1
|
Ding X, Zhou Y, Qiu X, Xu X, Hu X, Qin J, Chen Y, Zhang M, Ke J, Liu Z, Zhou Y, Ding C, Shen N, Tian Z, Fu B, Wei H. RSAD2: A pathogenic interferon-stimulated gene at the maternal-fetal interface of patients with systemic lupus erythematosus. Cell Rep Med 2025:101974. [PMID: 39983716 DOI: 10.1016/j.xcrm.2025.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Pregnancy disorders in patients with autoimmune diseases or viral infections are often associated with an excessive response of type I interferons. We identify radical S-adenosyl methionine domain containing 2 (RSAD2) as a pathogenic interferon-stimulated gene (ISG) associated with pregnancy complications in systemic lupus erythematosus (SLE). The increased expression of RSAD2 mainly occurs in macrophages and structural cell populations at the maternal-fetal interface of pregnant patients with SLE. The elevation of RSAD2 leads to the accumulation of diacylglycerol lipids in the placenta, impairing the necessary vascular development for the fetus. Depletion of Rsad2 in pregnant mice models exposed to type I interferon inducers significantly reduces lipid accumulation, vascular injury, and embryo development disorders. An RSAD2 inhibitor, L-chicoric acid (LCA), alleviates lipid accumulation and vascular damage, improving pregnancy outcomes in SLE-induced and spontaneous mouse models. This study proposes the potential of targeting RSAD2 to improve pregnancy outcomes in individuals with heightened type I interferon response.
Collapse
Affiliation(s)
- Xiaoyu Ding
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Xiaofeng Qiu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiuxiu Xu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xinyu Hu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jingkun Qin
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yulan Chen
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhenbang Liu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chen Ding
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Zhigang Tian
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Haiming Wei
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Zhou T, Zhang Q, Yu W, Cui Y, Yan J, Ni T, Fu X, Li J. Exploration of ferroptosis-related biomarkers with prognostic capability in RIF based on WGCNA. J Assist Reprod Genet 2024:10.1007/s10815-024-03370-9. [PMID: 39715942 DOI: 10.1007/s10815-024-03370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE To explore the association of ferroptosis with repeated implantation failure (RIF) and prognostic capability of ferroptosis-related genes. METHODS Data in GSE106602 from the GEO database were used for gene co-expression network construction to confirm ferroptosis-related genes compared to gene sets that were downloaded from FerrDB. Then these genes were analyzed for functional enrichment and validated using endometrium samples from our center. ImplantScore and ROC curve were constructed for prognostic correlation analysis. RESULTS We observed that ferroptosis probably participated in RIF according to bioinformatics analysis on a gene set which exhibited a strong association with RIF from WGCNA. Fifty-four ferroptosis-related genes in the gene set were subsequently verified, and the PPI network was established for underlying interactions among them. There were 23 hub genes with differential expression in RIF and six of them (PML, LCN2, PRKAA1, BACH1, SLC7A11, and CAMKK2) showed significant correlation with implantation outcomes using samples collected from our center. Therefore, we combined the six genes and constructed an ImplantScore whose AUC reached 0.891, higher than the AUC of each single gene, respectively. ImplantScore of six genes with down-regulated expression in the group with failed implantation were much lower than that with successful outcome. CONCLUSION Our results demonstrated the potential prognostic functions of ferroptosis-related biomarkers in RIF, which will provide novel perspectives for further research and clinical applications.
Collapse
Affiliation(s)
- Tingting Zhou
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qian Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Wenhao Yu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Yuqian Cui
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Tianxiang Ni
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Xiaohua Fu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Junwei Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zhang Y, Yang L, Yang D, Cai S, Wang Y, Wang L, Li Y, Li L, Yin T, Diao L. Understanding the heterogeneity of natural killer cells at the maternal-fetal interface: implications for pregnancy health and disease. Mol Hum Reprod 2024; 30:gaae040. [PMID: 39570646 DOI: 10.1093/molehr/gaae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Natural killer (NK) cells are the most abundant leukocytes located at the maternal-fetal interface; they respond to pregnancy-related hormones and play a pivotal role in maintaining the homeostatic micro-environment during pregnancy. However, due to the high heterogeneity of NK cell subsets, their categorization has been controversial. Here, we review previous studies on uterine NK cell subsets, including the classic categorization based on surface markers, functional molecules, and developmental stages, as well as single-cell RNA sequencing-based clustering approaches. In addition, we summarize the potential pathways by which endometrial NK cells differentiate into decidual NK (dNK) cells, as well as the differentiation pathways of various dNK subsets. Finally, we compared the alterations in the NK cell subsets in various pregnancy-associated diseases, emphasizing the possible contribution of specific subsets to the development of the disease.
Collapse
Affiliation(s)
- Yuying Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Liangtao Yang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Dongyong Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Yanjun Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Linlin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| |
Collapse
|
4
|
Chen S, Zhang J, Chen J, Ke J, Huang Y, Du X, Fu B, Wei H. Compromised C3b-VSIG4 axis between decidual NK cells and macrophages contributes to recurrent spontaneous abortion. J Transl Med 2024; 22:1017. [PMID: 39529122 PMCID: PMC11556194 DOI: 10.1186/s12967-024-05829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
NK cells and macrophages constitute the predominant immune cell subsets in the decidua during the first trimester of pregnancy, with macrophages typically adopting an anti-inflammatory phenotype. Conversely, in the third trimester, macrophages undergo a shift towards a pro-inflammatory phenotype concurrent with a reduction in NK cell numbers. The direct regulatory impact of NK cells on macrophage phenotype remains poorly explored. In our investigation, we observed that ICAM1+ macrophages stimulate the expression of intracellular C3 in LFA1+ decidual NK cells. Notably, Cathepsin W within NK cells exhibit the potential to generate active C3b fragments, effectively inhibit the proinflammatory phenotype of macrophages by binding to VSIG4. Our study unveils a direct regulatory mechanism orchestrated by decidual NK cells over macrophages, providing a potential pathogenic explanation for recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Siao Chen
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Jinghe Zhang
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Chen
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Intensive Care Unit, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Jieqi Ke
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Huang
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianghui Du
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Binqing Fu
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
| | - Haiming Wei
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Asiimwe R, Knott B, Greene ME, Wright E, Bell M, Epstein D, Yates SD, Gonzalez MV, Fry S, Boydston E, Clevenger S, Locke JE, Brocato BE, Burgan CM, Burney R, Arora N, Duncan VE, Richter HE, Gunn D, Freud AG, Little SC, Porrett PM. Inhibition of NFAT promotes loss of tissue resident uterine natural killer cells and attendant pregnancy complications in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583906. [PMID: 38559147 PMCID: PMC10979847 DOI: 10.1101/2024.03.07.583906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Uterine natural killer cells (uNKs) are a tissue resident lymphocyte population that are critical for pregnancy success. Although mouse models have demonstrated that NK deficiency results in abnormal placentation and poor pregnancy outcomes, the generalizability of this knowledge to humans remains unclear. Here we identify uterus transplant (UTx) recipients as a human population with reduced uNK cells and altered pregnancy phenotypes. We show that the NK reduction in UTx correlates with impaired transcriptional programming of NK tissue residency arising from the inhibition of NFAT-mediated signaling. Our observations suggest that NFAT-dependent genes modulate multiple molecular tissue residency programs in uNKs. These include early residency programs involving AP-1-family transcription factors and TGF-β-mediated upregulation of surface integrins. Collectively, our data identify a previously undescribed role for NFAT in uterine NK tissue residency and provide novel mechanistic insights into the biologic basis of pregnancy complications due to alteration of tissue resident NK subsets in humans. One Sentence Summary Role of NFAT in uterine NK cell tissue residency.
Collapse
|
6
|
Wang J, Chai Q, Lei Z, Wang Y, He J, Ge P, Lu Z, Qiang L, Zhao D, Yu S, Qiu C, Zhong Y, Li BX, Zhang L, Pang Y, Gao GF, Liu CH. LILRB1-HLA-G axis defines a checkpoint driving natural killer cell exhaustion in tuberculosis. EMBO Mol Med 2024; 16:1755-1790. [PMID: 39030302 PMCID: PMC11319715 DOI: 10.1038/s44321-024-00106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Chronic infections, including Mycobacterium tuberculosis (Mtb)-caused tuberculosis (TB), can induce host immune exhaustion. However, the key checkpoint molecules involved in this process and the underlying regulatory mechanisms remain largely undefined, which impede the application of checkpoint-based immunotherapy in infectious diseases. Here, through adopting time-of-flight mass cytometry and transcriptional profiling to systematically analyze natural killer (NK) cell surface receptors, we identify leukocyte immunoglobulin like receptor B1 (LILRB1) as a critical checkpoint receptor that defines a TB-associated cell subset (LILRB1+ NK cells) and drives NK cell exhaustion in TB. Mechanistically, Mtb-infected macrophages display high expression of human leukocyte antigen-G (HLA-G), which upregulates and activates LILRB1 on NK cells to impair their functions by inhibiting mitogen-activated protein kinase (MAPK) signaling via tyrosine phosphatases SHP1/2. Furthermore, LILRB1 blockade restores NK cell-dependent anti-Mtb immunity in immuno-humanized mice. Thus, LILRB1-HLA-G axis constitutes a NK cell immune checkpoint in TB and serves as a promising immunotherapy target.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yiru Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jiehua He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Yu
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Changgen Qiu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhao Zhong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Xi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yu Pang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Liu M, Xing Y, Tan J, Chen X, Xue Y, Qu L, Ma J, Jin X. Comprehensive summary: the role of PBX1 in development and cancers. Front Cell Dev Biol 2024; 12:1442052. [PMID: 39129784 PMCID: PMC11310070 DOI: 10.3389/fcell.2024.1442052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.
