1
|
Schmidt JK, Block LN, Jones KM, Hinkle HM, Mean KD, Bowman BD, Makulec AT, Golos TG. Atypical initial cleavage patterns minimally impact rhesus macaque in vitro embryo morphokinetics and embryo outgrowth development†. Biol Reprod 2023; 109:812-820. [PMID: 37688580 PMCID: PMC10724467 DOI: 10.1093/biolre/ioad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/17/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Embryo morphokinetic analysis through time-lapse embryo imaging is envisioned as a method to improve selection of developmentally competent embryos. Morphokinetic analysis could be utilized to evaluate the effects of experimental manipulation on pre-implantation embryo development. The objectives of this study were to establish a normative morphokinetic database for in vitro fertilized rhesus macaque embryos and to assess the impact of atypical initial cleavage patterns on subsequent embryo development and formation of embryo outgrowths. The cleavage pattern and the timing of embryo developmental events were annotated retrospectively for unmanipulated in vitro fertilized rhesus macaque blastocysts produced over four breeding seasons. Approximately 50% of the blastocysts analyzed had an abnormal early cleavage event. The time to the initiation of embryo compaction and the time to completion of hatching was significantly delayed in blastocysts with an abnormal early cleavage event compared to blastocysts that had cleaved normally. Embryo hatching, attachment to an extracellular matrix, and growth during the implantation stage in vitro was not impacted by the initial cleavage pattern. These data establish normative morphokinetic parameters for in vitro fertilized rhesus macaque embryos and suggest that cleavage anomalies may not impact embryo implantation rates following embryo transfer.
Collapse
Affiliation(s)
| | - Lindsey N Block
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Kathryn M Jones
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Hayly M Hinkle
- Wisconsin National Primate Research Center, Madison, WI, USA
| | | | | | | | - Thaddeus G Golos
- Wisconsin National Primate Research Center, Madison, WI, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
2
|
Harris RA, Raveendran M, Warren W, LaDeana HW, Tomlinson C, Graves-Lindsay T, Green RE, Schmidt JK, Colwell JC, Makulec AT, Cole SA, Cheeseman IH, Ross CN, Capuano S, Eichler EE, Levine JE, Rogers J. Whole Genome Analysis of SNV and Indel Polymorphism in Common Marmosets ( Callithrix jacchus). Genes (Basel) 2023; 14:2185. [PMID: 38137007 PMCID: PMC10742769 DOI: 10.3390/genes14122185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is one of the most widely used nonhuman primate models of human disease. Owing to limitations in sequencing technology, early genome assemblies of this species using short-read sequencing suffered from gaps. In addition, the genetic diversity of the species has not yet been adequately explored. Using long-read genome sequencing and expert annotation, we generated a high-quality genome resource creating a 2.898 Gb marmoset genome in which most of the euchromatin portion is assembled contiguously (contig N50 = 25.23 Mbp, scaffold N50 = 98.2 Mbp). We then performed whole genome sequencing on 84 marmosets sampling the genetic diversity from several marmoset research centers. We identified a total of 19.1 million single nucleotide variants (SNVs), of which 11.9 million can be reliably mapped to orthologous locations in the human genome. We also observed 2.8 million small insertion/deletion variants. This dataset includes an average of 5.4 million SNVs per marmoset individual and a total of 74,088 missense variants in protein-coding genes. Of the 4956 variants orthologous to human ClinVar SNVs (present in the same annotated gene and with the same functional consequence in marmoset and human), 27 have a clinical significance of pathogenic and/or likely pathogenic. This important marmoset genomic resource will help guide genetic analyses of natural variation, the discovery of spontaneous functional variation relevant to human disease models, and the development of genetically engineered marmoset disease models.
Collapse
Affiliation(s)
- R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.H.); (M.R.)
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.H.); (M.R.)
| | - Wes Warren
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Hillier W. LaDeana
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98104, USA; (H.W.L.); (E.E.E.)
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA; (C.T.); (T.G.-L.)
| | - Tina Graves-Lindsay
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA; (C.T.); (T.G.-L.)
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA;
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; (J.K.S.); (J.C.C.); (A.T.M.); (S.C.III); (J.E.L.)
| | - Julia C. Colwell
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; (J.K.S.); (J.C.C.); (A.T.M.); (S.C.III); (J.E.L.)
| | - Allison T. Makulec
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; (J.K.S.); (J.C.C.); (A.T.M.); (S.C.III); (J.E.L.)
| | - Shelley A. Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.A.C.); (I.H.C.); (C.N.R.)
| | - Ian H. Cheeseman
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.A.C.); (I.H.C.); (C.N.R.)
| | - Corinna N. Ross
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.A.C.); (I.H.C.); (C.N.R.)
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; (J.K.S.); (J.C.C.); (A.T.M.); (S.C.III); (J.E.L.)
