1
|
Feil R, Lehners M, Stehle D, Feil S. Visualising and understanding cGMP signals in the cardiovascular system. Br J Pharmacol 2021; 179:2394-2412. [PMID: 33880767 DOI: 10.1111/bph.15500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
cGMP is an important signalling molecule in humans. Fluorescent cGMP biosensors have emerged as powerful tools for the sensitive analysis of cGMP pathways at the single-cell level. Here, we briefly outline cGMP's multifaceted role in (patho)physiology and pharmacotherapy. Then we summarise what new insights cGMP imaging has provided into endogenous cGMP signalling and drug action, with a focus on the cardiovascular system. Indeed, the use of cGMP biosensors has led to several conceptual advances, such as the discovery of local, intercellular and mechanosensitive cGMP signals. Importantly, single-cell imaging can provide valuable information about the heterogeneity of cGMP signals within and between individual cells of an isolated cell population or tissue. We also discuss current challenges and future directions of cGMP imaging, such as the direct visualisation of cGMP microdomains, simultaneous monitoring of cGMP and other signalling molecules and, ultimately, cGMP imaging in tissues and animals under close-to-native conditions.
Collapse
Affiliation(s)
- Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Moritz Lehners
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021; 264:355-394. [PMID: 30689085 DOI: 10.1007/164_2018_197] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany. .,Department of Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | - Markus Follmann
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany
| | - Adrian Hobbs
- Barts and the London School of Medicine and Dentistry QMUL, London, UK
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
3
|
Kolijn D, Kovács Á, Herwig M, Lódi M, Sieme M, Alhaj A, Sandner P, Papp Z, Reusch PH, Haldenwang P, Falcão-Pires I, Linke WA, Jaquet K, Van Linthout S, Mügge A, Tschöpe C, Hamdani N. Enhanced Cardiomyocyte Function in Hypertensive Rats With Diastolic Dysfunction and Human Heart Failure Patients After Acute Treatment With Soluble Guanylyl Cyclase (sGC) Activator. Front Physiol 2020; 11:345. [PMID: 32523538 PMCID: PMC7261855 DOI: 10.3389/fphys.2020.00345] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Aims Our aim was to investigate the effect of nitric oxide (NO)-independent activation of soluble guanylyl cyclase (sGC) on cardiomyocyte function in a hypertensive animal model with diastolic dysfunction and in biopsies from human heart failure with preserved ejection fraction (HFpEF). Methods Dahl salt-sensitive (DSS) rats and control rats were fed a high-salt diet for 10 weeks and then acutely treated in vivo with the sGC activator BAY 58-2667 (cinaciguat) for 30 min. Single skinned cardiomyocyte passive stiffness (Fpassive) was determined in rats and human myocardium biopsies before and after acute treatment. Titin phosphorylation, activation of the NO/sGC/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) cascade, as well as hypertrophic pathways including NO/sGC/cGMP/PKG, PKA, calcium–calmodulin kinase II (CaMKII), extracellular signal-regulated kinase 2 (ERK2), and PKC were assessed. In addition, we explored the contribution of pro-inflammatory cytokines and oxidative stress levels to the modulation of cardiomyocyte function. Immunohistochemistry and electron microscopy were used to assess the translocation of sGC and connexin 43 proteins in the rat model before and after treatment. Results High cardiomyocyte Fpassive was found in rats and human myocardial biopsies compared to control groups, which was attributed to hypophosphorylation of total titin and to deranged site-specific phosphorylation of elastic titin regions. This was accompanied by lower levels of PKG and PKA activity, along with dysregulation of hypertrophic pathway markers such as CaMKII, PKC, and ERK2. Furthermore, DSS rats and human myocardium biopsies showed higher pro-inflammatory cytokines and oxidative stress compared to controls. DSS animals benefited from treatment with the sGC activator, as Fpassive, titin phosphorylation, PKG and the hypertrophic pathway kinases, pro-inflammatory cytokines, and oxidative stress markers all significantly improved to the level observed in controls. Immunohistochemistry and electron microscopy revealed a translocation of sGC protein toward the intercalated disc and t-tubuli following treatment in both control and DSS samples. This translocation was confirmed by staining for the gap junction protein connexin 43 at the intercalated disk. DSS rats showed a disrupted connexin 43 pattern, and sGC activator was able to partially reduce disruption and increase expression of connexin 43. In human HFpEF biopsies, the high Fpassive, reduced titin phosphorylation, dysregulation of the NO–sGC–cGMP–PKG pathway and PKA activity level, and activity of kinases involved in hypertrophic pathways CaMKII, PKC, and ERK2 were all significantly improved by sGC treatment and accompanied by a reduction in pro-inflammatory cytokines and oxidative stress markers. Conclusion Our data show that sGC activator improves cardiomyocyte function, reduces inflammation and oxidative stress, improves sGC–PKG signaling, and normalizes hypertrophic kinases, indicating that it is a potential treatment option for HFpEF patients and perhaps also for cases with increased hypertrophic signaling.