Collapse
Affiliation(s)
- Mingsheng Liu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yan Xing
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jiufeng Tan
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xiaoliang Chen
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yaming Xue
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Licheng Qu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jianchao Ma
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xuefei Jin
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| |
Collapse
|
8
|
Lv S, Chen M, Li Z, Huang Z, Wan S, Kuang S, Peng L, Ye J, Yang M, Li J, He Y. Blocking OLFM4/galectin-3 axis in placental polymorphonuclear myeloid-derived suppressor cells triggers intestinal inflammation in newborns. Int Immunopharmacol 2024; 133:112058. [PMID: 38613883 DOI: 10.1016/j.intimp.2024.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Fetal growth restriction (FGR) is a major cause of premature and low-weight births, which increases the risk of necrotizing enterocolitis (NEC); however, the association remains unclear. We report a close correlation between placental polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and NEC. Newborns with previous FGR exhibited intestinal inflammation and more severe NEC symptoms than healthy newborns. Placental PMN-MDSCs are vital regulators of fetal development and neonatal gut inflammation. Placental single-cell transcriptomics revealed that PMN-MDSCs populations and olfactomedin-4 gene (Olfm4) expression levels were significantly increased in PMN-MDSCs in later pregnancy compared to those in early pregnancy and non-pregnant females. Female mice lacking Olfm4 in myeloid cells mated with wild-type males showed FGR during pregnancy, with a decreased placental PMN-MDSCs population and expression of growth-promoting factors (GPFs) from placental PMN-MDSCs. Galectin-3 (Gal-3) stimulated the OLFM4-mediated secretion of GPFs by placental PMN-MDSCs. Moreover, GPF regulation via OLFM4 in placental PMN-MDSCs was mediated via hypoxia inducible factor-1α (HIF-1α). Notably, the offspring of mothers lacking Olfm4 exhibited intestinal inflammation and were susceptible to NEC. Additionally, OLFM4 expression decreased in placental PMN-MDSCs from pregnancies with FGR and was negatively correlated with neonatal morbidity. These results revealed that placental PMN-MDSCs contributed to fetal development and ameliorate newborn intestinal inflammation.
Collapse
Affiliation(s)
- Shuaijun Lv
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zhengcong Huang
- Department of Immunology, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuo Wan
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, China
| | - Shuyi Kuang
- Department of Immunology, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Laiqin Peng
- Department of Gynecology and Obstetrics, Huizhou Central People's Hospital, Huizhou, China
| | - Jiaxiu Ye
- Department of Gynecology and Obstetrics, Huizhou Central People's Hospital, Huizhou, China
| | - Meixiang Yang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Immunology, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Fang Z, Mao J, Huang J, Sun H, Lu X, Lei H, Dong J, Chen S, Wang X. Increased levels of villus-derived exosomal miR-29a-3p in normal pregnancy than uRPL patients suppresses decidual NK cell production of interferon-γ and exerts a therapeutic effect in abortion-prone mice. Cell Commun Signal 2024; 22:230. [PMID: 38627796 PMCID: PMC11022359 DOI: 10.1186/s12964-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE Recurrent pregnancy loss (RPL) patients have higher absolute numbers of decidual natural killer (dNK) cells with elevated intracellular IFN-γ levels leading to a pro-inflammatory cytokine milieu, which contributes to RPL pathogenesis. The main objective of this study was twofold: first to explore the regulatory effects and mechanisms of villus-derived exosomes (vEXOs) from induced abortion patients or RPL patients at the level of intracellular IFN-γ in dNK cells; second to determine the validity of application of vEXOs in the treatment of unexplained RPL (uRPL) through in vitro experiments and mouse models. METHODS Exosomes were isolated from villus explants by ultracentrifugation, co-cultured with dNK cells, and purified by enzymatic digestion and magnetically activated cell sorting. Flow cytometry, enzyme-linked immunosorbent assays, and RT-qPCR were used to determine IFN-γ levels. Comparative miRNA analysis of vEXOs from induced abortion (IA) and uRPL patients was used to screen potential candidates involved in dNK regulation, which was further confirmed by luciferase reporter assays. IA-vEXOs were electroporated with therapeutic miRNAs and encapsulated in a China Food and Drug Administration (CFDA)-approved hyaluronate gel (HA-Gel), which has been used as a clinical biomaterial in cell therapy for > 30 years. In vivo tracking was performed using 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyaine iodide (DiR) labelling. Tail-vein and uterine horn injections were used to evaluate therapeutic effects of the engineered exosomes in an abortion-prone mouse model (CBA/J × DBA/2 J). Placental growth was evaluated based on placental weight. IFN-γ mRNA levels in mouse placentas were measured by RT-qPCR. RESULTS IFN-γ levels were significantly higher in dNK cells of uRPL patients than in IA patients. Both uRPL-vEXOs and IA-vEXOs could be efficiently internalized by dNK cells, whereas uRPL-vEXOs could not reduce the expression of IFN-γ by dNK cells as much as IA-vEXOs. Mechanistically, miR-29a-3p was delivered by vEXOs to inhibit IFN-γ production by binding to the 3' UTR of IFN-γ mRNA in dNK cells. For in vivo treatment, application of the HA-Gel effectively prolonged the residence time of vEXOs in the uterine cavity via sustained release. Engineered vEXOs loaded with miR-29a-3p reduced the embryo resorption rate in RPL mice with no signs of systemic toxicity. CONCLUSION Our study provides the first evidence that villi can regulate dNK cell production of IFN-γ via exosome-mediated transfer of miR-29a-3p, which deepens our understanding of maternal-fetal immune tolerance for pregnancy maintenance. Based on this, we developed a new strategy to mix engineered vEXOs with HA-Gel, which exhibited good therapeutic effects in mice with uRPL and could be used for potential clinical applications in uRPL treatment.
Collapse
Affiliation(s)
- Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiaqin Mao
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Huijun Sun
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xueyan Lu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hui Lei
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Dong
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shuqiang Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| | - Xiaohong Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
10
|
Crisafulli L, Brindisi M, Liturri MG, Sobacchi C, Ficara F. PBX1: a TALE of two seasons-key roles during development and in cancer. Front Cell Dev Biol 2024; 12:1372873. [PMID: 38404687 PMCID: PMC10884236 DOI: 10.3389/fcell.2024.1372873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Pre-B cell leukemia factor 1 (PBX1) is a Three Aminoacid Loop Extension (TALE) homeodomain-containing transcription factor playing crucial roles in organ pattering during embryogenesis, through the formation of nuclear complexes with other TALE class and/or homeobox proteins to regulate target genes. Its contribution to the development of several organs has been elucidated mainly through the study of murine knockout models. A crucial role for human development has been recently highlighted through the discovery of different de novo pathogenic PBX1 variants in children affected by developmental defects. In the adult, PBX1 is expressed in selected tissues such as in the brain, in the gastro-intestinal and urinary systems, or in hematopoietic stem and progenitor cells, while in other organs is barely detectable. When involved in the t(1;19) chromosomal translocation it acts as an oncogene, since the resulting fusion protein drives pre-B cell leukemia, due to the induction of target genes not normally targeted by the native protein. Its aberrant expression has been associated to tumor development, progression, or therapy-resistance as in breast cancer, ovarian cancer or myeloproliferative neoplasm (MPN). On the other hand, in colorectal cancer PBX1 functions as a tumor suppressor, highlighting its context-dependent role. We here discuss differences and analogies of PBX1 roles during embryonic development and in cancer, focusing mainly on the most recent discoveries.
Collapse
Affiliation(s)
- Laura Crisafulli
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | - Matteo Brindisi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | | | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| |
Collapse
|
11
|
Zhang F, Wang Z, Lian R, Diao L, Li Y, Wu Y, Yin T, Huang C. Intrauterine perfusion of dexamethasone improves pregnancy outcomes in recurrent reproductive failure patients with elevated uterine natural killer cells. A retrospective cohort study. Am J Reprod Immunol 2023; 90:e13796. [PMID: 38009055 DOI: 10.1111/aji.13796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023] Open
Abstract
OBJECTIVE To determine the effect of intrauterine perfusion of dexamethasone (DXM) on pregnancy outcomes in recurrent reproductive failure (RRF) patients with elevated uNK cells. METHODS This retrospective cohort study included 132 RRF patients with elevated uNK cells: 56 patients received DXM treatment and 76 patients refused it in the frozen-thawed embryo transfer cycles. To determine the efficacy of intrauterine perfusion of DXM, multivariate logistic regression models and diagnosis-based subgroup analysis were performed. We also compared the pregnancy outcomes of patients with different responsiveness to DXM treatment. RESULTS Intrauterine perfusion of DXM significantly improved clinical pregnancy rate (aOR: 3.188, 95% CI: 1.395-7.282, P = .006) and live birth rate (aOR: 3.176, 95% CI: 1.318-7.656, P = .010) in RRF patients with elevated uNK cells, but there was no significant association with miscarriage rate. Subgroup analysis revealed that intrauterine perfusion of DXM in patients with recurrent implantation failure (RIF) showed significant improvement in clinical pregnancy rate (aOR: 6.110, 95% CI: 1.511-24.713, P = .011) and live birth rate (aOR: 9.904, 95% CI: 1.963-49.968, P = .005), but there was insufficient evidence of benefit in recurrent pregnancy loss (RPL) patients. Additionally, uNK cell levels dropped to normal range was achieved in only 35.90% of RRF patients after DXM treatment, no significant difference was found in pregnancy outcomes among patients with different responsiveness to DXM treatment (all P > .05). CONCLUSION Intrauterine perfusion of DXM was a promising and effective treatment to enhance clinical pregnancy rate and live birth rate in RRF women with abnormally elevated uNK cells, and RIF patients are more likely to benefit than RPL patients.
