This review summarizes the current clinical trials of BsAbs for relapsed/refractory FL, highlighting the approval of some agents, their role in first-line treatment or combination therapies, their toxicity profiles, and the future of this therapeutic approach compared to other immune cell therapies.
Collapse
Affiliation(s)
- Alfredo Rivas-Delgado
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Ivan Landego
- Department of Internal Medicine, Max Rady Faculty of Health Sciences, Section of Medical Oncology and Hematology, University of Manitoba, Winnipeg, MB, Canada
| | - Lorenzo Falchi
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
4
|
Gayen S, Mukherjee S, Dasgupta S, Roy S. Emerging druggable targets for immune checkpoint modulation in cancer immunotherapy: the iceberg lies beneath the surface. Apoptosis 2024:10.1007/s10495-024-02022-8. [PMID: 39354213 DOI: 10.1007/s10495-024-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
The immune system serves as a fundamental defender against the initiation and progression of cancer. Failure of the immune system augments immunosuppressive action that leading to cancer manifestation. This immunosuppressive effect causes from significant alterations in immune checkpoint expression associated with tumoral progression. The tumor microenvironment promotes immune escape mechanisms that further amplifying immunosuppressive actions. Notably, substantial targeting of immune checkpoints has been pragmatic in the advancement of cancer research. This study highlights a comprehensive review of emerging druggable targets aimed at modulating immune checkpoint co-inhibitory as well as co-stimulatory molecules in response to immune system activation. This modulation has prompted to the development of newer therapeutic insights, eventually inducing immunogenic cell death through immunomodulatory actions. The study emphasizes the role of immune checkpoints in immunogenic regulation of cancer pathogenesis and explores potential therapeutic avenues in cancer immunotherapy.Modulation of Immunosuppressive and Immunostimulatory pathways of immune checkpoints in cancer immunotherapy.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
5
|
Jeon SH, You G, Park J, Chung Y, Park K, Kim H, Jeon J, Kim Y, Son WC, Jeong DS, Shin EC, Lee JY, Han DH, Jung J, Park SH. Anti-4-1BB×PDL1 Bispecific Antibody Reinvigorates Tumor-Specific Exhausted CD8+ T Cells and Enhances the Efficacy of Anti-PD1 Blockade. Clin Cancer Res 2024; 30:4155-4166. [PMID: 38743752 DOI: 10.1158/1078-0432.ccr-23-2864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE To overcome the limited efficacy of immune checkpoint blockade, there is a need to find novel cancer immunotherapeutic strategies for the optimal treatment of cancer. The novel anti-4-1BB×PDL1 bispecific antibody-ABL503 (also known as TJ-L14B)-was designed to simultaneously target PDL1 and 4-1BB and demonstrated strong antitumor T-cell responses without considerable toxicity. In this study, we investigated the mechanisms by which the combination of ABL503 and anti-PD1 blockade affected the reinvigoration of exhausted tumor-infiltrating CD8+ T cells (CD8+ TIL) and antitumor efficacy. EXPERIMENTAL DESIGN Single-cell suspensions of hepatocellular carcinoma and ovarian cancer tissues from treatment-naïve patients were used for immunophenotyping of CD8+ TILs and in vitro functional assays. Humanized hPD1/hPDL1/h4-1BB triple-knock-in mice were used to evaluate the effects of ABL503 and anti-PD1 blockade in vivo. RESULTS We observed that ABL503 successfully restored the functions of 4-1BB+ exhausted CD8+ TILs, which were enriched for tumor-specific T cells but unresponsive to anti-PD1 blockade. Importantly, compared with anti-PD1 blockade alone, the combination of ABL503 and anti-PD1 blockade further enhanced the functional restoration of human CD8+ TILs in vitro. Consistently, the combination of ABL503 with anti-PD1 in vivo significantly alleviated tumor growth and induced enhanced infiltration and activation of CD8+ TILs. CONCLUSIONS ABL503, a PDL1 and 4-1BB dual-targeting bispecific antibody, elicits pronounced additive tumor growth inhibition, with increased infiltration and functionality of exhausted CD8+ T cells, which in turn enhances the anticancer effects of anti-PD1 blockade. These promising findings suggest that ABL503 (TJ-L14B) in combination with PD1 inhibitors will likely further enhance therapeutic benefit in clinical trials. See related commentary by Molero-Glez et al., p. 3971.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- Animals
- Humans
- Mice
- Female
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- Seung Hyuck Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Gihoon You
- ABL Bio Inc., Seongnam, Republic of Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youseung Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | | | | | | | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Da Som Jeong
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Jung
- ABL Bio Inc., Seongnam, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
6
|
Molero-Glez P, Azpilikueta A, Mosteo L, Glez-Vaz J, Palencia B, Melero I. CD137 (4-1BB) and T-Lymphocyte Exhaustion. Clin Cancer Res 2024; 30:3971-3973. [PMID: 39120463 DOI: 10.1158/1078-0432.ccr-24-1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
CD137 (4-1BB) costimulation results in the potent activation of antitumor T lymphocytes and elicits antitumor efficacy that is synergistic with anti-PD(L)1 checkpoint inhibitors, especially when using bispecific constructs. Emerging experimental evidence indicates that 4-1BB ligation prevents and may revert T-cell exhaustion. See related article by Jeon et al., p. 4155.
Collapse
Affiliation(s)
- Paula Molero-Glez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Laura Mosteo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Javier Glez-Vaz
- Department of Hematology/Oncology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Belen Palencia
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Liu J, Zhu J. Progresses of T-cell-engaging bispecific antibodies in treatment of solid tumors. Int Immunopharmacol 2024; 138:112609. [PMID: 38971103 DOI: 10.1016/j.intimp.2024.112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
T-cell-engaging bispecific antibody (TCB) therapies have emerged as a promising immunotherapeutic approach, effectively redirecting effector T cells to selectively eliminate tumor cells. The therapeutic potential of TCBs has been well recognized, particularly with the approval of multiple TCBs in recent years for the treatment of hematologic malignancies as well as some solid tumors. However, TCBs encounter multiple challenges in treating solid tumors, such as on-target off-tumor toxicity, cytokine release syndrome (CRS), and T cell dysfunction within the immunosuppressive tumor microenvironment, all of which may impact their therapeutic efficacy. In this review, we summarize clinical data on TCBs for solid tumor treatment, highlight the challenges faced, and discuss potential solutions based on emerging strategies from current clinical and preclinical research. These solutions include TCB structural optimization, target selection, and combination strategies. This comprehensive analysis aims to guide the development of TCBs from design to clinical application, addressing the evolving landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Junjun Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Laboratories, Inc., Frederick, MD 21704, USA.
| |
Collapse
|
8
|
Medina JA, Ledezma DK, Ghofrani J, Chen J, Chin SJ, Balakrishnan PB, Lee NH, Sweeney EE, Fernandes R. Photothermal therapy co-localized with CD137 agonism improves survival in an SM1 melanoma model without hepatotoxicity. Nanomedicine (Lond) 2024; 19:2049-2064. [PMID: 39225150 PMCID: PMC11485692 DOI: 10.1080/17435889.2024.2389770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: We investigate combining Prussian Blue nanoparticles (PBNPs), as photothermal therapy (PTT) agents, with agonistic CD137 antibodies (αCD137) on a single nanoparticle platform to deliver non-toxic, anti-tumor efficacy in SM1 murine melanoma.Methods: We electrostatically coated PBNPs with αCD137 (αCD137-PBNPs) and quantified their physicochemical characteristics, photothermal and co-stimulatory capabilities. Next, we tested the efficacy and hepatotoxicity of PTT using αCD137-PBNPs (αCD137-PBNP-PTT) in SM1 tumor-bearing mice.Results: The αCD137-PBNPs retained both the photothermal and agonistic properties of the PBNPs and αCD137, respectively. In vivo, SM1 tumor-bearing mice treated with αCD137-PBNP-PTT exhibited a significantly higher survival rate (50%) without hepatotoxicity, compared with control treatments.Conclusion: These data suggest the potential utility of co-localizing PBNP-PTT with αCD137-based agonism as a novel combination nanomedicine.
Collapse
Affiliation(s)
- Jacob A Medina
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Debbie K Ledezma
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Joshua Ghofrani
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Jie Chen
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Samantha J Chin
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | | | - Norman H Lee
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| | - Rohan Fernandes
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| |
Collapse
|
9
|
Kong WS, Li JJ, Deng YQ, Ju HQ, Xu RH. Immunomodulatory molecules in colorectal cancer liver metastasis. Cancer Lett 2024; 598:217113. [PMID: 39009068 DOI: 10.1016/j.canlet.2024.217113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related deaths. According to clinical diagnosis and treatment, liver metastasis occurs in approximately 50 % of CRC patients, indicating a poor prognosis. The unique immune tolerance of the liver fosters an immunosuppressive tumor microenvironment (TME). In the context of tumors, numerous membrane and secreted proteins have been linked to tumor immune evasion as immunomodulatory molecules, but much remains unknown about how these proteins contribute to immune evasion in colorectal cancer liver metastasis (CRLM). This article reviews recently discovered membrane and secreted proteins with roles as both immunostimulatory and immunosuppressive molecules within the TME that influence immune evasion in CRC primary and metastatic lesions, particularly their mechanisms in promoting CRLM. This article also addresses screening strategies for identifying proteins involved in immune evasion in CRLM and provides insights into potential protein targets for treating CRLM.
Collapse
Affiliation(s)
- Wei-Shuai Kong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Jia-Jun Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yu-Qing Deng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Huai-Qiang Ju
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Herault A, Mak J, de la Cruz-Chuh J, Dillon MA, Ellerman D, Go M, Cosino E, Clark R, Carson E, Yeung S, Pichery M, Gador M, Chiang EY, Wu J, Liang Y, Modrusan Z, Gampa G, Sudhamsu J, Kemball CC, Cheung V, Nguyen TTT, Seshasayee D, Piskol R, Totpal K, Yu SF, Lee G, Kozak KR, Spiess C, Walsh KB. NKG2D-bispecific enhances NK and CD8+ T cell antitumor immunity. Cancer Immunol Immunother 2024; 73:209. [PMID: 39112670 PMCID: PMC11306676 DOI: 10.1007/s00262-024-03795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Cancer immunotherapy approaches that elicit immune cell responses, including T and NK cells, have revolutionized the field of oncology. However, immunosuppressive mechanisms restrain immune cell activation within solid tumors so additional strategies to augment activity are required. METHODS We identified the co-stimulatory receptor NKG2D as a target based on its expression on a large proportion of CD8+ tumor infiltrating lymphocytes (TILs) from breast cancer patient samples. Human and murine surrogate NKG2D co-stimulatory receptor-bispecifics (CRB) that bind NKG2D on NK and CD8+ T cells as well as HER2 on breast cancer cells (HER2-CRB) were developed as a proof of concept for targeting this signaling axis in vitro and in vivo. RESULTS HER2-CRB enhanced NK cell activation and cytokine production when co-cultured with HER2 expressing breast cancer cell lines. HER2-CRB when combined with a T cell-dependent-bispecific (TDB) antibody that synthetically activates T cells by crosslinking CD3 to HER2 (HER2-TDB), enhanced T cell cytotoxicity, cytokine production and in vivo antitumor activity. A mouse surrogate HER2-CRB (mHER2-CRB) improved in vivo efficacy of HER2-TDB and augmented NK as well as T cell activation, cytokine production and effector CD8+ T cell differentiation. CONCLUSION We demonstrate that targeting NKG2D with bispecific antibodies (BsAbs) is an effective approach to augment NK and CD8+ T cell antitumor immune responses. Given the large number of ongoing clinical trials leveraging NK and T cells for cancer immunotherapy, NKG2D-bispecifics have broad combinatorial potential.