Collapse
Affiliation(s)
- Detmar Kolijn
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Melissa Herwig
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Mária Lódi
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,University of Debrecen, Kálmán Laki Doctoral School, Debrecen, Hungary
| | - Marcel Sieme
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Abdulatif Alhaj
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Peter Sandner
- Bayer AG, Drug Discovery Cardiology, Wuppertal, Germany
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter H Reusch
- Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Peter Haldenwang
- Department of Cardiothoracic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Ines Falcão-Pires
- Department of Surgery and Physiology and Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, University of Münster, Münster, Germany
| | - Kornelia Jaquet
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Sophie Van Linthout
- Department of Medicine and Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Mügge
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Carsten Tschöpe
- Department of Medicine and Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Marchetta P, Möhrle D, Eckert P, Reimann K, Wolter S, Tolone A, Lang I, Wolters M, Feil R, Engel J, Paquet-Durand F, Kuhn M, Knipper M, Rüttiger L. Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. Front Aging Neurosci 2020; 12:83. [PMID: 32327991 PMCID: PMC7160671 DOI: 10.3389/fnagi.2020.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022] Open
Abstract
In the inner ear, cyclic guanosine monophosphate (cGMP) signaling has been described as facilitating otoprotection, which was previously observed through elevated cGMP levels achieved by phosphodiesterase 5 inhibition. However, to date, the upstream guanylyl cyclase (GC) subtype eliciting cGMP production is unknown. Here, we show that mice with a genetic disruption of the gene encoding the cGMP generator GC-A, the receptor for atrial and B-type natriuretic peptides, display a greater vulnerability of hair cells to hidden hearing loss and noise- and age-dependent hearing loss. This vulnerability was associated with GC-A expression in spiral ganglia and outer hair cells (OHCs) but not in inner hair cells (IHCs). GC-A knockout mice exhibited elevated hearing thresholds, most pronounced for the detection of high-frequency tones. Deficits in OHC input–output functions in high-frequency regions were already present in young GC-A-deficient mice, with no signs of an accelerated progression of age-related hearing loss or higher vulnerability to acoustic trauma. OHCs in these frequency regions in young GC-A knockout mice exhibited diminished levels of KCNQ4 expression, which is the dominant K+ channel in OHCs, and decreased activation of poly (ADP-ribose) polymerase-1, an enzyme involved in DNA repair. Further, GC-A knockout mice had IHC synapse impairments and reduced amplitudes of auditory brainstem responses that progressed with age and with acoustic trauma, in contrast to OHCs, when compared to GC-A wild-type littermates. We conclude that GC-A/cGMP-dependent signaling pathways have otoprotective functions and GC-A gene disruption differentially contributes to hair-cell damage in a healthy, aged, or injured system. Thus, augmentation of natriuretic peptide GC-A signaling likely has potential to overcome hidden and noise-induced hearing loss, as well as presbycusis.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Philipp Eckert
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Katrin Reimann
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Steffen Wolter
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Isabelle Lang
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - Markus Wolters
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Itakura R, Inoue Y, Ogawa K, Nagoshi T, Minai K, Ogawa T, Kawai M, Yoshimura M. A Highly-sensitized Response of B-type Natriuretic Peptide to Cardiac Ischaemia Quantified by Intracoronary Pressure Measurements. Sci Rep 2020; 10:2403. [PMID: 32051484 PMCID: PMC7015889 DOI: 10.1038/s41598-020-59309-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/27/2020] [Indexed: 01/15/2023] Open
Abstract
B-type natriuretic peptide (BNP) secretion is stimulated by cardiac dysfunction. However, it is unclear how finely myocardial ischaemia contributes to BNP secretion and whether increases in BNP secretion contribute to coronary vasodilation. This study investigated the direct interaction between plasma BNP levels and cardiac ischaemia using the baseline distal-to-aortic pressure ratio (Pd/Pa). We examined the baseline Pd/Pa and fractional flow reserve (FFR) in 167 patients with intermediate coronary stenosis. The plasma BNP level appeared to be associated with the baseline Pd/Pa in the study population, and this association appeared to become clear only in patients with an FFR ≤ 0.80. To examine the effect of the baseline Pd/Pa on the BNP level in these patients, structural equation modeling (SEM) was performed. The baseline Pd/Pa significantly affected the BNP level (β: -0.37, p = 0.003) and the left ventricular ejection fraction (β: 0.43, p = 0.001). To examine the role of BNP in coronary vasodilation, we proposed another path model using a novel value obtained by dividing the FFR by the baseline Pd/Pa (FFR/baseline Pd/Pa) as an index of the hyperaemic response. The BNP level significantly affected the FFR/baseline Pd/Pa (β: 0.48, p = 0.037). This study demonstrated that BNP finely responded to an exacerbation of cardiac ischaemia and that increases in BNP secretion effectively ameliorated coronary vasoconstriction.