Collapse
Affiliation(s)
- Feng Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhuran Wang
- Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruochun Lian
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Yuye Li
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Yaya Wu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong, China
| | - Chunyu Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Shen Q, Gong W, Pan X, Cai J, Jiang Y, He M, Zhao S, Li Y, Yuan X, Li J. Comprehensive Analysis of CircRNA Expression Profiles in Multiple Tissues of Pigs. Int J Mol Sci 2023; 24:16205. [PMID: 38003395 PMCID: PMC10671760 DOI: 10.3390/ijms242216205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with diverse functions, and previous studies have reported that circRNAs are involved in the growth and development of pigs. However, studies about porcine circRNAs over the past few years have focused on a limited number of tissues. Based on 215 publicly available RNA sequencing (RNA-seq) samples, we conducted a comprehensive analysis of circRNAs in nine pig tissues, namely, the gallbladder, heart, liver, longissimus dorsi, lung, ovary, pituitary, skeletal muscle, and spleen. Here, we identified a total of 82,528 circRNAs and discovered 3818 novel circRNAs that were not reported in the CircAtlas database. Moreover, we obtained 492 housekeeping circRNAs and 3489 tissue-specific circRNAs. The housekeeping circRNAs were enriched in signaling pathways regulating basic biological tissue activities, such as chromatin remodeling, nuclear-transcribed mRNA catabolic process, and protein methylation. The tissue-specific circRNAs were enriched in signaling pathways related to tissue-specific functions, such as muscle system process in skeletal muscle, cilium organization in pituitary, and cortical cytoskeleton in ovary. Through weighted gene co-expression network analysis, we identified 14 modules comprising 1377 hub circRNAs. Additionally, we explored circRNA-miRNA-mRNA networks to elucidate the interaction relationships between tissue-specific circRNAs and tissue-specific genes. Furthermore, our conservation analysis revealed that 19.29% of circRNAs in pigs shared homologous positions with their counterparts in humans. In summary, this extensive profiling of housekeeping, tissue-specific, and co-expressed circRNAs provides valuable insights into understanding the molecular mechanisms of pig transcriptional expression, ultimately deepening our understanding of genetic and biological processes.
Collapse
Affiliation(s)
- Qingpeng Shen
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Wentao Gong
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Jiali Cai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Yao Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Mingran He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Shanghui Zhao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Yipeng Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| |
Collapse
|
13
|
Silva FA, Picorelli ACR, Veiga GS, Nery MF. Patterns of enrichment and acceleration in evolutionary rates of promoters suggest a role of regulatory regions in cetacean gigantism. BMC Ecol Evol 2023; 23:62. [PMID: 37872505 PMCID: PMC10594719 DOI: 10.1186/s12862-023-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Cetaceans (whales, porpoises, and dolphins) are a lineage of aquatic mammals from which some species became giants. Only recently, gigantism has been investigated from the molecular point of view. Studies focused mainly on coding regions, and no data on the influence of regulatory regions on gigantism in this group was available. Accordingly, we investigated the molecular evolution of non-coding regulatory regions of genes already described in the literature for association with size in mammals, focusing mainly on the promoter regions. For this, we used Ciiider and phyloP tools. Ciiider identifies significantly enriched transcription factor binding sites, and phyloP estimates the molecular evolution rate of the promoter. RESULTS We found evidence of enrichment of transcription binding factors related to large body size, with distinct patterns between giant and non-giant cetaceans in the IGFBP7 and NCAPG promoters, in which repressive agents are present in small cetaceans and those that stimulate transcription, in giant cetaceans. In addition, we found evidence of acceleration in the IGF2, IGFBP2, IGFBP7, and ZFAT promoters. CONCLUSION Our results indicate that regulatory regions may also influence cetaceans' body size, providing candidate genes for future research to understand the molecular basis of the largest living animals.
Collapse
Affiliation(s)
- Felipe A Silva
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Agnello C R Picorelli
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Giovanna S Veiga
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Mariana F Nery
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|
14
|
Said EA, Al-Dughaishi S, Al-Hatmi W, Al-Reesi I, Al-Balushi MS, Al-Bimani A, Al-Busaidi JZ, Al-Riyami M, Al-Khabori M, Al-Kindi S, Procopio FA, Al-Sinawi S, Al-Ansari A, Koh CY, Al-Naamani K, Al-Jabri AA. Differential Production of Midkine and Pleiotrophin by Innate APCs upon Stimulation through Nucleic Acid-Sensing TLRs. J Immunol Res 2023; 2023:7944102. [PMID: 37850119 PMCID: PMC10578979 DOI: 10.1155/2023/7944102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 10/19/2023] Open
Abstract
Midkine (MK) and pleiotrophin (PTN) belong to the same family of cytokines. They have similar sequences and functions. Both have important roles in cellular proliferation, tumors, and diseases. They regulate and are expressed by some immune cells. We have recently demonstrated MK production by some human innate antigen-presenting cells (iAPCs), i.e., monocyte-derived dendritic cells (MDDCs) and macrophages stimulated through Toll-like receptor (TLR)-4, and plasmacytoid dendritic cells (pDCs) stimulated through TLR 7. While PTN production was only documented in tissue macrophages. TLRs 3, 7, 8, and 9 are nucleic acid sensing (NAS) TLRs that detect nucleic acids from cell damage and infection and induce iAPC responses. We investigated whether NAS TLRs can induce MK and PTN production by human iAPCs, namely monocytes, macrophages, MDDCs, myeloid dendritic cells (mDCs), and pDCs. Our results demonstrated for the first time that PTN is produced by all iAPCs upon TLR triggering (p < 0.01). IAPCs produced more PTN than MK (p < 0.01). NAS TLRs and iAPCs had differential abilities to induce the production of MK, which was induced in monocytes and pDCs by all NAS TLRs (p < 0.05) and in MDDCs by TLRs 7/8 (p < 0.05). TLR4 induced a stronger MK production than NAS TLRs (p ≤ 0.05). Monocytes produced higher levels of PTN after differentiation to macrophages and MDDCs (p < 0.05). The production of MK and PTN differs among iAPCs, with a higher production of PTN and a selective induction of MK production by NAS TLR. This highlights the potentially important role of iAPCs in angiogenesis, tumors, infections, and autoimmunity through the differential production of MK and PTN upon TLR triggering.
Collapse
Affiliation(s)
- Elias A. Said
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Sumaya Al-Dughaishi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Wadha Al-Hatmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Iman Al-Reesi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed S. Al-Balushi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Atika Al-Bimani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Juma Z. Al-Busaidi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Marwa Al-Riyami
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Murtadha Al-Khabori
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Salam Al-Kindi
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Francesco A. Procopio
- Service of Immunology and Allergy, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Shadia Al-Sinawi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Aliyaa Al-Ansari
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Crystal Y. Koh
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Ali A. Al-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
15
|
Park YP, Roach T, Soh S, Zeumer-Spataro L, Choi SC, Ostrov DA, Yang Y, Morel L. Molecular Mechanisms of Lupus Susceptibility Allele PBX1D. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:727-734. [PMID: 37486226 PMCID: PMC10530199 DOI: 10.4049/jimmunol.2300362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Pre-B cell leukemia homeobox 1 (PBX1) controls chromatin accessibility to a large number of genes in various cell types. Its dominant negative splice isoform, PBX1D, which lacks the DNA and Hox-binding domains, is expressed more frequently in the CD4+ T cells from lupus-prone mice and patients with systemic lupus erythematosus than healthy control subjects. PBX1D overexpression in CD4+ T cells impaired regulatory T cell homeostasis and expanded inflammatory CD4+ T cells. In this study, we showed that PBX1 message expression is downregulated by activation in CD4+ T cells as well as in B cells. PBX1D protein was less stable than the normal isoform, PBX1B, and it is degraded through the ubiquitin-proteasome-dependent pathway. The DNA binding domain lacking in PBX1D has two putative ubiquitin binding sites, K292 and K293, that are predicted to be in direct contact with DNA. Mutation of K292-293 reduced PBX1B stability to a level similar to PBX1D and abrogated DNA binding. In addition, contrary to PBX1B, PBX1D is retained in the cytoplasm without the help of the cofactors MEIS or PREP1, indicating a different requirement for nuclear translocation. Overall, these findings suggest that multiple post-transcriptional mechanisms are responsible for PBX1D loss of function and induction of CD4+ T cell inflammatory phenotypes in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Tracoyia Roach
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL32610, USA
| | - Sujung Soh
- Research Institute of Women’s Health, Sookmyung Women’s University, 100 Cheongparo 47-gil, Yongsan-Gu, Seoul 04310, South Korea, USA
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL32610, USA
| | - Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL32610, USA
| | - Young Yang
- Research Institute of Women’s Health, Sookmyung Women’s University, 100 Cheongparo 47-gil, Yongsan-Gu, Seoul 04310, South Korea, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| |
Collapse
|
16
|
Jin F, Liu W, Cheng G, Cai S, Yin T, Diao L. The function of decidua natural killer cells in physiology and pathology of pregnancy. Am J Reprod Immunol 2023; 90:e13755. [PMID: 37641369 DOI: 10.1111/aji.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
The role of decidual natural killer (dNK) cells in maintaining immune tolerance at the maternal-fetal interface during pregnancy is a significant topic in reproductive health. Immune tolerance is essential for a successful pregnancy and involves a complex immune response involving various immune cells and molecules. DNK cells comprise the largest population of lymphocyte subsets found in the decidua and play important roles in maintaining immune tolerance. These cells exert multiple functions to maintain homeostasis of the decidual microenvironment, including modulation of trophoblast invasion, promotion of fetal development, regulation of endometrial decidualization and spiral artery remodeling. DNK cells can also be divided into different subsets based on their functions as NKtolerant , NKcytotoxic , and NKregulatory cells. However, the relationship between dNK cells function and pregnancy outcomes is complex and poorly understood. In this review, we will focus on the physiological role of dNK cells during pregnancy and highlight the potential role in pathological pregnancies and therapeutic approaches.