Collapse
Affiliation(s)
- Aurelie Herault
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Judy Mak
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Josefa de la Cruz-Chuh
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Michael A Dillon
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Diego Ellerman
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - MaryAnn Go
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Ely Cosino
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Robyn Clark
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Emily Carson
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Stacey Yeung
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Melanie Pichery
- Immuno-Oncology-In Vitro Biology Department, Evotec, Toulouse, France
| | - Mylène Gador
- Immuno-Oncology-In Vitro Biology Department, Evotec, Toulouse, France
| | - Eugene Y Chiang
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Jia Wu
- Department of Antibody Discovery, Genentech, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Next-GenSequencing, South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Next-GenSequencing, South San Francisco, CA, USA
| | - Gautham Gampa
- Department of Development Sciences PTPK, Genentech, South San Francisco, CA, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Christopher C Kemball
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Victoria Cheung
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | | | - Dhaya Seshasayee
- Department of Antibody Discovery, Genentech, South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Klara Totpal
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Shang-Fan Yu
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Genee Lee
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Katherine R Kozak
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kevin B Walsh
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
11
|
Verkleij CPM, O'Neill CA, Broekmans MEC, Frerichs KA, Bruins WSC, Duetz C, Kruyswijk S, Baglio SR, Skerget S, Montes de Oca R, Zweegman S, Verona RI, Mutis T, van de Donk NWCJ. T-Cell Characteristics Impact Response and Resistance to T-Cell-Redirecting Bispecific Antibodies in Multiple Myeloma. Clin Cancer Res 2024; 30:3006-3022. [PMID: 38687588 DOI: 10.1158/1078-0432.ccr-23-3333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE Bispecific antibodies (BsAb) directed against B-cell maturation antigen (teclistamab) or the orphan G protein-coupled receptor GPRC5D (talquetamab) induce deep and durable responses in heavily pretreated patients with multiple myeloma. However, mechanisms underlying primary and acquired resistance remain poorly understood. EXPERIMENTAL DESIGN The anti-multiple myeloma activity of teclistamab and talquetamab was evaluated in bone marrow (BM) samples from patients with multiple myeloma. T-cell phenotype and function were assessed in BM/peripheral blood samples obtained from patients with multiple myeloma who were treated with these BsAb. RESULTS In ex vivo killing assays with 41 BM samples from BsAb-naive patients with multiple myeloma, teclistamab- and talquetamab-mediated multiple myeloma lysis was strongly correlated (r = 0.73, P < 0.0001). Both BsAb exhibited poor activity in samples with high regulatory T-cell (Treg) numbers and a low T-cell/multiple myeloma cell ratio. Furthermore, comprehensive phenotyping of BM samples derived from patients treated with teclistamab or talquetamab revealed that high frequencies of PD-1+ CD4+ T cells, CTLA4+ CD4+ T cells, and CD38+ CD4+ T cells were associated with primary resistance. Although this lack of response was linked to a modest increase in the expression of inhibitory receptors, increasing T-cell/multiple myeloma cell ratios by adding extra T cells enhanced sensitivity to BsAb. Further, treatment with BsAb resulted in an increased proportion of T cells expressing exhaustion markers (PD-1, TIGIT, and TIM-3), which was accompanied by reduced T-cell proliferative potential and cytokine secretion, as well as impaired antitumor efficacy in ex vivo experiments. CONCLUSIONS Primary resistance is characterized by a low T-cell/multiple myeloma cell ratio and Treg-driven immunosuppression, whereas reduced T-cell fitness due to continuous BsAb-mediated T-cell activation may contribute to the development of acquired resistance.
Collapse
Affiliation(s)
- Christie P M Verkleij
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Chloe A O'Neill
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marloes E C Broekmans
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Kristine A Frerichs
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wassilis S C Bruins
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Carolien Duetz
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sandy Kruyswijk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Serena R Baglio
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sheri Skerget
- Janssen Research & Development, Spring House, Pennsylvania
| | | | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Elsayed A, Plüss L, Nideroest L, Rotta G, Thoma M, Zangger N, Peissert F, Pfister SK, Pellegrino C, Dakhel Plaza S, De Luca R, Manz MG, Oxenius A, Puca E, Halin C, Neri D. Optimizing the Design and Geometry of T Cell-Engaging Bispecific Antibodies Targeting CEA in Colorectal Cancer. Mol Cancer Ther 2024; 23:1010-1020. [PMID: 38638035 DOI: 10.1158/1535-7163.mct-23-0766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Metastatic colorectal cancer remains a leading cause of cancer-related deaths, with a 5-year survival rate of only 15%. T cell-engaging bispecific antibodies (TCBs) represent a class of biopharmaceuticals that redirect cytotoxic T cells toward tumor cells, thereby turning immunologically "cold" tumors into "hot" ones. The carcinoembryonic antigen (CEA) is an attractive tumor-associated antigen that is overexpressed in more than 98% of patients with colorectal cancer. In this study, we report the comparison of four different TCB formats employing the antibodies F4 (targeting human CEA) and 2C11 (targeting mouse CD3ε). These formats include both antibody fragment-based and IgG-based constructs, with either one or two binding specificities of the respective antibodies. The 2 + 1 arrangement, using an anti-CEA single-chain diabody fused to an anti-CD3 single-chain variable fragment, emerged as the most potent design, showing tumor killing at subnanomolar concentrations across three different CEA+ cell lines. The in vitro activity was three times greater in C57BL/6 mouse colon adenocarcinoma cells (MC38) expressing high levels of CEA compared with those expressing low levels, highlighting the impact of CEA density in this assay. The optimal TCB candidate was tested in two different immunocompetent mouse models of colorectal cancer and showed tumor growth retardation. Ex vivo analysis of tumor infiltrates showed an increase in CD4+ and CD8+ T cells upon TCB treatment. This study suggests that bivalent tumor targeting, monovalent T-cell targeting, and a short spatial separation are promising characteristics for CEA-targeting TCBs.
Collapse
Affiliation(s)
- Abdullah Elsayed
- Philochem AG, Otelfingen, Switzerland
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Louis Plüss
- Philochem AG, Otelfingen, Switzerland
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Larissa Nideroest
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | - Marina Thoma
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Nathan Zangger
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | | | - Christian Pellegrino
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | | | | | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Annette Oxenius
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | - Cornelia Halin
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Dario Neri
- Philochem AG, Otelfingen, Switzerland
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
- Philogen SpA, Siena, Italy
| |
Collapse
|
13
|
Fenis A, Demaria O, Gauthier L, Vivier E, Narni-Mancinelli E. New immune cell engagers for cancer immunotherapy. Nat Rev Immunol 2024; 24:471-486. [PMID: 38273127 DOI: 10.1038/s41577-023-00982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
There have been major advances in the immunotherapy of cancer in recent years, including the development of T cell engagers - antibodies engineered to redirect T cells to recognize and kill cancer cells - for the treatment of haematological malignancies. However, the field still faces several challenges to develop agents that are consistently effective in a majority of patients and cancer types, such as optimizing drug dose, overcoming treatment resistance and improving efficacy in solid tumours. A new generation of T cell-targeted molecules was developed to tackle these issues that are potentially more effective and safer. In addition, agents designed to engage the antitumour activities of other immune cells, including natural killer cells and myeloid cells, are showing promise and have the potential to treat a broader range of cancers.
Collapse
Affiliation(s)
- Aurore Fenis
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille Université, Centre National de la Recherche Scientifique, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Olivier Demaria
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Laurent Gauthier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille Université, Centre National de la Recherche Scientifique, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, Marseille Immunopôle, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, Centre National de la Recherche Scientifique, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
14
|
Mosna F. The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers (Basel) 2024; 16:2359. [PMID: 39001421 PMCID: PMC11240611 DOI: 10.3390/cancers16132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The potential of the immune system to eradicate leukemic cells has been consistently demonstrated by the Graft vs. Leukemia effect occurring after allo-HSCT and in the context of donor leukocyte infusions. Various immunotherapeutic approaches, ranging from the use of antibodies, antibody-drug conjugates, bispecific T-cell engagers, chimeric antigen receptor (CAR) T-cells, and therapeutic infusions of NK cells, are thus currently being tested with promising, yet conflicting, results. This review will concentrate on various types of immunotherapies in preclinical and clinical development, from the point of view of a clinical hematologist. The most promising therapies for clinical translation are the use of bispecific T-cell engagers and CAR-T cells aimed at lineage-restricted antigens, where overall responses (ORR) ranging from 20 to 40% can be achieved in a small series of heavily pretreated patients affected by refractory or relapsing leukemia. Toxicity consists mainly in the occurrence of cytokine-release syndrome, which is mostly manageable with step-up dosing, the early use of cytokine-blocking agents and corticosteroids, and myelosuppression. Various cytokine-enhanced natural killer products are also being tested, mainly as allogeneic off-the-shelf therapies, with a good tolerability profile and promising results (ORR: 20-37.5% in small trials). The in vivo activation of T lymphocytes and NK cells via the inhibition of their immune checkpoints also yielded interesting, yet limited, results (ORR: 33-59%) but with an increased risk of severe Graft vs. Host disease in transplanted patients. Therefore, there are still several hurdles to overcome before the widespread clinical use of these novel compounds.