Collapse
Affiliation(s)
- Ryosuke Itakura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yasunori Inoue
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Kazuo Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kosuke Minai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takayuki Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Makoto Kawai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
6
|
Wu K, Mei C, Chen Y, Guo L, Yu Y, Huang D. C-type natriuretic peptide regulates sperm capacitation by the cGMP/PKG signalling pathway via Ca 2+ influx and tyrosine phosphorylation. Reprod Biomed Online 2019; 38:289-299. [PMID: 30655075 DOI: 10.1016/j.rbmo.2018.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022]
Abstract
RESEARCH QUESTION What is the effect of C-type natriuretic peptide (CNP) on human sperm capacitation in vitro and what is the mechanism of this effect? DESIGN CNP/NPR-B expression in the female rat genital tract was examined by immunohistochemistry and western blot assay, and then the role of CNP in human sperm capacitation was determined. The signal transduction pathway of CNP in the process was determined to elucidate the regulation mechanism of CNP by enzyme-linked immunosorbent assay and flow cytometry. RESULTS Both CNP and NPR-B were expressed in the genital tract of female rats, especially in the mucosa epithelium cell of the oviduct; the CNP level in the rat oviduct was higher than that in the cervix. Both CNP and NPR-B level in the rat oviduct varied during the oestrus cycle, maximal expression being observed at proestrus. Furthermore, intracellular cGMP level in spermatozoa was significantly enhanced by CNP (P < 0.01). PKG activity was detected in the spermatozoa, and it can be activated by the CNP and 8-Br-cGMP (cGMP analogue). The PKG inhibitor KT5823 inhibited the effect of CNP on sperm hyperactivation and the acrosome reaction. Finally, Ca2+ and tyrosine phosphorylation levels in spermatozoa were markedly improved by CNP and 8-Br-cGMP but significantly inhibited by the addition of KT5823 (P < 0.05). CONCLUSIONS CNP secreted by the female genital tract might bind to NPR-B on the spermatozoa. It successively stimulated intracellular cGMP/PKG signalling, increased Ca2+ and tyrosine-phosphorylated proteins, promoted hyperactivation and induced the acrosome reaction, which ultimately facilitated sperm capacitation.
Collapse
Affiliation(s)
- Kejia Wu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Chunlei Mei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Chen
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Reproductive Medicine Centre of Jingzhou Central Hospital, Jingzhou 434000, China
| | - Lidan Guo
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuejin Yu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Donghui Huang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Peters S, Paolillo M, Mergia E, Koesling D, Kennel L, Schmidtko A, Russwurm M, Feil R. cGMP Imaging in Brain Slices Reveals Brain Region-Specific Activity of NO-Sensitive Guanylyl Cyclases (NO-GCs) and NO-GC Stimulators. Int J Mol Sci 2018; 19:ijms19082313. [PMID: 30087260 PMCID: PMC6122017 DOI: 10.3390/ijms19082313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 11/23/2022] Open
Abstract
Impaired NO-cGMP signaling has been linked to several neurological disorders. NO-sensitive guanylyl cyclase (NO-GC), of which two isoforms—NO-GC1 and NO-GC2—are known, represents a promising drug target to increase cGMP in the brain. Drug-like small molecules have been discovered that work synergistically with NO to stimulate NO-GC activity. However, the effects of NO-GC stimulators in the brain are not well understood. In the present study, we used Förster/fluorescence resonance energy transfer (FRET)-based real-time imaging of cGMP in acute brain slices and primary neurons of cGMP sensor mice to comparatively assess the activity of two structurally different NO-GC stimulators, IWP-051 and BAY 41-2272, in the cerebellum, striatum and hippocampus. BAY 41-2272 potentiated an elevation of cGMP induced by the NO donor DEA/NO in all tested brain regions. Interestingly, IWP-051 potentiated DEA/NO-induced cGMP increases in the cerebellum and striatum, but not in the hippocampal CA1 area or primary hippocampal neurons. The brain-region-selective activity of IWP-051 suggested that it might act in a NO-GC isoform-selective manner. Results of mRNA in situ hybridization indicated that the cerebellum and striatum express NO-GC1 and NO-GC2, while the hippocampal CA1 area expresses mainly NO-GC2. IWP-051-potentiated DEA/NO-induced cGMP signals in the striatum of NO-GC2 knockout mice but was ineffective in the striatum of NO-GC1 knockout mice. These results indicate that IWP-051 preferentially stimulates NO-GC1 signaling in brain slices. Interestingly, no evidence for an isoform-specific effect of IWP-051 was observed when the cGMP-forming activity of whole brain homogenates was measured. This apparent discrepancy suggests that the method and conditions of cGMP measurement can influence results with NO-GC stimulators. Nevertheless, it is clear that NO-GC stimulators enhance cGMP signaling in the brain and should be further developed for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Stefanie Peters
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany.