Collapse
Affiliation(s)
- Fangfang Jin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Guan Cheng
- Department of Clinical Laboratory, Institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Mao J, Feng Y, Zhu X, Ma F. The Molecular Mechanisms of HLA-G Regulatory Function on Immune Cells during Early Pregnancy. Biomolecules 2023; 13:1213. [PMID: 37627278 PMCID: PMC10452754 DOI: 10.3390/biom13081213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical human major histocompatibility complex (MHC-I) molecule with the membrane-bound and soluble types. HLA-G is primarily expressed by extravillous cytotrophoblast cells located at the maternal-fetal interface during pregnancy and is essential in establishing immune tolerance. This review provides a comprehensive understanding of the multiple molecular mechanisms by which HLA-G regulates the immune function of NK cells. It highlights that HLA-G binds to microRNA to suppress NK cell cytotoxicity and stimulate the secretion of growth factors to support fetal growth. The interactions between HLA-G and NK cells also activate senescence signaling, promoting spiral artery remodeling and maintaining the balance of maternal-fetal immune responses. In addition, HLA-G can inhibit the function of decidual T cells, dendritic cells, and macrophages. Overall, the interaction between trophoblast cells and immune cells mediated by HLA-G plays a crucial role in understanding immune regulation at the maternal-fetal interface and offers insights into potential treatments for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jia Mao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ying Feng
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Zou F, Liu M, Sui Y, Liu J. Comprehensive overview of the role of PBX1 in mammalian kidneys. Front Mol Biosci 2023; 10:1106370. [PMID: 37006624 PMCID: PMC10063971 DOI: 10.3389/fmolb.2023.1106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) is a member of the TALE (three-amino acid loop extension) family and functions as a homeodomain transcription factor (TF). When dimerized with other TALE proteins, it can act as a pioneer factor and provide regulatory sequences via interaction with partners. In vertebrates, PBX1 is expressed during the blastula stage, and its germline variations in humans are interrelated with syndromic anomalies of the kidney, which plays an important role in hematopoiesis and immunity among vertebrates. Herein, we summarize the existing data on PBX1 functions and the impact of PBX1 on renal tumors, PBX1-deficient animal models, and blood vessels in mammalian kidneys. The data indicated that the interaction of PBX1 with different partners such as the HOX genes is responsible for abnormal proliferation and variation of the embryonic mesenchyme, while truncating variants were shown to cause milder phenotypes (mostly cryptorchidism and deafness). Although such interactions have been identified to be the cause of many defects in mammals, some phenotypic variations are yet to be understood. Thus, further research on the TALE family is required.
Collapse
Affiliation(s)
- Fei Zou
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- Department of Pediatrics, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Mingsheng Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Yutong Sui
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Jinyu Liu,
| |
Collapse
|
19
|
An X, Qin J, Hu X, Zhou Y, Fu B, Wei H. Overexpression of lipocalin 2 in PBX1-deficient decidual NK cells promotes inflammation at the maternal-fetal interface. Am J Reprod Immunol 2023; 89:e13676. [PMID: 36621850 DOI: 10.1111/aji.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023] Open
Abstract
PROBLEM Impairment of PBX1 expression in decidual natural killer (dNK) cells is associated with the pathogenesis of unexplained recurrent spontaneous abortion, which results in fetal growth restriction (FGR) by affecting the secretion of downstream growth factors. However, whether other mechanisms limit embryo growth in decidua containing PBX1-deficient natural killer (NK) cells is unknown. METHOD OF STUDY Pbx1f/f ; Ncr1Cre mice were employed to explore the underlying mechanisms by which PBX1- NK cells affect embryonic development. To simulate the clinical testing of pregnant women, Doppler ultrasound imaging was used to detect embryo implantation and development. Differentially expressed genes (DEGs) in PBX1- NK cells that may affect normal pregnancy were screened using RNA-sequencing and real-time PCR. Immune cell changes caused by DEGs were detected by flow cytometry. Finally, the mechanism of FGR was explored by injecting the protein LCN2, corresponding to the selected DEG, into mice. RESULTS We verified the embryonic dysplasia in pregnant Pbx1f/f ; Ncr1Cre mice by Doppler ultrasound imaging and found that LCN2 was upregulated in dNK cells. We also observed higher infiltration of neutrophils and macrophages in the decidua of Pbx1f/f ; Ncr1Cre mice. Finally, we found an increase in the number and activation of neutrophils at the maternal-fetal interface after injecting LCN2 into pregnant mice and observed that these mice showed signs of FGR. CONCLUSION Excessive LCN2 secreted by PBX1- dNK cells at the maternal-fetal interface recruit neutrophils and causes an inflammatory response, which is related to FGR.
Collapse
Affiliation(s)
- Xue An
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jingkun Qin
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xinyu Hu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Liu T, Feng J, Sun Z, He M, Sun L, Dong S, Guo Z, Zhang G. Inhibition of miR-141-3p attenuates apoptosis of neural stem cells via targeting PBX1 to regulate PROK2 transcription in MCAO mice. Cell Cycle 2023; 22:403-418. [PMID: 36548024 PMCID: PMC9879164 DOI: 10.1080/15384101.2022.2121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-141-3p (miR-141-3p) has been found to be altered in the brain following a stroke. Herein, we investigate the impact of miR-141-3p on the apoptosis of neural stem cells (NSCs) in mice with middle cerebral artery occlusion (MCAO) and the potential mechanisms involved. Eight-week-old mice were injected intracerebroventricularly with miR-141-3p, antagomir-141-3p, or agomir negative control 2 h before MCAO, and animal behavior tests and infraction volume measurements were performed 24 h later. MCAO-mediated brain injury and NSCs apoptosis were observed by H&E, TTC, and TUNEL staining. The expression of cleaved caspase-3 and Ki67 was detected by western blotting. The luciferase reporter assay proved that miR-141-3p in combination with its target gene PBX homeobox 1 (PBX1). Exogenous miR-141-3p (agomir-141-3p) treatment increased infraction volume and brain edema and damaged neurological functions compared to control mice. Agomir-141-3p increased miR-141-3p expression in brain tissue of mice with MCAO and suppressed PBX1 expression. The effects of the agomir-141-3p-induced apoptosis in NSCs treated with oxygen-glucose deprivation (OGD)/reoxygenation (R) were abolished by PBX1 overexpression. The results from UCSC and JASPAR database showed that prokineticin 2 (PROK2) was a transcription factor of PBX1. The expression of PROK2 was transcriptionally regulated by PBX1 using RT-PCR and western blot assays. The effects of the apoptosis-promoting caused by PBX1 inhibition in NSCs treated with OGD/R were reversed by PROK2 inhibition. In conclusion, the miR-141-3p/PBX1/PROK2 axis might be a novel therapeutic target for the apoptosis of NSCs in MCAO.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenjie Sun
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Mingli He
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Linlin Sun
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Shuangshuang Dong
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Zhenwei Guo
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Guanghui Zhang
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| |
Collapse
|
21
|
Wei X, Yang X. The central role of natural killer cells in preeclampsia. Front Immunol 2023; 14:1009867. [PMID: 36865565 PMCID: PMC9972679 DOI: 10.3389/fimmu.2023.1009867] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Preeclampsia (PE) is a disease that is unique to pregnancy and affects multiple systems. It can lead to maternal and perinatal mortality. The precise etiology of PE is unclear. Patients with PE may have systemic or local immune abnormalities. A group of researchers has proposed that the immune communication between the fetus and mother is primarily moderated by natural killer (NK) cells as opposed to T cells, since NK cells are the most abundant immune cells in the uterus. This review examines the immunological roles of NK cells in the pathogenesis of PE. Our aim is to provide obstetricians with a comprehensive and updated research progress report on NK cells in PE patients. It has been reported that decidual NK (dNK) cells contribute to the process of uterine spiral artery remodeling and can modulate trophoblast invasion. Additionally, dNK cells can stimulate fetal growth and regulate delivery. It appears that the count or proportion of circulating NK cells is elevated in patients with or at risk for PE. Changes in the number or function of dNK cells may be the cause of PE. The Th1/Th2 equilibrium in PE has gradually shifted to an NK1/NK2 equilibrium based on cytokine production. An improper combination of killer cell immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA)-C may lead to insufficient activation of dNK cells, thereby causing PE. In the etiology of PE, NK cells appear to exert a central effect in both peripheral blood and the maternal-fetal interface. To maintain immune equilibrium both locally and systemically, it is necessary to take therapeutic measures directed at NK cells.
Collapse
Affiliation(s)
- Xiaoqi Wei
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| | - Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Fang X, Zhou Y, Chen S, Xu X, Ke J, Zhou Y, Wei H, Fu B. Natural killer cells promote intra-cellular-infected trophoblasts survival via APOD-LRP1 axis. Immunology 2022. [PMID: 36562137 DOI: 10.1111/imm.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are known for their potent ability to kill stressed cells, whereas host cells infected with intra-cellular bacteria may also be benefit from the selective killing function of NK cells and survive. The mechanism of how NK cells protect host cells infected with intra-cellular bacteria is still unclear. Here, we discovered that decidual NK (dNK) cells cannot only eliminate intra-cellular bacteria which infected trophoblasts, but can also synthesize more lipids and transport lipids to trophoblasts to avoid their apoptosis. Mechanically, NK cells synthesize more lipids accompanied by increasing expression of apolipoprotein APOD. Lipids in NK cells can be delivered to trophoblast cells through APOD, maintaining adequate lipid droplet content and lipid metabolism homeostasis in trophoblasts. Blocking the APOD receptor LRP1 abolished lipid transport from NK cells to trophoblasts, and the reduction of lipid droplets caused by bacterial infection in trophoblast cells could not be restored, culminating in cell apoptosis. Our study provides new evidence for the immune surveillance and protective effect of NK cells on embryos during early pregnancy.
