1
|
Luna SE, Camarena J, Hampton JP, Majeti KR, Charlesworth CT, Soupene E, Selvaraj S, Jia K, Sheehan VA, Cromer MK, Porteus MH. Enhancement of erythropoietic output by Cas9-mediated insertion of a natural variant in haematopoietic stem and progenitor cells. Nat Biomed Eng 2024:10.1038/s41551-024-01222-6. [PMID: 38886504 DOI: 10.1038/s41551-024-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/02/2024] [Indexed: 06/20/2024]
Abstract
Some gene polymorphisms can lead to monogenic diseases, whereas other polymorphisms may confer beneficial traits. A well-characterized example is congenital erythrocytosis-the non-pathogenic hyper-production of red blood cells-that is caused by a truncated erythropoietin receptor. Here we show that Cas9-mediated genome editing in CD34+ human haematopoietic stem and progenitor cells (HSPCs) can recreate the truncated form of the erythropoietin receptor, leading to substantial increases in erythropoietic output. We also show that combining the expression of the cDNA of a truncated erythropoietin receptor with a previously reported genome-editing strategy to fully replace the HBA1 gene with an HBB transgene in HSPCs (to restore normal haemoglobin production in cells with a β-thalassaemia phenotype) gives the edited HSPCs and the healthy red blood cell phenotype a proliferative advantage. Combining knowledge of human genetics with precise genome editing to insert natural human variants into therapeutic cells may facilitate safer and more effective genome-editing therapies for patients with genetic diseases.
Collapse
Affiliation(s)
- Sofia E Luna
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Jessica P Hampton
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kiran R Majeti
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Carsten T Charlesworth
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Eric Soupene
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kun Jia
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Vivien A Sheehan
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - M Kyle Cromer
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Uchida N, Stasula U, Demirci S, Germino-Watnick P, Hinds M, Le A, Chu R, Berg A, Liu X, Su L, Wu X, Krouse AE, Linde NS, Bonifacino A, Hong SG, Dunbar CE, Lanieri L, Bhat A, Palchaudhuri R, Bennet B, Hoban M, Bertelsen K, Olson LM, Donahue RE, Tisdale JF. Fertility-preserving myeloablative conditioning using single-dose CD117 antibody-drug conjugate in a rhesus gene therapy model. Nat Commun 2023; 14:6291. [PMID: 37828021 PMCID: PMC10570335 DOI: 10.1038/s41467-023-41153-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/23/2023] [Indexed: 10/14/2023] Open
Abstract
Hematopoietic stem cell (HSC) gene therapy has curative potential; however, its use is limited by the morbidity and mortality associated with current chemotherapy-based conditioning. Targeted conditioning using antibody-drug conjugates (ADC) holds promise for reduced toxicity in HSC gene therapy. Here we test the ability of an antibody-drug conjugate targeting CD117 (CD117-ADC) to enable engraftment in a non-human primate lentiviral gene therapy model of hemoglobinopathies. Following single-dose CD117-ADC, a >99% depletion of bone marrow CD34 + CD90 + CD45RA- cells without lymphocyte reduction is observed, which results are not inferior to multi-day myeloablative busulfan conditioning. CD117-ADC, similarly to busulfan, allows efficient engraftment, gene marking, and vector-derived fetal hemoglobin induction. Importantly, ADC treatment is associated with minimal toxicity, and CD117-ADC-conditioned animals maintain fertility. In contrast, busulfan treatment commonly causes severe toxicities and infertility in humans. Thus, the myeloablative capacity of single-dose CD117-ADC is sufficient for efficient engraftment of gene-modified HSCs while preserving fertility and reducing adverse effects related to toxicity in non-human primates. This targeted conditioning approach thus provides the proof-of-principle to improve risk-benefit ratio in a variety of HSC-based gene therapy products in humans.
Collapse
Affiliation(s)
- Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA.
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Ulana Stasula
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA
| | - Paula Germino-Watnick
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA
| | - Malikiya Hinds
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA
| | - Anh Le
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA
| | - Rebecca Chu
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA
| | - Alexander Berg
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA
| | - Xiong Liu
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA
| | - Ling Su
- Genomics Technology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xiaolin Wu
- Genomics Technology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Allen E Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | - N Seth Linde
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | - So Gun Hong
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | - Robert E Donahue
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) / National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, MD, USA
| |
Collapse
|
3
|
Peslak SA, Demirci S, Chandra V, Ryu B, Bhardwaj SK, Jiang J, Rupon JW, Throm RE, Uchida N, Leonard A, Essawi K, Bonifacino AC, Krouse AE, Linde NS, Donahue RE, Ferrara F, Wielgosz M, Abdulmalik O, Hamagami N, Germino-Watnick P, Le A, Chu R, Hinds M, Weiss MJ, Tong W, Tisdale JF, Blobel GA. Forced enhancer-promoter rewiring to alter gene expression in animal models. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:452-465. [PMID: 36852088 PMCID: PMC9958407 DOI: 10.1016/j.omtn.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Transcriptional enhancers can be in physical proximity of their target genes via chromatin looping. The enhancer at the β-globin locus (locus control region [LCR]) contacts the fetal-type (HBG) and adult-type (HBB) β-globin genes during corresponding developmental stages. We have demonstrated previously that forcing proximity between the LCR and HBG genes in cultured adult-stage erythroid cells can activate HBG transcription. Activation of HBG expression in erythroid cells is of benefit to patients with sickle cell disease. Here, using the β-globin locus as a model, we provide proof of concept at the organismal level that forced enhancer rewiring might present a strategy to alter gene expression for therapeutic purposes. Hematopoietic stem and progenitor cells (HSPCs) from mice bearing human β-globin genes were transduced with lentiviral vectors expressing a synthetic transcription factor (ZF-Ldb1) that fosters LCR-HBG contacts. When engrafted into host animals, HSPCs gave rise to adult-type erythroid cells with elevated HBG expression. Vectors containing ZF-Ldb1 were optimized for activity in cultured human and rhesus macaque erythroid cells. Upon transplantation into rhesus macaques, erythroid cells from HSPCs expressing ZF-Ldb1 displayed elevated HBG production. These findings in two animal models suggest that forced redirection of gene-regulatory elements may be used to alter gene expression to treat disease.