| | - Michael Paolillo
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany.
| | - Evanthia Mergia
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Doris Koesling
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Lea Kennel
- Pharmakologisches Institut für Naturwissenschaftler, University of Frankfurt, 60438 Frankfurt am Main, Germany.
| | - Achim Schmidtko
- Pharmakologisches Institut für Naturwissenschaftler, University of Frankfurt, 60438 Frankfurt am Main, Germany.
| | - Michael Russwurm
- Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Dumoulin A, Ter-Avetisyan G, Schmidt H, Rathjen FG. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade. Int J Mol Sci 2018; 19:E1266. [PMID: 29695045 PMCID: PMC5983660 DOI: 10.3390/ijms19051266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 01/11/2023] Open
Abstract
Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.
Collapse
Affiliation(s)
| | | | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Fritz G Rathjen
- Max-Delbrück-Center, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
9
|
Lehners M, Dobrowinski H, Feil S, Feil R. cGMP Signaling and Vascular Smooth Muscle Cell Plasticity. J Cardiovasc Dev Dis 2018; 5:jcdd5020020. [PMID: 29671769 PMCID: PMC6023364 DOI: 10.3390/jcdd5020020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclic GMP regulates multiple cell types and functions of the cardiovascular system. This review summarizes the effects of cGMP on the growth and survival of vascular smooth muscle cells (VSMCs), which display remarkable phenotypic plasticity during the development of vascular diseases, such as atherosclerosis. Recent studies have shown that VSMCs contribute to the development of atherosclerotic plaques by clonal expansion and transdifferentiation to macrophage-like cells. VSMCs express a variety of cGMP generators and effectors, including NO-sensitive guanylyl cyclase (NO-GC) and cGMP-dependent protein kinase type I (cGKI), respectively. According to the traditional view, cGMP inhibits VSMC proliferation, but this concept has been challenged by recent findings supporting a stimulatory effect of the NO-cGMP-cGKI axis on VSMC growth. Here, we summarize the relevant studies with a focus on VSMC growth regulation by the NO-cGMP-cGKI pathway in cultured VSMCs and mouse models of atherosclerosis, restenosis, and angiogenesis. We discuss potential reasons for inconsistent results, such as the use of genetic versus pharmacological approaches and primary versus subcultured cells. We also explore how modern methods for cGMP imaging and cell tracking could help to improve our understanding of cGMP’s role in vascular plasticity. We present a revised model proposing that cGMP promotes phenotypic switching of contractile VSMCs to VSMC-derived plaque cells in atherosclerotic lesions. Regulation of vascular remodeling by cGMP is not only an interesting new therapeutic strategy, but could also result in side effects of clinically used cGMP-elevating drugs.