Collapse
Affiliation(s)
- Xi Fang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Siao Chen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiuxiu Xu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Yang SL, Tan HX, Lai ZZ, Peng HY, Yang HL, Fu Q, Wang HY, Li DJ, Li MQ. An active glutamine/α-ketoglutarate/HIF-1α axis prevents pregnancy loss by triggering decidual IGF1 +GDF15 +NK cell differentiation. Cell Mol Life Sci 2022; 79:611. [PMID: 36449080 PMCID: PMC11803016 DOI: 10.1007/s00018-022-04639-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Deficiency of decidual NK (dNK) cell number and function has been widely regarded as an important cause of spontaneous abortion. However, the metabolic mechanism underlying the crosstalk between dNK cells and embryonic trophoblasts during early pregnancy remains largely unknown. Here, we observed that enriched glutamine and activated glutaminolysis in dNK cells contribute to trophoblast invasion and embryo growth by insulin-like growth factor-1 (IGF-1) and growth differentiation factor-15 (GDF-15) secretion. Mechanistically, these processes are dependent on the downregulation of EGLN1-HIF-1α mediated by α-ketoglutarate (α-KG). Blocking glutaminolysis with the GLS inhibitor BPTES or the glutamate dehydrogenase inhibitor EGCG leads to early embryo implantation failure, spontaneous abortion and/or fetal growth restriction in pregnant mice with impaired trophoblast invasion. Additionally, α-KG supplementation significantly alleviated pregnancy loss mediated by defective glutaminolysis in vivo, suggesting that inactivated glutamine/α-ketoglutarate metabolism in dNK cells impaired trophoblast invasion and induced pregnancy loss.
Collapse
Affiliation(s)
- Shao-Liang Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hai-Xia Tan
- Department of Obstetrics and Gynecology, Zhangye People's Hospital of HeXi College, Zhangye, Gansu, China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hai-Yan Peng
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Qiang Fu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Hai-Yan Wang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
- Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
- Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Xie H, Li Z, Zheng G, Yang C, Liu X, Xu X, Ren Y, Wang C, Hu X. Tim-3 downregulation by Toxoplasma gondii infection contributes to decidual dendritic cell dysfunction. Parasit Vectors 2022; 15:393. [PMID: 36303229 PMCID: PMC9615254 DOI: 10.1186/s13071-022-05506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Background Women in early pregnancy infected by Toxoplasma gondii may have severe adverse pregnancy outcomes, such as spontaneous abortion and fetal malformation. The inhibitory molecule T cell immunoglobulin and mucin domain 3 (Tim-3) is highly expressed on decidual dendritic cells (dDCs) and plays an important role in maintaining immune tolerance. However, whether T. gondii infection can cause dDC dysfunction by influencing the expression of Tim-3 and further participate in adverse pregnancy outcomes is still unclear. Methods An abnormal pregnancy model in Tim-3-deficient mice and primary human dDCs treated with Tim-3 neutralizing antibodies were used to examine the effect of Tim-3 expression on dDC dysfunction after T. gondii infection. Results Following T. gondii infection, the expression of Tim-3 on dDCs was downregulated, those of the pro-inflammatory functional molecules CD80, CD86, MHC-II, tumor necrosis factor-α (TNF-α), and interleukin-12 (IL-12) were increased, while those of the tolerant molecules indoleamine 2,3-dioxygenase (IDO) and interleukin-10 (IL-10) were significantly reduced. Tim-3 downregulation by T. gondii infection was closely associated with an increase in proinflammatory molecules and a decrease in tolerant molecules, which further resulted in dDC dysfunction. Moreover, the changes in Tim-3 induced by T. gondii infection further reduced the secretion of the cytokine IL-10 via the SRC-signal transducer and activator of transcription 3 (STAT3) pathway, which ultimately contributed to abnormal pregnancy outcomes. Conclusions Toxoplasma gondii infection can significantly downregulate the expression of Tim-3 and cause the aberrant expression of functional molecules in dDCs. This leads to dDC dysfunction, which can ultimately contribute to abnormal pregnancy outcomes. Further, the expression of the anti-inflammatory molecule IL-10 was significantly decreased by Tim-3 downregulation, which was mediated by the SRC-STAT3 signaling pathway in dDCs after T. gondii infection. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05506-1.
Collapse
Affiliation(s)
- Hongbing Xie
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Guangmei Zheng
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Chunyan Yang
- Department of Oral Biology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xiaoyan Xu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yushan Ren
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Chao Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
25
|
Lin Z, Li Y, Han X, Fu Z, Tian Z, Li C. Targeting SPHK1/PBX1 Axis Induced Cell Cycle Arrest in Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:12741. [PMID: 36361531 PMCID: PMC9657307 DOI: 10.3390/ijms232112741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 03/05/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 85~90% of lung cancer cases, with a poor prognosis and a low 5-year survival rate. Sphingosine kinase-1 (SPHK1), a key enzyme in regulating sphingolipid metabolism, has been reported to be involved in the development of NSCLC, although the underlying mechanism remains unclear. In the present study, we demonstrated the abnormal signature of SPHK1 in NSCLC lesions and cell lines of lung cancers with a potential tumorigenic role in cell cycle regulation. Functionally, ectopic Pre-B cell leukemia homeobox-1 (PBX1) was capable of restoring the arrested G1 phase induced by SPHK1 knockdown. However, exogenous sphingosine-1-phosphate (S1P) supply had little impact on the cell cycle arrest by PBX1 silence. Furthermore, S1P receptor S1PR3 was revealed as a specific switch to transport the extracellular S1P signal into cells, and subsequently activated PBX1 to regulate cell cycle progression. In addition, Akt signaling partially participated in the SPHK1/S1PR3/PBX1 axis to regulate the cell cycle, and the Akt inhibitor significantly decreased PBX1 expression and induced G1 arrest. Targeting SPHK1 with PF-543 significantly inhibited the cell cycle and tumor growth in preclinical xenograft tumor models of NSCLC. Taken together, our findings exhibit the vital role of the SPHK1/S1PR3/PBX1 axis in regulating the cell cycle of NSCLC, and targeting SPHK1 may develop a therapeutic effect in tumor treatment.
Collapse
Affiliation(s)
- Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Zhenkun Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin 150081, China
| | - Zhenhuan Tian
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
26
|
Wei XW, Zhang YC, Wu F, Tian FJ, Lin Y. The role of extravillous trophoblasts and uterine NK cells in vascular remodeling during pregnancy. Front Immunol 2022; 13:951482. [PMID: 37408837 PMCID: PMC10319396 DOI: 10.3389/fimmu.2022.951482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 07/07/2023] Open
Abstract
Successful embryo implantation requires both a receptive endometrium and competent blastocysts. After implantation, the maternal decidua undergoes a series of changes, including uterine spiral artery (SA) remodeling to accommodate the fetus and provide nutrients and oxygen for the fetus to survive. Uterine spiral arteries transform from small-diameter, high-resistance arteries to large-diameter and low-resistance arteries during pregnancy. This transformation includes many changes, such as increased permeability and dilation of vessels, phenotypic switching and migration of vascular smooth muscle cells (VSMCs), transient loss of endothelial cells (ECs), endovascular invasion of extravillous trophoblasts (EVTs), and presence of intramural EVT, which are regulated by uterine NK (uNK) cells and EVTs. In this review, we mainly focus on the separate and combined roles of uNK cells and EVTs in uterine SA remodeling in establishing and maintaining pregnancy. New insight into related mechanisms will help us better understand the pathogenesis of pregnancy complications such as recurrent pregnancy loss (RPL) and preeclampsia (PE).
Collapse
Affiliation(s)
- Xiao-Wei Wei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Chen Zhang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University of Medicine, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fu-Ju Tian
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Xie M, Li Y, Meng YZ, Xu P, Yang YG, Dong S, He J, Hu Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front Immunol 2022; 13:918550. [PMID: 35720413 PMCID: PMC9198966 DOI: 10.3389/fimmu.2022.918550] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
Uterine natural killer (uNK) cells are an immune subset located in the uterus. uNK cells have distinct tissue-specific characteristics compared to their counterparts in peripheral blood and lymphoid organs. Based on their location and the pregnancy status of the host, uNK cells are classified as endometrial NK (eNK) cells or decidua NK (dNK) cells. uNK cells are important in protecting the host from pathogen invasion and contribute to a series of physiological processes that affect successful pregnancy, including uterine spiral artery remodeling, fetal development, and immunity tolerance. Abnormal alterations in uNK cell numbers and/or impaired function may cause pregnancy complications, such as recurrent miscarriage, preeclampsia, or even infertility. In this review, we introduce recent advances in human uNK cell research under normal physiological or pathological conditions, and summarize their unique influences on the process of pregnancy complications or uterine diseases. Finally, we propose the potential clinical use of uNK cells as a novel cellular immunotherapeutic approach for reproductive disorders.
Collapse
Affiliation(s)
- Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Zhou Q. Progress in modern reproductive biology research in China. Biol Reprod 2022; 107:3-11. [PMID: 35699410 DOI: 10.1093/biolre/ioac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Reproductive biology is closely associated with human health and social progress. Modern reproductive biology research in China began in the 1930s. Advances in science, technology, government support and international collaborations spawned the rapid growth of reproductive biology research in China. While the development of reproductive biology has provided both theoretical knowledge and applicable technologies, it has also generated new social and ethical concerns. This review summarizes and highlights the contributions of modern reproductive biology research in China, with a specific focus on aspects that are most related to human reproduction and health.