Collapse
Affiliation(s)
- Scott A. Peslak
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vemika Chandra
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Byoung Ryu
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Saurabh K. Bhardwaj
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jing Jiang
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jeremy W. Rupon
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert E. Throm
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Khaled Essawi
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Allen E. Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Nathaniel S. Linde
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Robert E. Donahue
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Francesca Ferrara
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Matthew Wielgosz
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicole Hamagami
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paula Germino-Watnick
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anh Le
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rebecca Chu
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Malikiya Hinds
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Wei Tong
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gerd A. Blobel
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Liu B, Brendel C, Vinjamur DS, Zhou Y, Harris C, McGuinness M, Manis JP, Bauer DE, Xu H, Williams DA. Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies. Mol Ther 2022; 30:2693-2708. [PMID: 35526095 PMCID: PMC9372373 DOI: 10.1016/j.ymthe.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/01/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022] Open
Abstract
A promising treatment for β-hemoglobinopathies is the de-repression of γ-globin expression leading to increased fetal hemoglobin (HbF) by targeting BCL11A. Here, we aim to improve a lentivirus vector (LV) containing a single BCL11A shmiR (SS) to further increase γ-globin induction. We engineered a novel LV to express two shmiRs simultaneously targeting BCL11A and the γ-globin repressor ZNF410. Erythroid cells derived from human HSCs transduced with the double shmiR (DS) showed up to a 70% reduction of both BCL11A and ZNF410 proteins. There was a consistent and significant additional 10% increase in HbF compared to targeting BCL11A alone in erythroid cells. Erythrocytes differentiated from SCD HSCs transduced with the DS demonstrated significantly reduced in vitro sickling phenotype compared to the SS. Erythrocytes differentiated from transduced HSCs from β-thalassemia major patients demonstrated improved globin chain balance by increased γ-globin with reduced microcytosis. Reconstitution of DS-transduced cells from Berkeley SCD mice was associated with a statistically larger reduction in peripheral blood hemolysis markers compared with the SS vector. Overall, these results indicate that the DS LV targeting BCL11A and ZNF410 can enhance HbF induction for treating β-hemoglobinopathies and could be used as a model to simultaneously and efficiently target multiple gene products.
Collapse
Affiliation(s)
- Boya Liu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yu Zhou
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Chad Harris
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Meaghan McGuinness
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - John P Manis
- Department of Laboratory Medicine, Boston Children's Hospital, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Haiming Xu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
5
|
De Simone G, Quattrocchi A, Mancini B, di Masi A, Nervi C, Ascenzi P. Thalassemias: From gene to therapy. Mol Aspects Med 2021; 84:101028. [PMID: 34649720 DOI: 10.1016/j.mam.2021.101028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/19/2021] [Indexed: 12/26/2022]
Abstract
Thalassemias (α, β, γ, δ, δβ, and εγδβ) are the most common genetic disorders worldwide and constitute a heterogeneous group of hereditary diseases characterized by the deficient synthesis of one or more hemoglobin (Hb) chain(s). This leads to the accumulation of unstable non-thalassemic Hb chains, which precipitate and cause intramedullary destruction of erythroid precursors and premature lysis of red blood cells (RBC) in the peripheral blood. Non-thalassemic Hbs display high oxygen affinity and no cooperativity. Thalassemias result from many different genetic and molecular defects leading to either severe or clinically silent hematologic phenotypes. Thalassemias α and β are particularly diffused in the regions spanning from the Mediterranean basin through the Middle East, Indian subcontinent, Burma, Southeast Asia, Melanesia, and the Pacific Islands, whereas δβ-thalassemia is prevalent in some Mediterranean regions including Italy, Greece, and Turkey. Although in the world thalassemia and malaria areas overlap apparently, the RBC protection against malaria parasites is openly debated. Here, we provide an overview of the historical, geographic, genetic, structural, and molecular pathophysiological aspects of thalassemias. Moreover, attention has been paid to molecular and epigenetic pathways regulating globin gene expression and globin switching. Challenges of conventional standard treatments, including RBC transfusions and iron chelation therapy, splenectomy and hematopoietic stem cell transplantation from normal donors are reported. Finally, the progress made by rapidly evolving fields of gene therapy and gene editing strategies, already in pre-clinical and clinical evaluation, and future challenges as novel curative treatments for thalassemia are discussed.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alberto Quattrocchi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy
| | - Benedetta Mancini
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Clara Nervi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy.
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy; Accademia Nazionale dei Lincei, Via della Lungara 10, 00165, Roma, Italy.
| |
Collapse
|
6
|
Enhancing fetal haemoglobin induction. Nat Rev Drug Discov 2021; 20:426. [PMID: 33948007 DOI: 10.1038/d41573-021-00075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|