Collapse
Affiliation(s)
- Federico Mosna
- Hematology and Bone Marrow Transplantation Unit (BMTU), Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of Paracelsus Medical University (PMU), 39100 Bolzano, Italy
| |
Collapse
|
15
|
Zhou L, Li Y, Zheng D, Zheng Y, Cui Y, Qin L, Tang Z, Peng D, Wu Q, Long Y, Yao Y, Wong N, Lau J, Li P. Bispecific CAR-T cells targeting FAP and GPC3 have the potential to treat hepatocellular carcinoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200817. [PMID: 38882528 PMCID: PMC11179089 DOI: 10.1016/j.omton.2024.200817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated robust efficacy against hematological malignancies, but there are still some challenges regarding treating solid tumors, including tumor heterogeneity, antigen escape, and an immunosuppressive microenvironment. Here, we found that SNU398, a hepatocellular carcinoma (HCC) cell line, exhibited high expression levels of fibroblast activation protein (FAP) and Glypican 3 (GPC3), which were negatively correlated with patient prognosis. The HepG2 HCC cell line highly expressed GPC3, while the SNU387 cell line exhibited high expression of FAP. Thus, we developed bispecific CAR-T cells to simultaneously target FAP and GPC3 to address tumor heterogeneity in HCC. The anti-FAP-GPC3 bispecific CAR-T cells could recognize and be activated by FAP or GPC3 expressed by tumor cells. Compared with anti-FAP CAR-T cells or anti-GPC3 CAR-T cells, bispecific CAR-T cells achieved more robust activity against tumor cells expressing FAP and GPC3 in vitro. The anti-FAP-GPC3 bispecific CAR-T cells also exhibited superior antitumor efficacy and significantly prolonged the survival of mice compared with single-target CAR-T cells in vivo. Overall, the use of anti-FAP-GPC3 bispecific CAR-T cells is a promising treatment approach to reduce tumor recurrence caused by tumor antigen heterogeneity.
Collapse
Affiliation(s)
- Linfu Zhou
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongfang Zheng
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanbin Cui
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Le Qin
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Guangdong Zhaotai Cell Biology Technology Ltd., Foshan, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Cell Biology Technology Ltd., Foshan, China
| | - Dongdong Peng
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nathalie Wong
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong (CUHK), Hong Kong, China
| | - James Lau
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong (CUHK), Hong Kong, China
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong (CUHK), Hong Kong, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Mikami H, Feng S, Matsuda Y, Ishii S, Naoi S, Azuma Y, Nagano H, Asanuma K, Kayukawa Y, Tsunenari T, Kamikawaji S, Iwabuchi R, Shinozuka J, Yamazaki M, Kuroi H, Ho SSW, Gan SW, Chichili P, Pang CL, Yeo CY, Shimizu S, Hironiwa N, Kinoshita Y, Shimizu Y, Sakamoto A, Muraoka M, Takahashi N, Kawa T, Shiraiwa H, Mimoto F, Kashima K, Kamata-Sakurai M, Ishikawa S, Aburatani H, Kitazawa T, Igawa T. Engineering CD3/CD137 Dual Specificity into a DLL3-Targeted T-Cell Engager Enhances T-Cell Infiltration and Efficacy against Small-Cell Lung Cancer. Cancer Immunol Res 2024; 12:719-730. [PMID: 38558120 DOI: 10.1158/2326-6066.cir-23-0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Small-cell lung cancer (SCLC) is an aggressive cancer for which immune checkpoint inhibitors (ICI) have had only limited success. Bispecific T-cell engagers are promising therapeutic alternatives for ICI-resistant tumors, but not all patients with SCLC are responsive. Herein, to integrate CD137 costimulatory function into a T-cell engager format and thereby augment therapeutic efficacy, we generated a CD3/CD137 dual-specific Fab and engineered a DLL3-targeted trispecific antibody (DLL3 trispecific). The CD3/CD137 dual-specific Fab was generated to competitively bind to CD3 and CD137 to prevent DLL3-independent cross-linking of CD3 and CD137, which could lead to systemic T-cell activation. We demonstrated that DLL3 trispecific induced better tumor growth control and a marked increase in the number of intratumoral T cells compared with a conventional DLL3-targeted bispecific T-cell engager. These findings suggest that DLL3 trispecific can exert potent efficacy by inducing concurrent CD137 costimulation and provide a promising therapeutic option for SCLC.
Collapse
Affiliation(s)
- Hirofumi Mikami
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Shu Feng
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yutaka Matsuda
- Project & Lifecycle Management Unit, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| | - Shinya Ishii
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Sotaro Naoi
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yumiko Azuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Hiroaki Nagano
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kentaro Asanuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yoko Kayukawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shogo Kamikawaji
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Ryutaro Iwabuchi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Junko Shinozuka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaki Yamazaki
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Haruka Kuroi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Siok Wan Gan
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | | | - Chai Ling Pang
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Chiew Ying Yeo
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Shun Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Naoka Hironiwa
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yasuko Kinoshita
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yuichiro Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaru Muraoka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Tatsuya Kawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Futa Mimoto
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kenji Kashima
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| |
Collapse
|
17
|
Ziblat A, Horton BL, Higgs EF, Hatogai K, Martinez A, Shapiro JW, Kim DEC, Zha Y, Sweis RF, Gajewski TF. Batf3 + DCs and the 4-1BB/4-1BBL axis are required at the effector phase in the tumor microenvironment for PD-1/PD-L1 blockade efficacy. Cell Rep 2024; 43:114141. [PMID: 38656869 PMCID: PMC11229087 DOI: 10.1016/j.celrep.2024.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The cellular source of positive signals that reinvigorate T cells within the tumor microenvironment (TME) for the therapeutic efficacy of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has not been clearly defined. We now show that Batf3-lineage dendritic cells (DCs) are essential in this process. Flow cytometric analysis, gene-targeted mice, and blocking antibody studies revealed that 4-1BBL is a major positive co-stimulatory signal provided by these DCs within the TME that translates to CD8+ T cell functional reinvigoration and tumor regression. Immunofluorescence and spatial transcriptomics on human tumor samples revealed clustering of Batf3+ DCs and CD8+ T cells, which correlates with anti-PD-1 efficacy. In addition, proximity to Batf3+ DCs within the TME is associated with CD8+ T cell transcriptional states linked to anti-PD-1 response. Our results demonstrate that Batf3+ DCs within the TME are critical for PD-1/PD-L1 blockade efficacy and indicate a major role for the 4-1BB/4-1BB ligand (4-1BBL) axis during this process.
Collapse
Affiliation(s)
- Andrea Ziblat
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Brendan L Horton
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Emily F Higgs
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ken Hatogai
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Anna Martinez
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jason W Shapiro
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Danny E C Kim
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - YuanYuan Zha
- Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637, USA
| | - Randy F Sweis
- Department of Medicine, University of Chicago, Chicago, IL 60612, USA
| | - Thomas F Gajewski
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
18
|
Sam J, Hofer T, Kuettel C, Claus C, Thom J, Herter S, Georges G, Korfi K, Lechmann M, Eigenmann MJ, Marbach D, Jamois C, Lechner K, Krishnan SM, Gaillard B, Marinho J, Kronenberg S, Kunz L, Wilson S, Briner S, Gebhardt S, Varol A, Appelt B, Nicolini V, Speziale D, Bez M, Bommer E, Eckmann J, Hage C, Limani F, Jenni S, Schoenle A, Le Clech M, Vallier JBP, Colombetti S, Bacac M, Gasser S, Klein C, Umaña P. CD19-CD28: an affinity-optimized CD28 agonist for combination with glofitamab (CD20-TCB) as off-the-shelf immunotherapy. Blood 2024; 143:2152-2165. [PMID: 38437725 PMCID: PMC11143537 DOI: 10.1182/blood.2023023381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
ABSTRACT Effective T-cell responses not only require the engagement of T-cell receptors (TCRs; "signal 1"), but also the availability of costimulatory signals ("signal 2"). T-cell bispecific antibodies (TCBs) deliver a robust signal 1 by engaging the TCR signaling component CD3ε, while simultaneously binding to tumor antigens. The CD20-TCB glofitamab redirects T cells to CD20-expressing malignant B cells. Although glofitamab exhibits strong single-agent efficacy, adding costimulatory signaling may enhance the depth and durability of T-cell-mediated tumor cell killing. We developed a bispecific CD19-targeted CD28 agonist (CD19-CD28), RG6333, to enhance the efficacy of glofitamab and similar TCBs by delivering signal 2 to tumor-infiltrating T cells. CD19-CD28 distinguishes itself from the superagonistic antibody TGN1412, because its activity requires the simultaneous presence of a TCR signal and CD19 target binding. This is achieved through its engineered format incorporating a mutated Fc region with abolished FcγR and C1q binding, CD28 monovalency, and a moderate CD28 binding affinity. In combination with glofitamab, CD19-CD28 strongly increased T-cell effector functions in ex vivo assays using peripheral blood mononuclear cells and spleen samples derived from patients with lymphoma and enhanced glofitamab-mediated regression of aggressive lymphomas in humanized mice. Notably, the triple combination of glofitamab with CD19-CD28 with the costimulatory 4-1BB agonist, CD19-4-1BBL, offered substantially improved long-term tumor control over glofitamab monotherapy and respective duplet combinations. Our findings highlight CD19-CD28 as a safe and highly efficacious off-the-shelf combination partner for glofitamab, similar TCBs, and other costimulatory agonists. CD19-CD28 is currently in a phase 1 clinical trial in combination with glofitamab. This trial was registered at www.clinicaltrials.gov as #NCT05219513.
Collapse
Affiliation(s)
- Johannes Sam
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Thomas Hofer
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Christine Kuettel
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Christina Claus
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Jenny Thom
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Sylvia Herter
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Guy Georges
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Koorosh Korfi
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Martin Lechmann
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Miro Julian Eigenmann
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Daniel Marbach
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Candice Jamois
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Katharina Lechner
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Sreenath M Krishnan
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Brenda Gaillard
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Joana Marinho
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Sven Kronenberg
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Leo Kunz
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Sabine Wilson
- Roche Innovation Center Welwyn, Roche Pharma Research and Early Development, Welwyn Garden City, United Kingdom
| | - Stefanie Briner
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Samuel Gebhardt
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Ahmet Varol
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Birte Appelt
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Valeria Nicolini
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Dario Speziale
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Miriam Bez
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Esther Bommer
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Jan Eckmann
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Carina Hage
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Florian Limani
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Silvia Jenni
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Anne Schoenle
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Marine Le Clech
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | | | - Sara Colombetti
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Stephan Gasser
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| |
Collapse
|
19
|
Lim SH, Beers SA, Al-Shamkhani A, Cragg MS. Agonist Antibodies for Cancer Immunotherapy: History, Hopes, and Challenges. Clin Cancer Res 2024; 30:1712-1723. [PMID: 38153346 PMCID: PMC7615925 DOI: 10.1158/1078-0432.ccr-23-1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Immunotherapy is among the most promising new treatment modalities to arise over the last two decades; antibody drugs are delivering immunotherapy to millions of patients with many different types of cancer. Initial success with antibody therapeutics came in the form of direct targeting or cytotoxic antibodies, such as rituximab and trastuzumab, which bind directly to tumor cells to elicit their destruction. These were followed by immunomodulatory antibodies that elicit antitumor responses by either stimulating immune cells or relieving tumor-mediated suppression. By far the most successful approach in the clinic to date has been relieving immune suppression, with immune checkpoint blockade now a standard approach in the treatment of many cancer types. Despite equivalent and sometimes even more impressive effects in preclinical models, agonist antibodies designed to stimulate the immune system have lagged behind in their clinical translation. In this review, we document the main receptors that have been targeted by agonist antibodies, consider the various approaches that have been evaluated to date, detail what we have learned, and consider how their anticancer potential can be unlocked.