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98104, USA; (H.W.L.); (E.E.E.)
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Jon E. Levine
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; (J.K.S.); (J.C.C.); (A.T.M.); (S.C.III); (J.E.L.)
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.H.); (M.R.)
| |
Collapse
|
3
|
Gambardella JC, Schoephoerster W, Bondarenko V, Yandell BS, Emborg ME. Expression of tau and phosphorylated tau in the brain of normal and hemiparkinsonian rhesus macaques. J Comp Neurol 2023; 531:1198-1216. [PMID: 37098996 PMCID: PMC10247506 DOI: 10.1002/cne.25490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/27/2023]
Abstract
Tau is a neuronal protein involved in microtubule stabilization and intracellular vesicle transport in axons. In neurodegenerative disorders termed "tauopathies," like Alzheimer's and Parkinson's disease, tau becomes hyperphosphorylated and forms intracellular inclusions. Rhesus macaques are widely used for studying ageing processes and modeling neurodegenerative disorders, yet little is known about endogenous tau expression in their brains. In this study, immunohistochemical methods were used to map and characterize total tau, 3R- and 4R-tau isoforms, and phosphorylated tau (pThr231-tau and pSer202/Thr205-tau/AT8) expression bilaterally in 16 brain regions of normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian adult rhesus macaques. Tau-immunoreactivity (-ir), including both 3R and 4R isoforms, was observed throughout the brain, with varying regional intensities. The anterior cingulate cortex, entorhinal cortex, and hippocampus displayed the most robust tau-ir, while the subthalamic nucleus and white matter regions had minimal expression. Tau was present in neurons of gray matter regions; it was preferentially observed in fibers of the globus pallidus and substantia nigra and in cell bodies of the thalamus and subthalamic nucleus. In white matter regions, tau was abundantly present in oligodendrocytes. Additionally, neuronal pThr231-tau-ir was abundant in all brain regions, but not AT8-ir. Differences in regional and intracellular protein expression were not detected between control subjects and both brain hemispheres of MPTP-treated animals. Specifically, tau-ir in the substantia nigra of all subjects colocalized with GABAergic neurons. Overall, this report provides an in-depth characterization of tau expression in the rhesus macaque brain to facilitate future investigations for understanding and modeling tau pathology in this species.
Collapse
Affiliation(s)
- Julia C. Gambardella
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison
| | - Wyatt Schoephoerster
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - Viktoriya Bondarenko
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | | | - Marina E. Emborg
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison
- Department of Medical Physics, University of Wisconsin-Madison
| |
Collapse
|
4
|
Hugon AM, Golos TG. Non-human primate models for understanding the impact of the microbiome on pregnancy and the female reproductive tract†. Biol Reprod 2023; 109:1-16. [PMID: 37040316 PMCID: PMC10344604 DOI: 10.1093/biolre/ioad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
The microbiome has been shown, or implicated to be involved, in multiple facets of human health and disease, including not only gastrointestinal health but also metabolism, immunity, and neurology. Although the predominant focus of microbiome research has been on the gut, other microbial communities such as the vaginal or cervical microbiome are likely involved in physiological homeostasis. Emerging studies also aim to understand the role of different microbial niches, such as the endometrial or placental microbial communities, on the physiology and pathophysiology of reproduction, including their impact on reproductive success and the etiology of adverse pregnancy outcomes (APOs). The study of the microbiome during pregnancy, specifically how changes in maternal microbial communities can lead to dysfunction and disease, can advance the understanding of reproductive health and the etiology of APOs. In this review, we will discuss the current state of non-human primate (NHP) reproductive microbiome research, highlight the progress with NHP models of reproduction, and the diagnostic potential of microbial alterations in a clinical setting to promote pregnancy health. NHP reproductive biology studies have the potential to expand the knowledge and understanding of female reproductive tract microbial communities and host-microbe or microbe-microbe interactions associated with reproductive health through sequencing and analysis. Furthermore, in this review, we aim to demonstrate that macaques are uniquely suited as high-fidelity models of human female reproductive pathology.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Schmidt JK, Kim YH, Strelchenko N, Gierczic SR, Pavelec D, Golos TG, Slukvin II. Whole genome sequencing of CCR5 CRISPR-Cas9-edited Mauritian cynomolgus macaque blastomeres reveals large-scale deletions and off-target edits. Front Genome Ed 2023; 4:1031275. [PMID: 36714391 PMCID: PMC9877282 DOI: 10.3389/fgeed.2022.1031275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: Genome editing by CRISPR-Cas9 approaches offers promise for introducing or correcting disease-associated mutations for research and clinical applications. Nonhuman primates are physiologically closer to humans than other laboratory animal models, providing ideal candidates for introducing human disease-associated mutations to develop models of human disease. The incidence of large chromosomal anomalies in CRISPR-Cas9-edited human embryos and cells warrants comprehensive genotypic investigation of editing outcomes in primate