Collapse
Affiliation(s)
- Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
29
|
Reproductive immune microenvironment. J Reprod Immunol 2022; 152:103654. [PMID: 35728349 DOI: 10.1016/j.jri.2022.103654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
About 10 %-12 % of couples in the world suffer from infertility, and immunological factors are being paid more and more attention. Attempts to induce peripheral immune tolerance in pregnant women by injecting husband cells have been widely promoted, but ultimately proved unsuccessful. Over the past two decades, our understanding of how the immune system is involved in gametogenesis and embryonic development, especially in early pregnancy, has undergone a major shift, going from the periphery to the local area of reproductive tissue. However, a holistic overview of immune responses in reproductive organs and tissues is currently lacking. Here, we further highlight the importance of regional immunity research for understanding reproductive health by reviewing the research mileage of the testis, ovary, and uterine immune microenvironment. We propose the concept of "reproductive immune microenvironment (RIM)" by summarizing the common features and basic functions of the tissue microenvironment in which immune cells reside, including the interstitial space of the testis, the ovarian stroma and the endometrium. The establishment of the concept of RIM not only focuses on the comprehensive description of the immune response in reproductive tissues, but also provides a macroscopic perspective for a deeper understanding of the immune etiology of reproductive system-related diseases.
Collapse
|
30
|
Immunological microenvironment at the maternal-fetal interface. J Reprod Immunol 2022; 151:103632. [DOI: 10.1016/j.jri.2022.103632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 12/18/2022]
|
31
|
Shao X, Yu W, Yang Y, Wang F, Yu X, Wu H, Ma Y, Cao B, Wang YL. The mystery of the life tree: the placenta. Biol Reprod 2022; 107:301-316. [PMID: 35552600 DOI: 10.1093/biolre/ioac095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta is the interface between the fetal and maternal environments during mammalian gestation, critically safeguarding the health of the developing fetus and the mother. Placental trophoblasts origin from embryonic trophectoderm that differentiates into various trophoblastic subtypes through villous and extravillous pathways. The trophoblasts actively interact with multiple decidual cells and immune cells at the maternal-fetal interface and thus construct fundamental functional units, which are responsible for blood perfusion, maternal-fetal material exchange, placental endocrine, immune tolerance, and adequate defense barrier against pathogen infection. Various pregnant complications are tightly associated with the defects in placental development and function maintenance. In this review, we summarize the current views and our recent progress on the mechanisms underlying the formation of placental functional units, the interactions among trophoblasts and various uterine cells, as well as the placental barrier against pathogen infections during pregnancy. The involvement of placental dysregulation in adverse pregnancy outcomes is discussed.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yun Yang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Feiyang Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yeling Ma
- Medical College, Shaoxing University, Shaoxing, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Xu X, Zhou Y, Fu B, Wei H. Uterine NK cell functions at maternal-fetal interface. Biol Reprod 2022; 107:327-338. [PMID: 35551350 DOI: 10.1093/biolre/ioac094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022] Open
Abstract
During pregnancy, maternal decidual tissue interacts with fetal trophoblasts. They constitute the maternal-fetal interface responsible for supplying nutrition to the fetus. Uterine natural killer (uNK) cells are the most abundant immune cells at the maternal-fetal interface during early pregnancy and play critical roles throughout pregnancy. This review provides current knowledge about the functions of uNK cells. uNK cells have been shown to facilitate remodeling of the spiral artery, control the invasion of extravillous trophoblast (EVT) cells, contribute to the induction and maintenance of immune tolerance, protect against pathogen infection, and promote fetal development. Pregnancy-trained memory of uNK cells improves subsequent pregnancy outcomes. In addition, this review describes the distinct functions of three uNK cell subsets: CD27-CD11b-, CD27+ and CD27-CD11b+ uNK cells.
Collapse
Affiliation(s)
- Xiuxiu Xu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Yonggang Zhou
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Binqing Fu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Haiming Wei
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| |
Collapse
|
33
|
Xu X, Zhao X, Chen L, Liu M, Hu Z, Ke J, Fu B, Zhou Y, Wei H. CD158a + /CD158b + NK cell imbalance correlates with hypertension in patients with pre-eclampsia. Am J Reprod Immunol 2022; 87:e13532. [PMID: 35253311 DOI: 10.1111/aji.13532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Preeclampsia, a pregnancy complication with hypertension and proteinuria, seriously threats the health and lives of the mother and the baby. The pathogenesis of pre-eclampsia remains incompletely understood. The role of peripheral natural killer cells (NK cells) in the pre-eclampsia is unclear. METHOD OF STUDY Flow cytometry was performed to detect the expression of CD158a (KIR2DL1) and CD158b (KIR2DL2/3) in peripheral NK cells of healthy pregnant women (HP) and patients with pre-eclampsia (PE). Differentially expressed genes (DEGs) in CD158a+ and CD158b+ NK cells were identified by RNA-sequencing and real-time PCR. Protein array analysis was used to identify altered protein levels in the serum of study participants. RESULTS CD158a+ NK cell numbers were increased in the peripheral blood of patients while the number of CD158b+ NK cells was reduced. In addition, the percentage of CD158a+ NK cells within the peripheral NK subset was positively correlated with systolic blood pressure while the percentage of CD158b+ NK cells was negatively correlated with systolic blood pressure. RNA-seq and real-time PCR showed that the expression of ERAP2 and GCH1, the genes that regulate blood pressure and angiogenesis, was decreased in CD158a+ compared to CD158b+ NK cells. Consistently, the level of proteins involved in angiogenesis was altered in the serum of pre-eclampsia patients compared to healthy individuals. CONCLUSIONS CD158a+ NK cells increased while CD158b+ NK cells decreased in the peripheral blood of patients with pre-eclampsia compared to healthy individuals. The change in the frequency of CD158a+ /CD158b+ NK cells is related to the increase in blood pressure.
Collapse
Affiliation(s)
- Xiuxiu Xu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Xirui Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Ling Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Muziying Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, P.R. China
| | - Ziming Hu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Binqing Fu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Yonggang Zhou
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Haiming Wei
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
34
|
Hu L, Zhang J, Lu Y, Fu B, Hu W. Estrogen receptor beta promotes endometriosis progression by upregulating CD47 expression in ectopic endometrial stromal cells. J Reprod Immunol 2022; 151:103513. [PMID: 35305523 DOI: 10.1016/j.jri.2022.103513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/20/2022] [Accepted: 03/05/2022] [Indexed: 11/25/2022]
Abstract
Endometriosis is a common estrogen-dependent gynecological disorder that is characterized by endometrial-like tissue being found at extrauterine sites. Aberrant expression and activation of estrogen receptor beta (ERβ) in ectopic endometrium are involved in endometriosis development. Here, we used primary tissues and cells from endometriosis patients to investigate the molecular mechanisms involved in ERβ's contribution to endometriosis progression. Through RNA-seq, quantitative PCR, and immunohistochemistry analysis, we found that ERβ expression is related to the severity of endometriosis; specifically, the ratio of ESR2/ESR1 in ectopic tissues was positively correlated with the severity of endometriosis, which suggests that ERβ has a predominant role in endometriosis progression. Furthermore, we found that ERβ could bind to the CD47 promoter, increasing CD47 expression levels. CD47 is a critical molecule in "don't eat me" signaling. These data highlight the importance of the ERβ-CD47 axis in the pathogenesis of endometriosis. We believe targeting CD47 may be a novel therapeutic approach for treating endometriosis and other ERβ-associated diseases.
Collapse
Affiliation(s)
- Laihua Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China; Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinghe Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China; Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yichen Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China; Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Binqing Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China; Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Weiping Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China; Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
35
|
Rawat P, Das A. Differential expression of disparate transcription factor regime holds the key for NK cell development and function modulation. Life Sci 2022; 297:120471. [DOI: 10.1016/j.lfs.2022.120471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
36
|
Du X, Zhu H, Jiao D, Nian Z, Zhang J, Zhou Y, Zheng X, Tong X, Wei H, Fu B. Human-Induced CD49a+ NK Cells Promote Fetal Growth. Front Immunol 2022; 13:821542. [PMID: 35185911 PMCID: PMC8854499 DOI: 10.3389/fimmu.2022.821542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
CD49a+ natural killer (NK) cells play a critical role in promoting fetal development and maintaining immune tolerance at the maternal-fetal interface during the early stages of pregnancy. However, given their residency in human tissue, thorough studies and clinical applications are difficult to perform. It is still unclear as to how functional human CD49a+ NK cells can be induced to benefit pregnancy outcomes. In this study, we established three no-feeder cell induction systems to induce human CD49a+ NK cells from umbilical cord blood hematopoietic stem cells (HSCs), bone marrow HSCs, and peripheral blood NK cells in vitro. These induced NK cells (iNKs) from three cell induction systems display high levels of CD49a, CD9, CD39, CD151 expression, low levels of CD16 expression, and no obvious cytotoxic capability. They are phenotypically and functionally similar to decidual NK cells. Furthermore, these iNKs display a high expression of growth-promoting factors and proangiogenic factors and can promote fetal growth and improve uterine artery blood flow in a murine pregnancy model in vivo. This research demonstrates the ability of human-induced CD49a+ NK cells to promote fetal growth via three cell induction systems, which could eventually be used to treat patients experiencing adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Xianghui Du
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Huaiping Zhu
- The Section of Experimental Hematology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Huaiping Zhu, ; Haiming Wei, ; Binqing Fu,
| | - Defeng Jiao
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Nian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jinghe Zhang
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xianhong Tong
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Huaiping Zhu, ; Haiming Wei, ; Binqing Fu,
| | - Binqing Fu
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Huaiping Zhu, ; Haiming Wei, ; Binqing Fu,
| |
Collapse
|
37
|
Placental Development and Pregnancy-Associated Diseases. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Monaco-Brown M, Lawrence DA. Obesity and Maternal-Placental-Fetal Immunology and Health. Front Pediatr 2022; 10:859885. [PMID: 35573953 PMCID: PMC9100592 DOI: 10.3389/fped.2022.859885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity rates in women of childbearing age is now at 29%, according to recent CDC reports. It is known that obesity is associated with oxidative stress and inflammation, including disruptions in cellular function and cytokine levels. In pregnant women who are obese, associated placental dysfunction can lead to small for gestational age (SGA) infants. More frequently, however, maternal obesity is associated with large for gestational age (LGA) newborns, who also have higher incidence of metabolic disease and asthma due to elevated levels of inflammation. In addition, anthropogenic environmental exposures to "endocrine disrupting" and "forever" chemicals affect obesity, as well as maternal physiology, the placenta, and fetal development. Placental function is intimately associated with the control of inflammation during pregnancy. There is a large amount of literature examining the relationship of placental immunology, both cellular and humoral, with pregnancy and neonatal outcomes. Cells such as placental macrophages and NK cells have been implicated in spontaneous miscarriage, preeclampsia, preterm birth, perinatal neuroinflammation, and other post-natal conditions. Differing levels of placental cytokines and molecular inflammatory mediators also have known associations with preeclampsia and developmental outcomes. In this review, we will specifically examine the literature regarding maternal, placental, and fetal immunology and how it is altered by maternal obesity and environmental chemicals. We will additionally describe the relationship between placental immune function and clinical outcomes, including neonatal conditions, autoimmune disease, allergies, immunodeficiency, metabolic and endocrine conditions, neurodevelopment, and psychiatric disorders.