Collapse
Affiliation(s)
- Sean H. Lim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
20
|
Kou Z, Liu C, Zhang W, Sun C, Liu L, Zhang Q. Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). Int J Oncol 2024; 64:54. [PMID: 38577950 PMCID: PMC11015919 DOI: 10.3892/ijo.2024.5642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer‑associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.
Collapse
Affiliation(s)
- Zixing Kou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa Island 999078, Macau SAR, P.R. China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Qiming Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100007, P.R. China
| |
Collapse
|
21
|
Rubio-Pérez L, Frago S, Compte M, Navarro R, Harwood SL, Lázaro-Gorines R, Gómez-Rosel M, Hangiu O, Silva-Pilipich N, Vanrell L, Smerdou C, Álvarez-Vallina L. Characterization of a Trispecific PD-L1 Blocking Antibody That Exhibits EGFR-Conditional 4-1BB Agonist Activity. Antibodies (Basel) 2024; 13:34. [PMID: 38804302 PMCID: PMC11130918 DOI: 10.3390/antib13020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Immune checkpoint blockade has changed the treatment paradigm for advanced solid tumors, but the overall response rates are still limited. The combination of checkpoint blockade with anti-4-1BB antibodies to stimulate tumor-infiltrating T cells has shown anti-tumor activity in human trials. However, the further clinical development of these antibodies has been hampered by significant off-tumor toxicities. Here, we generated an anti-4-1BB/EGFR/PD-L1 trispecific antibody consisting of a triple-targeting tandem trimerbody (TT) fused to an engineered silent Fc region. This antibody (IgTT-4E1-S) was designed to combine the blockade of the PD-L1/PD-1 axis with conditional 4-1BB costimulation specifically confined to the tumor microenvironment (TME). The antibody demonstrated simultaneous binding to purified EGFR, PD-L1, and 4-1BB in solution, effective blockade of the PD-L1/PD1 interaction, and potent 4-1BB-mediated costimulation, but only in the presence of EGFR-expressing cells. These results demonstrate the feasibility of IgTT-4E1-S specifically blocking the PD-L1/PD-1 axis and inducing EGFR-conditional 4-1BB agonist activity.
Collapse
Affiliation(s)
- Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), 28041 Madrid, Spain; (L.R.-P.); (R.L.-G.); (M.G.-R.); (O.H.)
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Susana Frago
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Tres Cantos, 28760 Madrid, Spain; (S.F.); (M.C.); (R.N.)
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Tres Cantos, 28760 Madrid, Spain; (S.F.); (M.C.); (R.N.)
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Tres Cantos, 28760 Madrid, Spain; (S.F.); (M.C.); (R.N.)
| | - Seandean L. Harwood
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark;
| | - Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), 28041 Madrid, Spain; (L.R.-P.); (R.L.-G.); (M.G.-R.); (O.H.)
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Marina Gómez-Rosel
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), 28041 Madrid, Spain; (L.R.-P.); (R.L.-G.); (M.G.-R.); (O.H.)
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), 28041 Madrid, Spain; (L.R.-P.); (R.L.-G.); (M.G.-R.); (O.H.)
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Tres Cantos, 28760 Madrid, Spain; (S.F.); (M.C.); (R.N.)
| | - Noelia Silva-Pilipich
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain; (N.S.-P.); (C.S.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Lucía Vanrell
- Facultad de Ingeniería, Universidad ORT Uruguay, 11100 Montevideo, Uruguay;
- Nanogrow Biotech, Montevideo 11500, Uruguay
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain; (N.S.-P.); (C.S.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), 28041 Madrid, Spain; (L.R.-P.); (R.L.-G.); (M.G.-R.); (O.H.)
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
22
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
23
|
Deycmar S, Johnson BJ, Ray K, Schaaf GW, Ryan DP, Cullin C, Dozier BL, Ferguson B, Bimber BN, Olson JD, Caudell DL, Whitlow CT, Solingapuram Sai KK, Romero EC, Villinger FJ, Burgos AG, Ainsworth HC, Miller LD, Hawkins GA, Chou JW, Gomes B, Hettich M, Ceppi M, Charo J, Cline JM. Epigenetic MLH1 silencing concurs with mismatch repair deficiency in sporadic, naturally occurring colorectal cancer in rhesus macaques. J Transl Med 2024; 22:292. [PMID: 38504345 PMCID: PMC10953092 DOI: 10.1186/s12967-024-04869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.
Collapse
Affiliation(s)
- Simon Deycmar
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Roche Postdoctoral Fellowship (RPF) Program, Basel, Switzerland
| | - Brendan J Johnson
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Karina Ray
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - George W Schaaf
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Declan Patrick Ryan
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Cassandra Cullin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Brandy L Dozier
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Betsy Ferguson
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - John D Olson
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - David L Caudell
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Emily C Romero
- New Iberia Research Center, University of Louisiana-Lafayette, New Iberia, LA, USA
| | - Francois J Villinger
- New Iberia Research Center, University of Louisiana-Lafayette, New Iberia, LA, USA
| | - Armando G Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, USA
| | - Hannah C Ainsworth
- Department of Biostatistics and Data Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gregory A Hawkins
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeff W Chou
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Bruno Gomes
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael Hettich
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Maurizio Ceppi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- iTeos Therapeutics, Translational Medicine, Gosselies, Belgium
| | - Jehad Charo
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
24
|
Li T, Niu M, Zhou J, Wu K, Yi M. The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling. Cell Commun Signal 2024; 22:179. [PMID: 38475778 PMCID: PMC10935874 DOI: 10.1186/s12964-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The programmed cell death 1 (PD-1) signaling pathway, a key player in immune checkpoint regulation, has become a focal point in cancer immunotherapy. In the context of cancer, upregulated PD-L1 on tumor cells can result in T cell exhaustion and immune evasion, fostering tumor progression. The advent of PD-1/PD-L1 inhibitor has demonstrated clinical success by unleashing T cells from exhaustion. Nevertheless, challenges such as resistance and adverse effects have spurred the exploration of innovative strategies, with bispecific antibodies (BsAbs) emerging as a promising frontier. BsAbs offer a multifaceted approach to cancer immunotherapy by simultaneously targeting PD-L1 and other immune regulatory molecules. We focus on recent advancements in PD-1/PD-L1 therapy with a particular emphasis on the development and potential of BsAbs, especially in the context of solid tumors. Various BsAb products targeting PD-1 signaling are discussed, highlighting their unique mechanisms of action and therapeutic potential. Noteworthy examples include anti-TGFβ × PD-L1, anti-CD47 × PD-L1, anti-VEGF × PD-L1, anti-4-1BB × PD-L1, anti-LAG-3 × PD-L1, and anti-PD-1 × CTLA-4 BsAbs. Besides, we summarize ongoing clinical studies evaluating the efficacy and safety of these innovative BsAb agents. By unraveling the intricacies of the tumor microenvironment and harnessing the synergistic effects of anti-PD-1/PD-L1 BsAbs, there exists the potential to elevate the precision and efficacy of cancer immunotherapy, ultimately enabling the development of personalized treatment strategies tailored to individual patient profiles.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
25
|
Zhang H, Wang Q, Yalavarthi S, Pekar L, Shamnoski S, Hu L, Helming L, Zielonka S, Xu C. Development of a c-MET x CD137 bispecific antibody for targeted immune agonism in cancer immunotherapy. Cancer Treat Res Commun 2024; 39:100805. [PMID: 38492435 DOI: 10.1016/j.ctarc.2024.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Targeting the costimulatory receptor CD137 has shown promise as a therapeutic approach for cancer immunotherapy, resulting in anti-tumor efficacy demonstrated in clinical trials. However, the initial CD137 agonistic antibodies, urelumab and utomilumab, faced challenges in clinical trials due to the liver toxicity or lack of efficacy, respectively. Concurrently, c-MET has been identified as a highly expressed tumor-associated antigen (TAA) in various solid and soft tumors. METHODS In this study, we aimed to develop a bispecific antibody (BsAb) that targets both c-MET and CD137, optimizing the BsAb format and CD137 binder for efficient delivery of the CD137 agonist to the tumor microenvironment (TME). We employed a monovalent c-MET motif and a trimeric CD137 Variable Heavy domain of Heavy chain (VHH) for the BsAb design. RESULTS Our results demonstrate that the c-MET x CD137 BsAb provides co-stimulation to T cells through cross-linking by c-MET-expressing tumor cells. Functional immune assays confirmed the enhanced efficacy and potency of the c-MET x CD137 BsAb, as indicated by activation of CD137 signaling, target cell killing, and cytokine release in various tumor cell lines. Furthermore, the combination of c-MET x CD137 BsAb with Pembrolizumab showed a dose-dependent enhancement of target-induced T cell cytokine release. CONCLUSION Overall, the c-MET x CD137 BsAb exhibits a promising developability profile as a tumor-targeted immune agonist by minimizing off-target effects while effectively delivering immune agonism. It has the potential to overcome resistance to anti-PD-(L)1 therapies.
Collapse
Affiliation(s)
- Hong Zhang
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Qun Wang
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Sireesha Yalavarthi
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Lukas Pekar
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Steven Shamnoski
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Liufang Hu
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Laura Helming
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Chunxiao Xu
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA.
| |
Collapse
|
26
|
Na K, Lee S, Kim DK, Kim YS, Hwang JY, Kang SS, Baek S, Lee CY, Yang SM, Han YJ, Kim MH, Han H, Kim Y, Kim JH, Jeon S, Byeon Y, Lee JB, Lim SM, Hong MH, Pyo KH, Cho BC. CD81 and CD82 expressing tumor-infiltrating lymphocytes in the NSCLC tumor microenvironment play a crucial role in T-cell activation and cytokine production. Front Immunol 2024; 15:1336246. [PMID: 38515751 PMCID: PMC10954780 DOI: 10.3389/fimmu.2024.1336246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.