embryos. Our objective was to evaluate on- and off-target editing outcomes in CCR5 CRISPR-Cas9-targeted Mauritian cynomolgus macaque embryos. Methods: DNA isolated from individual blastomeres of two embryos, along with paternal and maternal DNA, was subjected to whole genome sequencing (WGS) analysis. Results: Large deletions were identified in macaque blastomeres at the on-target site that were not previously detected using PCR-based methods. De novo mutations were also identified at predicted CRISPR-Cas9 off-target sites. Discussion: This is the first report of WGS analysis of CRISPR-Cas9-targeted nonhuman primate embryonic cells, in which a high editing efficiency was coupled with the incidence of editing errors in cells from two embryos. These data demonstrate that comprehensive sequencing-based methods are warranted for evaluating editing outcomes in primate embryos, as well as any resultant offspring to ensure that the observed phenotype is due to the targeted edit and not due to unidentified off-target mutations.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Yun Hee Kim
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Nick Strelchenko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Sarah R. Gierczic
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Derek Pavelec
- University of Wisconsin Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Igor I. Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Kress A, Poch O, Lecompte O, Thompson JD. Real or fake? Measuring the impact of protein annotation errors on estimates of domain gain and loss events. FRONTIERS IN BIOINFORMATICS 2023; 3:1178926. [PMID: 37151482 PMCID: PMC10158824 DOI: 10.3389/fbinf.2023.1178926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Protein annotation errors can have significant consequences in a wide range of fields, ranging from protein structure and function prediction to biomedical research, drug discovery, and biotechnology. By comparing the domains of different proteins, scientists can identify common domains, classify proteins based on their domain architecture, and highlight proteins that have evolved differently in one or more species or clades. However, genome-wide identification of different protein domain architectures involves a complex error-prone pipeline that includes genome sequencing, prediction of gene exon/intron structures, and inference of protein sequences and domain annotations. Here we developed an automated fact-checking approach to distinguish true domain loss/gain events from false events caused by errors that occur during the annotation process. Using genome-wide ortholog sets and taking advantage of the high-quality human and Saccharomyces cerevisiae genome annotations, we analyzed the domain gain and loss events in the predicted proteomes of 9 non-human primates (NHP) and 20 non-S. cerevisiae fungi (NSF) as annotated in the Uniprot and Interpro databases. Our approach allowed us to quantify the impact of errors on estimates of protein domain gains and losses, and we show that domain losses are over-estimated ten-fold and three-fold in the NHP and NSF proteins respectively. This is in line with previous studies of gene-level losses, where issues with genome sequencing or gene annotation led to genes being falsely inferred as absent. In addition, we show that insistent protein domain annotations are a major factor contributing to the false events. For the first time, to our knowledge, we show that domain gains are also over-estimated by three-fold and two-fold respectively in NHP and NSF proteins. Based on our more accurate estimates, we infer that true domain losses and gains in NHP with respect to humans are observed at similar rates, while domain gains in the more divergent NSF are observed twice as frequently as domain losses with respect to S. cerevisiae. This study highlights the need to critically examine the scientific validity of protein annotations, and represents a significant step toward scalable computational fact-checking methods that may 1 day mitigate the propagation of wrong information in protein databases.
Collapse
|
7
|
Deycmar S, Gomes B, Charo J, Ceppi M, Cline JM. Spontaneous, naturally occurring cancers in non-human primates as a translational model for cancer immunotherapy. J Immunother Cancer 2023; 11:e005514. [PMID: 36593067 PMCID: PMC9808758 DOI: 10.1136/jitc-2022-005514] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
The complexity of cancer immunotherapy (CIT) demands reliable preclinical models to successfully translate study findings to the clinics. Non-human primates (NHPs; here referring to rhesus and cynomolgus macaques) share broad similarities with humans including physiology, genetic homology, and importantly also immune cell populations, immune regulatory mechanisms, and protein targets for CIT. Furthermore, NHP naturally develop cancers such as colorectal and breast cancer with an incidence, pathology, and age pattern comparable to humans. Thus, these tumor-bearing monkeys (TBMs) have the potential to bridge the experimental gap between early preclinical cancer models and patients with human cancer.This review presents our current knowledge of NHP immunology, the incidence and features of naturally-occurring cancers in NHP, and recent TBM trials investigating CIT to provide a scientific rationale for this unique model for human cancer.
Collapse
Affiliation(s)
- Simon Deycmar
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Bruno Gomes
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Jehad Charo
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Maurizio Ceppi
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
- iTeos Therapeutics Inc, Watertown, Massachusetts, USA
| | - J Mark Cline
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|