Collapse
Affiliation(s)
- Meredith Monaco-Brown
- Department of Pediatrics, Bernard and Millie Duker Children's Hospital at Albany Medical Center, Albany, NY, United States
| | - David A Lawrence
- New York State Department of Health, Wadsworth Center, Albany, NY, United States.,Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY, United States
| |
Collapse
|
39
|
TMEM176B Regulates AKT/mTOR Signaling and Tumor Growth in Triple-Negative Breast Cancer. Cells 2021; 10:cells10123430. [PMID: 34943938 PMCID: PMC8700203 DOI: 10.3390/cells10123430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
TMEM176B is a member of the membrane spanning 4-domains (MS4) family of transmembrane proteins, and a putative ion channel that is expressed in immune cells and certain cancers. We aimed to understand the role of TMEM176B in cancer cell signaling, gene expression, cell proliferation, and migration in vitro, as well as tumor growth in vivo. We generated breast cancer cell lines with overexpressed and silenced TMEM176B, and a therapeutic antibody targeting TMEM176B. Proliferation and migration assays were performed in vitro, and tumor growth was evaluated in vivo. We performed gene expression and Western blot analyses to identify the most differentially regulated genes and signaling pathways in cells with TMEM176B overexpression and silencing. Silencing TMEM176B or inhibiting it with a therapeutic antibody impaired cell proliferation, while overexpression increased proliferation in vitro. Syngeneic and xenograft tumor studies revealed the attenuated growth of tumors with TMEM176B gene silencing compared with controls. We found that the AKT/mTOR signaling pathway was activated or repressed in cells overexpressing or silenced for TMEM176B, respectively. Overall, our results suggest that TMEM176B expression in breast cancer cells regulates key signaling pathways and genes that contribute to cancer cell growth and progression, and is a potential target for therapeutic antibodies.
Collapse
|
40
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
41
|
Song J, Zhang Q, Lu B, Gou Z, Wang T, Tang H, Xiang J, Jiang W, Deng X. Case Report: Candidate Genes Associated With Prenatal Ultrasound Anomalies in a Fetus With Prenatally Detected 1q23.3q31.2 Deletion. Front Genet 2021; 12:696624. [PMID: 34630509 PMCID: PMC8496901 DOI: 10.3389/fgene.2021.696624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Patients with deletions involving the long arm of chromosome 1 are rare, and the main aim of this study was to refine the genotype-phenotype correlation. Case Report: In this report, a 28-year-old pregnant woman, gravida 2 para 1, at 25+4 weeks of gestation underwent ultrasound examination in our institute. The ultrasonographic findings of the fetus were as follows: (1) fetal growth restriction; (2) cleft lip and palate; (3) bilateral renal hypoplasia; (4) lateral ventriculomegaly; (5) single umbilical artery; (6) absent stomach; (7) coronary sinus dilatation with persistent left superior vena cava, ventricular septal defect and unroofed coronary sinus syndrome. Chromosomal microarray analysis of amniotic fluid from the fetus revealed a 28.025 Mb deletion in 1q23.3q31.2, spanning from position 164,559,675 to 192,584,768 (hg19). Conclusion: Genotype-phenotype correlation might improve prenatal diagnosis of fetuses with chromosome 1q deletion. PBX1 could be a candidate gene for fetal growth restriction, renal hypoplasia and congenital heart disease. Fetal growth restriction was accompanied by decreased renal volume in the fetus. Combined with ultrasonic examination, the application of chromosomal microarray analysis will provide accurate prenatal diagnosis.
Collapse
Affiliation(s)
- Jiahao Song
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Bing Lu
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhongshan Gou
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ting Wang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Hui Tang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Jingjing Xiang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Wei Jiang
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xuedong Deng
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
42
|
Li L, Feng T, Zhou W, Liu Y, Li H. miRNAs in decidual NK cells: regulators worthy of attention during pregnancy. Reprod Biol Endocrinol 2021; 19:150. [PMID: 34600537 PMCID: PMC8486626 DOI: 10.1186/s12958-021-00812-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
The critical immune effectors, including T, B, and natural killer (NK) cells, dendritic cells, and macrophages participate in regulating immune responses during pregnancy. Among these immune cells, decidual NK (dNK) cells are involved in key placental development processes at the maternal-fetal interface, such as uterine spiral artery remodeling, trophoblast invasion, and decidualization. Mechanistically, dNK cells significantly influence pregnancy outcome by secreting cytokines, chemokines, and angiogenic mediators and by their interactions with trophoblasts and other decidual cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that participate in the initiation and progression of human diseases. Although the functions of circulating miRNAs in pathological mechanism has been extensively studied, the regulatory roles of miRNAs in NK cells, especially in dNK cells, have been rarely reported. In this review, we analyze the effects of miRNA regulations of dNK cell functions on the immune system during gestation. We discuss aberrant expressions of certain miRNAs in dNK cells that may lead to pathological consequences, such as recurrent pregnancy loss (RPL). Interestingly, miRNA expression patterns are also different between dNK cells and peripheral NK (pNK) cells, and pNK cells in the first- and third-trimester of gestation. The dysregulation of miRNA plays a pivotal regulatory role in driving immune functions of dNK and pNK cells. Further understanding of the molecular mechanisms of miRNAs in dNK cells may provide new insights into the development of therapeutics to prevent pregnancy failure.
Collapse
Affiliation(s)
- Liman Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ting Feng
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Weijie Zhou
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Liu
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Zhang X, Wei H. Role of Decidual Natural Killer Cells in Human Pregnancy and Related Pregnancy Complications. Front Immunol 2021; 12:728291. [PMID: 34512661 PMCID: PMC8426434 DOI: 10.3389/fimmu.2021.728291] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Pregnancy is a unique type of immunological process. Healthy pregnancy is associated with a series of inflammatory events: implantation (inflammation), gestation (anti-inflammation), and parturition (inflammation). As the most abundant leukocytes during pregnancy, natural killer (NK) cells are recruited and activated by ovarian hormones and have pivotal roles throughout pregnancy. During the first trimester, NK cells represent up to 50–70% of decidua lymphocytes. Differently from peripheral-blood NK cells, decidual natural killer (dNK) cells are poorly cytolytic, and they release cytokines/chemokines that induce trophoblast invasion, tissue remodeling, embryonic development, and placentation. NK cells can also shift to a cytotoxic identity and carry out immune defense if infected in utero by pathogens. At late gestation, premature activation of NK cells can lead to a breakdown of tolerance of the maternal–fetal interface and, subsequently, can result in preterm birth. This review is focused on the role of dNK cells in normal pregnancy and pathological pregnancy, including preeclampsia, recurrent spontaneous abortion, endometriosis, and recurrent implantation failure. dNK cells could be targets for the treatment of pregnancy complications.
Collapse
Affiliation(s)
- Xiuhong Zhang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
44
|
Biology and pathology of the uterine microenvironment and its natural killer cells. Cell Mol Immunol 2021; 18:2101-2113. [PMID: 34426671 PMCID: PMC8429689 DOI: 10.1038/s41423-021-00739-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Tissues are the new frontier of discoveries in immunology. Cells of the immune system are an integral part of tissue physiology and immunity. Determining how immune cells inhabit, housekeep, and defend gut, lung, brain, liver, uterus, and other organs helps revealing the intimate details of tissue physiology and may offer new therapeutic targets to treat pathologies. The uterine microenvironment modulates the development and function of innate lymphoid cells [ILC, largely represented by natural killer (NK) cells], macrophages, T cells, and dendritic cells. These immune cells, in turn, contribute to tissue homeostasis. Regulated by ovarian hormones, the human uterine mucosa (endometrium) undergoes ~400 monthly cycles of breakdown and regeneration from menarche to menopause, with its fibroblasts, glands, blood vessels, and immune cells remodeling the tissue into the transient decidua. Even more transformative changes occur upon blastocyst implantation. Before the placenta is formed, the endometrial glands feed the embryo by histiotrophic nutrition while the uterine spiral arteries are stripped of their endothelial layer and smooth muscle actin. This arterial remodeling is carried out by invading fetal trophoblast and maternal immune cells, chiefly uterine NK (uNK) cells, which also assist fetal growth. The transformed arteries no longer respond to maternal stimuli and meet the increasing demands of the growing fetus. This review focuses on how the everchanging uterine microenvironment affects uNK cells and how uNK cells regulate homeostasis of the decidua, placenta development, and fetal growth. Determining these pathways will help understand the causes of major pregnancy complications.