Collapse
Affiliation(s)
- Kwangmin Na
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Dong Kwon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Young Seob Kim
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Yeon Hwang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-San Kang
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Republic of Korea
| | - Sujeong Baek
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chai Young Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Min Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Jin Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Hyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heekyung Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngtaek Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seunghyun Jeon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngseon Byeon
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Cassanello G, Luna de Abia A, Falchi L. Trial watch: bispecific antibodies for the treatment of relapsed or refractory large B-cell lymphoma. Oncoimmunology 2024; 13:2321648. [PMID: 38445082 PMCID: PMC10913711 DOI: 10.1080/2162402x.2024.2321648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Immunotherapy has shaped the treatment approach to diffuse large B-cell lymphoma (DLBCL), with rituximab leading to remarkable improvements in outcomes for both relapsed and treatment-naïve patients. Recently, groundbreaking immunotherapies like chimeric antigen receptor T-cells have entered the treatment arena for relapsed/refractory (R/R) DLBCL and gained regulatory approval in several countries. The concept of harnessing a patient's own T-cells to combat cancer has been further explored through the development of bispecific antibodies (BsAbs), a class of engineered antibody products designed to simultaneously target two different antigens. These novel drugs have demonstrated impressive single-agent activity and manageable toxicity in patients with heavily pretreated B-cell non-Hodgkin lymphoma. In this review, we provide an up-to-date overview of recently completed or ongoing BsAbs trials in patients with R/R DLBCL, including single-agent results, emerging combination data, and novel constructs.
Collapse
Affiliation(s)
- Giulio Cassanello
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, USA
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alejandro Luna de Abia
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, USA
- Hematology Service, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Lorenzo Falchi
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
28
|
Li C, Zhu Y, Shi S. Effective prognostic risk model with cuproptosis-related genes in laryngeal cancer. Braz J Otorhinolaryngol 2024; 90:101384. [PMID: 38228050 PMCID: PMC10823110 DOI: 10.1016/j.bjorl.2023.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVE Laryngeal cancer, characterized by high recurrence rates and a lack of effective biomarkers, has been associated with cuproptosis, a regulated cell death process linked to cancer progression. In this study, we aimed to explore the roles of cuproptosis-related genes in laryngeal cancer and their potential as prognostic markers and therapeutic targets. METHODS We collected comprehensive data from The Cancer Genome Atlas and Gene Expression Omnibus databases, including gene expression profiles and clinical data of laryngeal cancer patients. Using clustering and gene analysis, we identified cuproptosis-related genes with prognostic significance. A risk model was constructed based on these genes, categorizing patients into high- and low-risk groups for outcome comparison. Univariate and multivariate analyses were conducted to identify independent prognostic factors, which were then incorporated into a nomogram. Gene Set Enrichment Analysis was employed to explore pathways distinguishing high- and low-risk groups. RESULTS Our risk model, based on four genes, including transmembrane 2, dishevelled binding antagonist of β-catenin 1, stathmin 2, and G protein-coupled receptor 173, revealed significant differences in patient outcomes between high- and low-risk groups. Independent prognostic factors were identified and integrated into a nomogram, providing a valuable tool for prognostic prediction. Gene Set Enrichment Analysis uncovered up-regulated pathways specifically associated with high-risk patient samples. CONCLUSION This study highlights the potential of cuproptosis-related genes as valuable prognostic markers and promising therapeutic targets in the context of laryngeal cancer. This research sheds light on new avenues for understanding and managing this challenging disease. LEVEL OF EVIDENCE Level 4.
Collapse
Affiliation(s)
- Cong Li
- Shanghai Jiao Tong University School of Medicine, Tongren Hospital, Department of Otorhinolaryngology, Shanghai, China
| | - Yongzhi Zhu
- Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Song Shi
- Shanghai Jiao Tong University School of Medicine, Tongren Hospital, Department of Otorhinolaryngology, Shanghai, China.
| |
Collapse
|
29
|
Regmi M, Wang Y, Liu W, Dai Y, Liu S, Ma K, Lin G, Yang J, Liu H, Wu J, Yang C. From glioma gloom to immune bloom: unveiling novel immunotherapeutic paradigms-a review. J Exp Clin Cancer Res 2024; 43:47. [PMID: 38342925 PMCID: PMC10860318 DOI: 10.1186/s13046-024-02973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024] Open
Abstract
In tumor therapeutics, the transition from conventional cytotoxic drugs to targeted molecular therapies, such as those targeting receptor tyrosine kinases, has been pivotal. Despite this progress, the clinical outcomes have remained modest, with glioblastoma patients' median survival stagnating at less than 15 months. This underscores the urgent need for more specialized treatment strategies. Our review delves into the progression toward immunomodulation in glioma treatment. We dissect critical discoveries in immunotherapy, such as spotlighting the instrumental role of tumor-associated macrophages, which account for approximately half of the immune cells in the glioma microenvironment, and myeloid-derived suppressor cells. The complex interplay between tumor cells and the immune microenvironment has been explored, revealing novel therapeutic targets. The uniqueness of our review is its exhaustive approach, synthesizing current research to elucidate the intricate roles of various molecules and receptors within the glioma microenvironment. This comprehensive synthesis not only maps the current landscape but also provides a blueprint for refining immunotherapy for glioma, signifying a paradigm shift toward leveraging immune mechanisms for improved patient prognosis.
Collapse
Affiliation(s)
- Moksada Regmi
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
| | - Yingjie Wang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Yuwei Dai
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Shikun Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Ke Ma
- Peking University Health Science Center, Beijing, 100191, China
| | - Guozhong Lin
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Hongyi Liu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Jian Wu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China.
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China.
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China.
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China.
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
| |
Collapse
|
30
|
Zhao WB, Shen Y, Cai GX, Li YM, Liu WH, Wu JC, Xu YC, Chen SQ, Zhou Z. Superantigen-fused T cell engagers for tumor antigen-mediated robust T cell activation and tumor cell killing. Mol Ther 2024; 32:490-502. [PMID: 38098228 PMCID: PMC10861957 DOI: 10.1016/j.ymthe.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023] Open
Abstract
Inadequate T cell activation has severely limited the success of T cell engager (TCE) therapy, especially in solid tumors. Enhancing T cell activity while maintaining the tumor specificity of TCEs is the key to improving their clinical efficacy. However, currently, there needs to be more effective strategies in clinical practice. Here, we design novel superantigen-fused TCEs that display robust tumor antigen-mediated T cell activation effects. These innovative drugs are not only armed with the powerful T cell activation ability of superantigens but also retain the dependence of TCEs on tumor antigens, realizing the ingenious combination of the advantages of two existing drugs. Superantigen-fused TCEs have been preliminarily proven to have good (>30-fold more potent) and specific (>25-fold more potent) antitumor activity in vitro and in vivo. Surprisingly, they can also induce the activation of T cell chemotaxis signals, which may promote T cell infiltration and further provide an additional guarantee for improving TCE efficacy in solid tumors. Overall, this proof-of-concept provides a potential strategy for improving the clinical efficacy of TCEs.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Ying Shen
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Guo-Xin Cai
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Ming Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hui Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing-Cheng Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying-Chun Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Qing Chen
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhan Zhou
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China; The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| |
Collapse
|
31
|
Xu C, Zhou X, Webb L, Yalavarthi S, Zheng W, Saha S, Schweickhardt R, Soloviev M, Jenkins MH, Brandstetter S, Belousova N, Alimzhanov M, Rabinovich B, Deshpande AM, Brewis N, Helming L. M9657 Is a Bispecific Tumor-Targeted Anti-CD137 Agonist That Induces MSLN-Dependent Antitumor Immunity without Liver Inflammation. Cancer Immunol Res 2024; 12:195-213. [PMID: 38091375 DOI: 10.1158/2326-6066.cir-23-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The costimulatory receptor CD137 (also known as TNFRSF9 or 4-1BB) sustains effective cytotoxic T-cell responses. Agonistic anti-CD137 cancer immunotherapies are being investigated in clinical trials. Development of the first-generation CD137-agonist monotherapies utomilumab and urelumab was unsuccessful due to low antitumor efficacy mediated by the epitope recognized on CD137 or hepatotoxicity mediated by Fcγ receptors (FcγR) ligand-dependent CD137 activation, respectively. M9657 was engineered as a tetravalent bispecific antibody (mAb2) in a human IgG1 backbone with LALA mutations to reduce binding to FCγRs. Here, we report that M9657 selectively binds to mesothelin (MSLN) and CD137 with similar affinity in humans and cynomolgus monkeys. In a cellular functional assay, M9657 enhanced CD8+ T cell-mediated cytotoxicity and cytokine release in the presence of tumor cells, which was dependent on both MSLN expression and T-cell receptor/CD3 activation. Both FS122m, a murine surrogate with the same protein structure as M9657, and chimeric M9657, a modified M9657 antibody with the Fab portion replaced with an anti-murine MSLN motif, demonstrated in vivo antitumor efficacy against various tumors in wild-type and human CD137 knock-in mice, and this was accompanied by activated CD8+ T-cell infiltration in the tumor microenvironment. The antitumor immunity of M9657 and FS122m depended on MSLN expression density and the mAb2 structure. Compared with 3H3, a murine surrogate of urelumab, FS122m and chimeric M9657 displayed significantly lower on-target/off-tumor toxicity. Taken together, M9657 exhibits a promising profile for development as a tumor-targeting immune agonist with potent anticancer activity without systemic immune activation and associated hepatotoxicity.
Collapse
Affiliation(s)
- Chunxiao Xu
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Xueyuan Zhou
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Lindsay Webb
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | | | - Wenxin Zheng
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Somdutta Saha
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Rene Schweickhardt
- Discovery and Development Technologies, EMD Serono, Billerica, Massachusetts
| | - Maria Soloviev
- Discovery and Development Technologies, EMD Serono, Billerica, Massachusetts
| | - Molly H Jenkins
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | | | | | | | | | | | - Neil Brewis
- F-star Therapeutics, Cambridge, United Kingdom
| | - Laura Helming
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| |
Collapse
|
32
|
Singh R, Kim YH, Lee SJ, Eom HS, Choi BK. 4-1BB immunotherapy: advances and hurdles. Exp Mol Med 2024; 56:32-39. [PMID: 38172595 PMCID: PMC10834507 DOI: 10.1038/s12276-023-01136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Since its initial description 35 years ago as an inducible molecule expressed in cytotoxic and helper T cells, 4-1BB has emerged as a crucial receptor in T-cell-mediated immune functions. Numerous studies have demonstrated the involvement of 4-1BB in infection and tumor immunity. However, the clinical development of 4-1BB agonist antibodies has been impeded by the occurrence of strong adverse events, notably hepatotoxicity, even though these antibodies have exhibited tremendous promise in in vivo tumor models. Efforts are currently underway to develop a new generation of agonist antibodies and recombinant proteins with modified effector functions that can harness the potent T-cell modulation properties of 4-1BB while mitigating adverse effects. In this review, we briefly examine the role of 4-1BB in T-cell biology, explore its clinical applications, and discuss future prospects in the field of 4-1BB agonist immunotherapy.
Collapse
Affiliation(s)
- Rohit Singh
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Young-Ho Kim
- Diagnostics and Therapeutics Technology Branch, Division of Technology Convergence, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Sang-Jin Lee
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyeon-Seok Eom
- Hematological Malignancy Center, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Beom K Choi
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea.
- Innobationbio, Co., Ltd., Mapo-gu, Seoul, 03929, Republic of Korea.
| |
Collapse
|
33
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
34
|
Keri D, Walker M, Singh I, Nishikawa K, Garces F. Next generation of multispecific antibody engineering. Antib Ther 2024; 7:37-52. [PMID: 38235376 PMCID: PMC10791046 DOI: 10.1093/abt/tbad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This added capability through protein design allows these man-made molecules to address unmet medical needs that are no longer possible with single targeting such as with monoclonal antibodies or cytokines alone. However, the approach to the development of these multispecific molecules has been met with numerous road bumps, which suggests that a new workflow for multispecific molecules is required. The investigation of the molecular basis that mediates the successful assembly of the building blocks into non-native quaternary structures will lead to the writing of a playbook for multispecifics. This is a must do if we are to design workflows that we can control and in turn predict success. Here, we reflect on the current state-of-the-art of therapeutic biologics and look at the building blocks, in terms of proteins, and tools that can be used to build the foundations of such a next-generation workflow.
Collapse
Affiliation(s)
- Daniel Keri
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Matt Walker
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Isha Singh
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Kyle Nishikawa
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Fernando Garces
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| |
Collapse
|
35
|
Surowka M, Klein C. A pivotal decade for bispecific antibodies? MAbs 2024; 16:2321635. [PMID: 38465614 PMCID: PMC10936642 DOI: 10.1080/19420862.2024.2321635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Bispecific antibodies (bsAbs) are a class of antibodies that can mediate novel mechanisms of action compared to monospecific monoclonal antibodies (mAbs). Since the discovery of mAbs and their adoption as therapeutic agents in the 1980s and 1990s, the development of bsAbs has held substantial appeal. Nevertheless, only three bsAbs (catumaxomab, blinatumomab, emicizumab) were approved through the end of 2020. However, since then, 11 bsAbs received regulatory agency approvals, of which nine (amivantamab, tebentafusp, mosunetuzumab, cadonilimab, teclistamab, glofitamab, epcoritamab, talquetamab, elranatamab) were approved for the treatment of cancer and two (faricimab, ozoralizumab) in non-oncology indications. Notably, of the 13 currently approved bsAbs, two, emicizumab and faricimab, have achieved blockbuster status, showing the promise of this novel class of therapeutics. In the 2020s, the approval of additional bsAbs can be expected in hematological malignancies, solid tumors and non-oncology indications, establishing bsAbs as essential part of the therapeutic armamentarium.
Collapse
Affiliation(s)
- Marlena Surowka
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Roche Glycart AG, Schlieren, Switzerland
| |
Collapse
|
36
|
Seckinger A, Majocchi S, Moine V, Nouveau L, Ngoc H, Daubeuf B, Ravn U, Pleche N, Calloud S, Broyer L, Cons L, Lesnier A, Chatel L, Papaioannou A, Salgado-Pires S, Krämer S, Gockel I, Lordick F, Masternak K, Poitevin Y, Magistrelli G, Malinge P, Shang L, Kallendrusch S, Strein K, Hose D. Development and characterization of NILK-2301, a novel CEACAM5xCD3 κλ bispecific antibody for immunotherapy of CEACAM5-expressing cancers. J Hematol Oncol 2023; 16:117. [PMID: 38087365 PMCID: PMC10717981 DOI: 10.1186/s13045-023-01516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND T-cell retargeting to eliminate CEACAM5-expressing cancer cells via CEACAM5xCD3 bispecific antibodies (BsAbs) showed limited clinical activity so far, mostly due to insufficient T-cell activation, dose-limiting toxicities, and formation of anti-drug antibodies (ADA). METHODS We present here the generation and preclinical development of NILK-2301, a BsAb composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). RESULTS NILK-2301 binds CD3ɛ on T-cells with its lambda light chain arm with an affinity of ≈100 nM, and the CEACAM5 A2 domain on tumor cells by its kappa light chain arm with an affinity of ≈5 nM. FcγR-binding is abrogated by the "LALAPA" mutation (Leu234Ala, Leu235Ala, Pro329Ala). NILK-2301 induced T-cell activation, proliferation, cytokine release, and T-cell dependent cellular cytotoxicity of CEACAM5-positive tumor cell lines (5/5 colorectal, 2/2 gastric, 2/2 lung), e.g., SK-CO-1 (Emax = 89%), MKN-45 (Emax = 84%), and H2122 (Emax = 97%), with EC50 ranging from 0.02 to 0.14 nM. NILK-2301 binds neither to CEACAM5-negative or primary colon epithelial cells nor to other CEACAM family members. NILK-2301 alone or in combination with checkpoint inhibition showed activity in organotypic tumor tissue slices and colorectal cancer organoid models. In vivo, NILK-2301 at 10 mg/kg significantly delayed tumor progression in colon- and a pancreatic adenocarcinoma model. Single-dose pharmacokinetics (PK) and tolerability in cynomolgus monkeys at 0.5 or 10 mg/kg intravenously or 20 mg subcutaneously showed dose-proportional PK, bioavailability ≈100%, and a projected half-life in humans of 13.1 days. NILK-2301 was well-tolerated. Data were confirmed in human FcRn TG32 mice. CONCLUSIONS In summary, NILK-2301 combines promising preclinical activity and safety with lower probability of ADA-generation due to its format compared to other molecules and is scheduled to enter clinical testing at the end of 2023.
Collapse
Affiliation(s)
- Anja Seckinger
- LamKap Bio Alpha AG, Bahnhofstrasse 1, 8808, Pfäffikon, SZ, Switzerland
| | - Sara Majocchi
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Valéry Moine
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Lise Nouveau
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Hoang Ngoc
- Institute of Anatomy, Leipzig University, Liebigstrasse 13, 04103, Leipzig, Germany
| | - Bruno Daubeuf
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Ulla Ravn
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Nicolas Pleche
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Sebastien Calloud
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Lucile Broyer
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Laura Cons
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Adeline Lesnier
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Laurence Chatel
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Anne Papaioannou
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Susana Salgado-Pires
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Sebastian Krämer
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Florian Lordick
- Department of Medicine II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Liebigstrasse 22, 04103, Leipzig, Germany
| | - Krzysztof Masternak
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Yves Poitevin
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Giovanni Magistrelli
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Pauline Malinge
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Limin Shang
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Sonja Kallendrusch
- Institute of Anatomy, Leipzig University, Liebigstrasse 13, 04103, Leipzig, Germany
- Institute of Clinical Research and System Medicine, Health and Medical University Potsdam, Schiffbauergasse 14, 14467, Potsdam, Germany
| | - Klaus Strein
- LamKap Bio Alpha AG, Bahnhofstrasse 1, 8808, Pfäffikon, SZ, Switzerland
| | - Dirk Hose
- LamKap Bio Alpha AG, Bahnhofstrasse 1, 8808, Pfäffikon, SZ, Switzerland.
| |
Collapse
|
37
|
Wang B, Liu Y, Yuan R, Dou X, Qian N, Pan X, Xu G, Xu Q, Dong B, Yang C, Li H, Wang J, Bai G, Liu L, Gao X. XFab-α4-1BB/CD40L fusion protein activates dendritic cells, improves expansion of antigen-specific T cells, and exhibits antitumour efficacy in multiple solid tumour models. Cancer Immunol Immunother 2023; 72:4015-4030. [PMID: 37863852 PMCID: PMC10991239 DOI: 10.1007/s00262-023-03535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Additional immunotherapies are still warranted for non-responders to checkpoint inhibitors with refractory or relapsing cancers, especially for patients with "cold" tumours lacking significant immune infiltration at treatment onset. We developed XFab-α4-1BB/CD40L, a bispecific antibody targeting 4-1BB and CD40 for dendritic cell activation and priming of tumour-reactive T cells to inhibit tumours. METHODS XFab-α4-1BB/CD40L was developed by engineering an anti-4-1BB Fab arm into a CD40L trimer based on XFab® platform. Characterisation of the bispecific antibody was performed by cell-based reporter assays, maturation of dendritic cell assays, and mixed lymphocyte reactions. The abilities of antigen-specific T-cell expansion and antitumour efficacy were assessed in syngeneic mouse tumour models. Toxicological and pharmacodynamic profiles were investigated in non-human primates. RESULTS XFab-α4-1BB/CD40L demonstrated independent CD40 agonistic activity and conditional 4-1BB activity mediated by CD40 crosslinking, leading to dendritic cell maturation and T-cell proliferation in vitro. We confirmed the expansion of antigen-specific T cells in the vaccination model and potent tumour regression induced by the bispecific antibody alone or in combination with gemcitabine in vivo, concomitant with improved tumour-reactive T-cell infiltration. XFab-α4-1BB/CD40L showed no signs of liver toxicity at doses up to 51 mg/kg in a repeated-dose regimen in non-human primates. CONCLUSIONS XFab-α4-1BB/CD40L is capable of enhancing antitumour immunity by modulating dendritic cell and T-cell functions via targeting 4-1BB agonism to areas of CD40 expression. The focused, potent, and safe immune response induced by the bispecific antibody supports further clinical investigations for the treatment of solid tumours.