Collapse
|
45
|
Yu M, Su Z, Huang X, Zhou Y, Zhang X, Wang B, Wang Z, Liu Y, Xing N, Xia M, Wang X. Histone methyltransferase Ezh2 negatively regulates NK cell terminal maturation and function. J Leukoc Biol 2021; 110:1033-1045. [PMID: 34425630 DOI: 10.1002/jlb.1ma0321-155rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
NK cells are innate lymphoid cells that play important roles in tumor eradication and viral clearance. We previously found that deletion or inhibition of the histone methyltransferase Ezh2 (enhancer of zeste homolog 2) in hematopoietic stem and progenitor cells (HSPCs) from both mice and humans enhanced the commitment and cytotoxicity of NK cells to tumor cells. This study tested the hypothesis that inhibiting Ezh2, especially in NK lineage cells, could also affect NK cell development and function. We crossed Ezh2fl/fl mice with Ncr1iCre mice to delete the Ezh2 gene in immature NK cells and downstream progeny. Ezh2 deficiency increased the total number of NK cells and promoted NK cell terminal differentiation, as the percentages of the most mature CD27- CD11b+ subsets were increased. The NK cell cytotoxicity against tumor cells in vitro was enhanced, with increased degranulation and IFN-γ production. In addition, during the process of human NK cells differentiating from HSPCs , inhibiting EZH2 catalytic activity at day 14 (when NK lineage commitment began) also resulted in increased proportions of mature NK cells and cytotoxicity. Furthermore, RNA-seq and CUT&RUN-qPCR assays showed that the effects of Ezh2 may be based on its direct modulation of the expression of the transcription factor Pbx1 (pre-B-cell leukemia transcription factor 1), which has been reported to promote NK cell development. In summary, we demonstrate that Ezh2 is a negative regulator of NK cell terminal maturation and function.
Collapse
Affiliation(s)
- Minghang Yu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziyang Su
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Xuefeng Huang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Yujie Zhou
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Bingbing Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Zihan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Yi Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Nianzeng Xing
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaoran Xia
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Zhang X, Li Y, Huang C, Liu S, Chen X, Yu S, Diao L, Zeng Y. The role of decidual natural killer cell derived soluble factors in early pregnancy. Am J Reprod Immunol 2021; 86:e13477. [PMID: 34051025 DOI: 10.1111/aji.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022] Open
Abstract
Decidual natural killer cell (dNK), the predominant decidual lymphocytes in early pregnancy, are primarily identified based on their CD56bright CD16- phenotype and play an important role in maintaining immune tolerance at the maternal-fetal interface. dNK dysfunction reportedly leads to pathological pregnancy. Indeed, various dNK-derived soluble factors are involved in a series of key processes related to pregnancy outcomes. In this review, we summarize the roles of these dNK-derived factors in immune tolerance and embryonic development to improve the current understanding regarding the physiological and pathological mechanisms that occur during pregnancy, while potentially informing the development of effective therapeutics.
Collapse
Affiliation(s)
- Xueling Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, 518045, Guangdong, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, 518045, Guangdong, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, 518045, Guangdong, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, 518045, Guangdong, China
| | - Xian Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, 518045, Guangdong, China
| | - Shuyi Yu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, 518045, Guangdong, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, 518045, Guangdong, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, 518045, Guangdong, China
| |
Collapse
|
47
|
Tong X, Gao M, Du X, Lu F, Wu L, Wei H, Fu B. Analysis of uterine CD49a + NK cell subsets in menstrual blood reflects endometrial status and association with recurrent spontaneous abortion. Cell Mol Immunol 2021; 18:1838-1840. [PMID: 34002045 DOI: 10.1038/s41423-021-00687-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xianhong Tong
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Min Gao
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China.,Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xianghui Du
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Fangting Lu
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Limin Wu
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China. .,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China.
| | - Binqing Fu
- The Department of Obstetrics and Gynecology, First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China. .,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
48
|
Liu Y, Gao S, Zhao Y, Wang H, Pan Q, Shao Q. Decidual Natural Killer Cells: A Good Nanny at the Maternal-Fetal Interface During Early Pregnancy. Front Immunol 2021; 12:663660. [PMID: 34054831 PMCID: PMC8149889 DOI: 10.3389/fimmu.2021.663660] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Decidual natural killer (dNK) cells are the tissue-resident and major subpopulation of NK cells at the maternal-fetal interface. It has been demonstrated that dNK cells play pivotal roles in pregnancy, including keeping maternal-fetal immune tolerance, promoting extravillous trophoblast (EVT) cell invasion, and driving uterine spiral artery remodeling. However, the molecular mechanisms haven't been elucidated until recent years. In this review, we systemically introduce the generation, subsets, and surface or soluble molecules of dNK cells, which are critical for maintaining the functions of dNK cells. Further, new functions of dNK cells including well-controlled cytotoxicity, immunosurveillance and immunotrophism supporting via the cell-cell interaction between dNK cells and EVT cells are mainly focused. The molecular mechanisms involved in these functions are also illustrated. Moreover, pregnancy-associated diseases caused by the dNK cells abnormalities are discussed. It will be important for future investigations about the mechanism of maintenance of pregnancy and parturition and potential clinical applications of dNK cells.
Collapse
Affiliation(s)
- Yuefang Liu
- Department of Clinical Genetics, the Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, China
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
| | - Shujun Gao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
| | - Qiong Pan
- Department of Clinical Genetics, the Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
- Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, China
| |
Collapse
|
49
|
Single-cell Immune Landscape of Human Recurrent Miscarriage. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:208-222. [PMID: 33482359 PMCID: PMC8602400 DOI: 10.1016/j.gpb.2020.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 01/07/2023]
Abstract
Successful pregnancy in placental mammals substantially depends on the establishment of maternal immune tolerance to the semi-allogenic fetus. Disorders in this process are tightly associated with adverse pregnancy outcomes including recurrent miscarriage (RM). However, an in-depth understanding of the systematic and decidual immune environment in RM remains largely lacking. In this study, we utilized single-cell RNA-sequencing (scRNA-seq) to comparably analyze the cellular and molecular signatures of decidual and peripheral leukocytes in normal and unexplained RM pregnancies at the early stage of gestation. Integrative analysis identifies 22 distinct cell clusters in total, and a dramatic difference in leukocyte subsets and molecular properties in RM cases is revealed. Specifically, the cytotoxic properties of CD8+ effector T cells, nature killer (NK), and mucosal-associated invariant T (MAIT) cells in peripheral blood indicates apparently enhanced pro-inflammatory status, and the population proportions and ligand–receptor interactions of the decidual leukocyte subsets demonstrate preferential immune activation in RM patients. The molecular features, spatial distribution, and the developmental trajectories of five decidual NK (dNK) subsets have been elaborately illustrated. In RM patients, a dNK subset that supports embryonic growth is diminished in proportion, while the ratio of another dNK subset with cytotoxic and immune-active signature is significantly increased. Notably, a unique pro-inflammatory CD56+CD16+ dNK subset substantially accumulates in RM decidua. These findings reveal a comprehensive cellular and molecular atlas of decidual and peripheral leukocytes in human early pregnancy and provide an in-depth insight into the immune pathogenesis for early pregnancy loss.
Collapse
|
50
|
Guo C, Cai P, Jin L, Sha Q, Yu Q, Zhang W, Jiang C, Liu Q, Zong D, Li K, Fang J, Lu F, Wang Y, Li D, Lin J, Li L, Zeng Z, Tong X, Wei H, Qu K. Single-cell profiling of the human decidual immune microenvironment in patients with recurrent pregnancy loss. Cell Discov 2021; 7:1. [PMID: 33390590 PMCID: PMC7779601 DOI: 10.1038/s41421-020-00236-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Maintaining homeostasis of the decidual immune microenvironment at the maternal–fetal interface is essential for placentation and reproductive success. Although distinct decidual immune cell subpopulations have been identified under normal conditions, systematic understanding of the spectrum and heterogeneity of leukocytes under recurrent miscarriage in human deciduas remains unclear. To address this, we profiled the respective transcriptomes of 18,646 primary human decidual immune cells isolated from patients with recurrent pregnancy loss (RPL) and healthy controls at single-cell resolution. We discovered dramatic differential distributions of immune cell subsets in RPL patients compared with the normal decidual immune microenvironment. Furthermore, we found a subset of decidual natural killer (NK) cells that support embryo growth were diminished in proportion due to abnormal NK cell development in RPL patients. We also elucidated the altered cellular interactions between the decidual immune cell subsets in the microenvironment and those of the immune cells with stromal cells and extravillous trophoblast under disease state. These results provided deeper insights into the RPL decidual immune microenvironment disorder that are potentially applicable to improve the diagnosis and therapeutics of this disease.
Collapse
Affiliation(s)
- Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Liying Jin
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qing Sha
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qiaoni Yu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wen Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chen Jiang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qian Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Dandan Zong
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kun Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jingwen Fang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.,HanGene Biotech, Xiaoshan Innovation Polis, Hangzhou, Zhejiang 311200, China
| | - Fangting Lu
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Yanshi Wang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Daojing Li
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Jun Lin
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lu Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhutian Zeng
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xianhong Tong
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Haiming Wei
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China. .,CAS Center for Excellence in Molecular Cell Sciences, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China. .,School of Data Science, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|