Collapse
Affiliation(s)
- Bochun Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Yujie Liu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Ruofei Yuan
- Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xiaoqian Dou
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Niliang Qian
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Xiujie Pan
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Guili Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Qinzhi Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Bo Dong
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Cuima Yang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Hongjie Li
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Jingjing Wang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Guijun Bai
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Xin Gao
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing, 100141, People's Republic of China.
| |
Collapse
|
38
|
Sánchez J, Claus C, Albrecht R, Gaillard BC, Marinho J, McIntyre C, Tanos T, Boehnke A, Friberg LE, Jönsson S, Frances N. A model-based approach leveraging in vitro data to support dose selection from the outset: A framework for bispecific antibodies in immuno-oncology. CPT Pharmacometrics Syst Pharmacol 2023; 12:1804-1818. [PMID: 37964753 PMCID: PMC10681425 DOI: 10.1002/psp4.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
FAP-4-1BBL is a bispecific antibody exerting 4-1BB-associated T-cell activation only while simultaneously bound to the fibroblast activation protein (FAP) receptor, expressed on the surface of cancer-associated fibroblasts. The trimeric complex formed when FAP-4-1BBL is simultaneously bound to FAP and 4-1BB represents a promising mechanism to achieve tumor-specific 4-1BB stimulation. We integrated in vitro data with mathematical modeling to characterize the pharmacology of FAP-4-1BBL as a function of trimeric complex formation when combined with the T-cell engager cibisatamab. This relationship was used to prospectively predict a range of clinical doses where trimeric complex formation is expected to be at its maximum. Depending on the dosing schedule and FAP-4-1BBL plasma: tumor distribution, doses between 2 and 145 mg could lead to maximum trimeric complex formation in the clinic. Due to the expected variability in both pharmacokinetic and FAP expression in the patient population, we predict that detecting a clear dose-response relationship would remain difficult without a large number of patients per dose level, highlighting that mathematical modeling techniques based on in vitro data could aid dose selection.
Collapse
Affiliation(s)
- Javier Sánchez
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
- Department of PharmacyUppsala UniversityUppsalaSweden
| | - Christina Claus
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Rosmarie Albrecht
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Brenda C. Gaillard
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Joana Marinho
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Christine McIntyre
- Roche Pharma Research and Early DevelopmentRoche Innovation Center WelwynWelwyn Garden CityUK
| | - Tamara Tanos
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| | - Axel Boehnke
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| | | | - Siv Jönsson
- Department of PharmacyUppsala UniversityUppsalaSweden
| | - Nicolas Frances
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| |
Collapse
|
39
|
Hartmann KP, van Gogh M, Freitag PC, Kast F, Nagy-Davidescu G, Borsig L, Plückthun A. FAP-retargeted Ad5 enables in vivo gene delivery to stromal cells in the tumor microenvironment. Mol Ther 2023; 31:2914-2928. [PMID: 37641405 PMCID: PMC10556229 DOI: 10.1016/j.ymthe.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Fibroblast activation protein (FAP) is a cell surface serine protease that is highly expressed on reactive stromal fibroblasts, such as cancer-associated fibroblasts (CAFs), and generally absent in healthy adult tissues. FAP expression in the tumor stroma has been detected in more than 90% of all carcinomas, rendering CAFs excellent target cells for a tumor site-specific adenoviral delivery of cancer therapeutics. Here, we present a tropism-modified human adenovirus 5 (Ad5) vector that targets FAP through trivalent, designed ankyrin repeat protein-based retargeting adapters. We describe the development and validation of these adapters via cell-based screening assays and demonstrate adapter-mediated Ad5 retargeting to FAP+ fibroblasts in vitro and in vivo. We further show efficient in vivo delivery and in situ production of a therapeutic payload by CAFs in the tumor microenvironment (TME), resulting in attenuated tumor growth. We thus propose using our FAP-Ad5 vector to convert CAFs into a "biofactory," secreting encoded cancer therapeutics into the TME to enable a safe and effective cancer treatment.
Collapse
Affiliation(s)
- K Patricia Hartmann
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Merel van Gogh
- Department of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrick C Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gabriela Nagy-Davidescu
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
40
|
Battin C, De Sousa Linhares A, Leitner J, Grossmann A, Lupinek D, Izadi S, Castilho A, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Stritzker J, Steinberger P. Engineered soluble, trimerized 4-1BBL variants as potent immunomodulatory agents. Cancer Immunol Immunother 2023; 72:3029-3043. [PMID: 37310433 PMCID: PMC10412504 DOI: 10.1007/s00262-023-03474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Targeting co-stimulatory receptors promotes the activation and effector functions of anti-tumor lymphocytes. 4-1BB (CD137/TNFSF9), a member of the tumor necrosis factor receptor superfamily (TNFR-SF), is a potent co-stimulatory receptor that plays a prominent role in augmenting effector functions of CD8+ T cells, but also CD4+ T cells and NK cells. Agonistic antibodies against 4-1BB have entered clinical trials and shown signs of therapeutic efficacy. Here, we have used a T cell reporter system to evaluate various formats of 4-1BBL regarding their capacity to functionally engage its receptor. We found that a secreted 4-1BBL ectodomain harboring a trimerization domain derived from human collagen (s4-1BBL-TriXVIII) is a strong inducer of 4-1BB co-stimulation. Similar to the 4-1BB agonistic antibody urelumab, s4-1BBL-TriXVIII is very potent in inducing CD8+ and CD4+ T cell proliferation. We provide first evidence that s4-1BBL-TriXVIII can be used as an effective immunomodulatory payload in therapeutic viral vectors. Oncolytic measles viruses encoding s4-1BBL-TriXVIII significantly reduced tumor burden in a CD34+ humanized mouse model, whereas measles viruses lacking s4-1BBL-TriXVIII were not effective. Natural soluble 4-1BB ligand harboring a trimerization domain might have utility in tumor therapy especially when delivered to tumor tissue as systemic administration might induce liver toxicity.
Collapse
Affiliation(s)
- Claire Battin
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Annika De Sousa Linhares
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna Grossmann
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Daniela Lupinek
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Shiva Izadi
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Jochen Stritzker
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.
- Loop Lab Bio GmbH, Vienna, Austria.
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
41
|
Shen X, Zhang R, Nie X, Yang Y, Hua Y, Lü P. 4-1BB Targeting Immunotherapy: Mechanism, Antibodies, and Chimeric Antigen Receptor T. Cancer Biother Radiopharm 2023; 38:431-444. [PMID: 37433196 DOI: 10.1089/cbr.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
4-1BB (CD137, TNFRSF9) is a type I transmembrane protein which binds its natural ligand, 4-1BBL. This interaction has been exploited to improve cancer immunotherapy. With ligand binding by 4-1BB, the nuclear factor-kappa B signaling pathway is activated, which results in transcription of corresponding genes such as interleukin-2 and interferon-γ, as well as the induction of T cell proliferation and antiapoptotic signals. Moreover, monoclonal antibodies that target-4-1BB, for example, Urelumab and Utomilumab, are widely used in the treatments of B cell non-Hodgkin lymphoma, lung cancer, breast cancer, soft tissue sarcoma, and other solid tumors. Furthermore, 4-1BB as a costimulatory domain, for chimeric antigen receptor T (CAR-T) cells, improves T cell proliferation and survival as well as reduces T cell exhaustion. As such, a deeper understanding of 4-1BB will contribute to improvements in cancer immunotherapy. This review provides a comprehensive analysis of current 4-1BB studies, with a focus on the use of targeting-4-1BB antibodies and 4-1BB activation domains in CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaoling Shen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaojuan Nie
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
42
|
Glez-Vaz J, Azpilikueta A, Ochoa MC, Olivera I, Gomis G, Cirella A, Luri-Rey C, Álvarez M, Pérez-Gracia JL, Ciordia S, Eguren-Santamaria I, Alexandru R, Berraondo P, de Andrea C, Teijeira Á, Corrales F, Zapata JM, Melero I. CD137 (4-1BB) requires physically associated cIAPs for signal transduction and antitumor effects. SCIENCE ADVANCES 2023; 9:eadf6692. [PMID: 37595047 PMCID: PMC11044178 DOI: 10.1126/sciadv.adf6692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
CD137 (4-1BB) is a member of the TNFR family that mediates potent T cell costimulatory signals upon ligation by CD137L or agonist monoclonal antibodies (mAbs). CD137 agonists attain immunotherapeutic antitumor effects in cancer mouse models, and multiple agents of this kind are undergoing clinical trials. We show that cIAP1 and cIAP2 are physically associated with the CD137 signaling complex. Moreover, cIAPs are required for CD137 signaling toward the NF-κB and MAPK pathways and for costimulation of human and mouse T lymphocytes. Functional evidence was substantiated with SMAC mimetics that trigger cIAP degradation and by transfecting cIAP dominant-negative variants. Antitumor effects of agonist anti-CD137 mAbs are critically dependent on the integrity of cIAPs in cancer mouse models, and cIAPs are also required for signaling from CARs encompassing CD137's cytoplasmic tail.
Collapse
Affiliation(s)
- Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - María C. Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Asunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maite Álvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose L. Pérez-Gracia
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Raluca Alexandru
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carlos de Andrea
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | - Juan M. Zapata
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), CSIC-UAM, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
44
|
Leitner J, Egerer R, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Steinberger P. FcγR requirements and costimulatory capacity of Urelumab, Utomilumab, and Varlilumab. Front Immunol 2023; 14:1208631. [PMID: 37575254 PMCID: PMC10413977 DOI: 10.3389/fimmu.2023.1208631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Targeting costimulatory receptors of the tumor necrosis factor receptor (TNFR) superfamily with agonistic antibodies is a promising approach in cancer immuno therapy. It is known that their efficacy strongly depends on FcγR cross-linking. Methods In this study, we made use of a Jurkat-based reporter platform to analyze the influence of individual FcγRs on the costimulatory activity of the 41BB agonists, Urelumab and Utomilumab, and the CD27 agonist, Varlilumab. Results We found that Urelumab (IgG4) can activate 41BB-NFκB signaling without FcγR cross-linking, but the presence of the FcγRs (CD32A, CD32B, CD64) augments the agonistic activity of Urelumab. The human IgG2 antibody Utomilumab exerts agonistic function only when crosslinked via CD32A and CD32B. The human IgG1 antibody Varlilumab showed strong agonistic activity with all FcγRs tested. In addition, we analyzed the costimulatory effects of Urelumab, Utomilumab, and Varlilumab in primary human peripheral blood mononuclear cells (PBMCs). Interestingly, we observed a very weak capacity of Varlilumab to enhance cytokine production and proliferation of CD4 and CD8 T cells. In the presence of Varlilumab the percentage of annexin V positive T cells was increased, indicating that this antibody mediated FcγR-dependent cytotoxic effects. Conclusion Collectively, our data underscore the importance to perform studies in reductionist systems as well as in primary PBMC samples to get a comprehensive understanding of the activity of costimulation agonists.
Collapse
Affiliation(s)
- Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ricarda Egerer
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Shen A, Liu W, Wang H, Zeng X, Wang M, Zhang D, Zhao Q, Fang Q, Wang F, Cheng L, Shen G, Li Y. A novel 4-1BB/HER2 bispecific antibody shows potent antitumor activities by increasing and activating tumor-infiltrating T cells. Am J Cancer Res 2023; 13:3246-3256. [PMID: 37559991 PMCID: PMC10408481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023] Open
Abstract
Resistance to HER2-targeted therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB/CD137 is a promising drug target as a costimulatory molecule of immune cells, no therapeutic drug has been approved in the clinic because of systemic toxicity or limited efficacy. Previously, we developed a humanized anti-HER2 monoclonal antibody (mAb) HuA21 and anti-4-1BB mAb HuB6 with distinct antigen epitopes for cancer therapy. Here, we generated an Fc-muted IgG4 HER2/4-1BB bispecific antibody (BsAb) HK006 by the fusion of HuB6 scFv and HuA21 Fab. HK006 exhibited synergistic antitumor activity by blocking HER2 signal transduction and stimulating the 4-1BB signaling pathway simultaneously and strictly dependent on HER2 expression in vitro and in vivo. Strikingly, HK006 treatment enhanced antitumor immunity by increasing and activating tumor-infiltrating T cells. Moreover, HK006 did not induce nonspecific production of proinflammatory cytokines and had no obvious toxicity in mice. Overall, these data demonstrated that HK006 should be a promising candidate for HER2-positive cancer immunotherapy.
Collapse
Affiliation(s)
- Aolin Shen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
| | - Wenting Liu
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Mengli Wang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Liansheng Cheng
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd.Hefei 230088, Anhui, China
| | - Guodong Shen
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
46
|
van de Donk NWCJ, Zweegman S. T-cell-engaging bispecific antibodies in cancer. Lancet 2023; 402:142-158. [PMID: 37271153 DOI: 10.1016/s0140-6736(23)00521-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 06/06/2023]
Abstract
T-cell-engaging bispecific antibodies (BsAbs) simultaneously bind to antigens on tumour cells and CD3 subunits on T cells. This simultaneous binding results in the recruitment of T cells to the tumour, followed by T-cell activation and degranulation, and tumour cell elimination. T-cell-engaging BsAbs have shown substantial activity in several haematological malignancies by targeting CD19 in acute lymphoblastic leukaemia, CD20 in B-cell non-Hodgkin lymphoma, and BCMA and GPRC5D in multiple myeloma. Progress with solid tumours has been slower, in part due to the paucity of therapeutic targets with a tumour-specific expression profile, which is needed to limit on-target off-tumour side-effects. Nevertheless, BsAb-mediated recognition of a peptide fragment of gp100 presented by HLA-A2:01 molecules has shown marked activity in patients with unresectable or metastatic uveal melanoma. Cytokine release syndrome is the most frequent toxicity associated with BsAb treatment and is caused by activated T cells secreting proinflammatory cytokines. Understanding of resistance mechanisms has resulted in the development of new T cell-redirecting formats and novel combination strategies, which are expected to further improve depth and duration of response.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Amsterdam University Medical Centres, Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands.
| | - Sonja Zweegman
- Amsterdam University Medical Centres, Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
47
|
Apollonio B, Spada F, Petrov N, Cozzetto D, Papazoglou D, Jarvis P, Kannambath S, Terranova-Barberio M, Amini RM, Enblad G, Graham C, Benjamin R, Phillips E, Ellis R, Nuamah R, Saqi M, Calado DP, Rosenquist R, Sutton LA, Salisbury J, Zacharioudakis G, Vardi A, Hagner PR, Gandhi AK, Bacac M, Claus C, Umana P, Jarrett RF, Klein C, Deutsch A, Ramsay AG. Tumor-activated lymph node fibroblasts suppress T cell function in diffuse large B cell lymphoma. J Clin Invest 2023; 133:e166070. [PMID: 37219943 PMCID: PMC10313378 DOI: 10.1172/jci166070] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP). RNA-Seq analyses revealed that exposure to DLBCL reprogrammed key immunoregulatory pathways in FRCs, including a switch from homeostatic to inflammatory chemokine expression and elevated antigen-presentation molecules. Functional assays showed that DLBCL-activated FRCs (DLBCL-FRCs) hindered optimal TIL and chimeric antigen receptor (CAR) T cell migration. Moreover, DLBCL-FRCs inhibited CD8+ TIL cytotoxicity in an antigen-specific manner. Notably, the interrogation of patient LNs with imaging mass cytometry identified distinct environments differing in their CD8+ TIL-FRC composition and spatial organization that associated with survival outcomes. We further demonstrated the potential to target inhibitory FRCs to rejuvenate interacting TILs. Cotreating organotypic cultures with FAP-targeted immunostimulatory drugs and a bispecific antibody (glofitamab) augmented antilymphoma TIL cytotoxicity. Our study reveals an immunosuppressive role of FRCs in DLBCL, with implications for immune evasion, disease pathogenesis, and optimizing immunotherapy for patients.
Collapse
Affiliation(s)
- Benedetta Apollonio
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | | | | | - Domenico Cozzetto
- BRC Translational Bioinformatics at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Despoina Papazoglou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Peter Jarvis
- 5th Surgical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Shichina Kannambath
- BRC Genomics Research Platform at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
| | | | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University and Hospital, Uppsala, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University and Hospital, Uppsala, Sweden
| | - Charlotte Graham
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Reuben Benjamin
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Elisabeth Phillips
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | | | - Rosamond Nuamah
- BRC Genomics Research Platform at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Mansoor Saqi
- BRC Translational Bioinformatics at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Dinis P. Calado
- Immunity & Cancer Laboratory, Francis Crick Institute, London, United Kingdom
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lesley A. Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jon Salisbury
- Department of Haematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Anna Vardi
- Hematology Department and HCT Unit, G. Papanikolaou Hospital, Thessaloniki, Greece
| | | | | | - Marina Bacac
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Pablo Umana
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Ruth F. Jarrett
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | | - Alan G. Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
48
|
Liu G, Luo P. Targeting CD137 (4-1BB) towards improved safety and efficacy for cancer immunotherapy. Front Immunol 2023; 14:1208788. [PMID: 37334375 PMCID: PMC10272836 DOI: 10.3389/fimmu.2023.1208788] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
T cells play a critical role in antitumor immunity, where T cell activation is regulated by both inhibitory and costimulatory receptor signaling that fine-tune T cell activity during different stages of T cell immune responses. Currently, cancer immunotherapy by targeting inhibitory receptors such as CTLA-4 and PD-1/L1, and their combination by antagonist antibodies, has been well established. However, developing agonist antibodies that target costimulatory receptors such as CD28 and CD137/4-1BB has faced considerable challenges, including highly publicized adverse events. Intracellular costimulatory domains of CD28 and/or CD137/4-1BB are essential for the clinical benefits of FDA-approved chimeric antigen receptor T cell (CAR-T) therapies. The major challenge is how to decouple efficacy from toxicity by systemic immune activation. This review focuses on anti-CD137 agonist monoclonal antibodies with different IgG isotypes in clinical development. It discusses CD137 biology in the context of anti-CD137 agonist drug discovery, including the binding epitope selected for anti-CD137 agonist antibody in competition or not with CD137 ligand (CD137L), the IgG isotype of antibodies selected with an impact on crosslinking by Fc gamma receptors, and the conditional activation of anti-CD137 antibodies for safe and potent engagement with CD137 in the tumor microenvironment (TME). We discuss and compare the potential mechanisms/effects of different CD137 targeting strategies and agents under development and how rational combinations could enhance antitumor activities without amplifying the toxicity of these agonist antibodies.
Collapse
Affiliation(s)
- Guizhong Liu
- Adagene Inc., San Diego, CA, United States
- Adagene (Suzhou) Limited., Suzhou, China
| | - Peter Luo
- Adagene Inc., San Diego, CA, United States
- Adagene (Suzhou) Limited., Suzhou, China
| |
Collapse
|
49
|
Cheng LS, Zhu M, Gao Y, Liu WT, Yin W, Zhou P, Zhu Z, Niu L, Zeng X, Zhang D, Fang Q, Wang F, Zhao Q, Zhang Y, Shen G. An Fc-muted bispecific antibody targeting PD-L1 and 4-1BB induces antitumor immune activity in colorectal cancer without systemic toxicity. Cell Mol Biol Lett 2023; 28:47. [PMID: 37259060 DOI: 10.1186/s11658-023-00461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.
Collapse
Affiliation(s)
- Lian-Sheng Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Min Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yan Gao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Pengfei Zhou
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Zhongliang Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Liwen Niu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Yan Zhang
- School of Health Service Management, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|
50
|
Atay C, Medina-Echeverz J, Hochrein H, Suter M, Hinterberger M. Armored modified vaccinia Ankara in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:87-142. [PMID: 37541728 DOI: 10.1016/bs.ircmb.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Cancer immunotherapy relies on unleashing the patient´s immune system against tumor cells. Cancer vaccines aim to stimulate both the innate and adaptive arms of immunity to achieve durable clinical responses. Some roadblocks for a successful cancer vaccine in the clinic include the tumor antigen of choice, the adjuvants employed to strengthen antitumor-specific immune responses, and the risks associated with enhancing immune-related adverse effects in patients. Modified vaccinia Ankara (MVA) belongs to the family of poxviruses and is a versatile vaccine platform that combines several attributes crucial for cancer therapy. First, MVA is an excellent inducer of innate immune responses leading to type I interferon secretion and induction of T helper cell type 1 (Th1) immune responses. Second, it elicits robust and durable humoral and cellular immunity against vector-encoded heterologous antigens. Third, MVA has enormous genomic flexibility, which allows for the expression of multiple antigenic and costimulatory entities. And fourth, its replication deficit in human cells ensures a excellent safety profile. In this review, we summarize the current understanding of how MVA induces innate and adaptive immune responses. Furthermore, we will give an overview of the tumor-associated antigens and immunomodulatory molecules that have been used to armor MVA and describe their clinical use. Finally, the route of MVA immunization and its impact on therapeutic efficacy depending on the immunomodulatory molecules expressed will be discussed.
Collapse
Affiliation(s)
- Cigdem Atay
- Bavarian Nordic GmbH, Fraunhoferstr.13, Planegg, Germany
| | | | | | - Mark Suter
- Prof. em. University of Zurich, Switzerland
| | | |
Collapse
|