Collapse
Affiliation(s)
- Moritz Lehners
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Hyazinth Dobrowinski
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Susanne Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
10
|
|
11
|
Schmidt H, Peters S, Frank K, Wen L, Feil R, Rathjen FG. Dorsal root ganglion axon bifurcation tolerates increased cyclic GMP levels: the role of phosphodiesterase 2A and scavenger receptor Npr3. Eur J Neurosci 2016; 44:2991-3000. [PMID: 27740716 DOI: 10.1111/ejn.13434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
A cyclic GMP (cGMP) signaling pathway, comprising C-type natriuretic peptide (CNP), its guanylate cyclase receptor Npr2, and cGMP-dependent protein kinase I, is critical for the bifurcation of dorsal root ganglion (DRG) and cranial sensory ganglion axons when entering the mouse spinal cord and the hindbrain respectively. However, the identity and functional relevance of phosphodiesterases (PDEs) that degrade cGMP in DRG neurons are not completely understood. Here, we asked whether regulation of the intracellular cGMP concentration by PDEs modulates the branching of sensory axons. Real-time imaging of cGMP with a genetically encoded fluorescent cGMP sensor, RT-PCR screens, in situ hybridization, and immunohistology combined with the analysis of mutant mice identified PDE2A as the major enzyme for the degradation of CNP-induced cGMP in embryonic DRG neurons. Tracking of PDE2A-deficient DRG sensory axons in conjunction with cGMP measurements indicated that axon bifurcation tolerates increased cGMP concentrations. As we found that the natriuretic peptide scavenger receptor Npr3 is expressed by cells associated with dorsal roots but not in DRG neurons itself at early developmental stages, we analyzed axonal branching in the absence of Npr3. In Npr3-deficient mice, the majority of sensory axons showed normal bifurcation, but a small population of axons (13%) was unable to form T-like branches and generated turns in rostral or caudal directions only. Taken together, this study shows that sensory axon bifurcation is insensitive to increases of CNP-induced cGMP levels and Npr3 does not have an important scavenging function in this axonal system.
Collapse
Affiliation(s)
- Hannes Schmidt
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| | - Stefanie Peters
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Katharina Frank
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| | - Lai Wen
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Fritz G Rathjen
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| |
Collapse
|
12
|
Dhayade S, Kaesler S, Sinnberg T, Dobrowinski H, Peters S, Naumann U, Liu H, Hunger RE, Thunemann M, Biedermann T, Schittek B, Simon HU, Feil S, Feil R. Sildenafil Potentiates a cGMP-Dependent Pathway to Promote Melanoma Growth. Cell Rep 2016; 14:2599-610. [PMID: 26971999 DOI: 10.1016/j.celrep.2016.02.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/23/2015] [Accepted: 02/01/2016] [Indexed: 01/12/2023] Open
Abstract
Sildenafil, an inhibitor of the cGMP-degrading phosphodiesterase 5 that is used to treat erectile dysfunction, has been linked to an increased risk of melanoma. Here, we have examined the potential connection between cGMP-dependent signaling cascades and melanoma growth. Using a combination of biochemical assays and real-time monitoring of melanoma cells, we report a cGMP-dependent growth-promoting pathway in murine and human melanoma cells. We document that C-type natriuretic peptide (CNP), a ligand of the membrane-bound guanylate cyclase B, enhances the activity of cGMP-dependent protein kinase I (cGKI) in melanoma cells by increasing the intracellular levels of cGMP. Activation of this cGMP pathway promotes melanoma cell growth and migration in a p44/42 MAPK-dependent manner. Sildenafil treatment further increases intracellular cGMP concentrations, potentiating activation of this pathway. Collectively, our data identify this cGMP-cGKI pathway as the link between sildenafil usage and increased melanoma risk.
Collapse
Affiliation(s)
- Sandeep Dhayade
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | - Susanne Kaesler
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias Sinnberg
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - Hyazinth Dobrowinski
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | - Stefanie Peters
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | - Ulrike Naumann
- Hertie-Institut für klinische Hirnforschung, Abteilung Vaskuläre Neurologie, Labor für Molekulare Neuroonkologie, 72076 Tübingen, Germany
| | - He Liu
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Robert E Hunger
- Department of Dermatology, Inselspital, University Hospital Bern, 3010 Bern, Switzerland
| | - Martin Thunemann
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | - Tilo Biedermann
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany; Department of Dermatology and Allergology, Technische Universität München, 80802 Munich, Germany
| | - Birgit Schittek
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Samanta A, Thunemann M, Feil R, Stafforst T. Upon the photostability of 8-nitro-cGMP and its caging as a 7-dimethylaminocoumarinyl ester. Chem Commun (Camb) 2015; 50:7120-3. [PMID: 24853653 DOI: 10.1039/c4cc02828g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
8-Nitro-cGMP was recently discovered as a second messenger of nitric oxide. We describe here the synthesis and properties of DMACM-modified 8-nitro-cGMP for photochemical uncaging. Owing to the limited photostability of 8-nitro-cGMP care must be taken, but the photorelease of the intact product was readily feasible. Unexpectedly, 8-nitro-cGMP decays under formation of 8-nitrosoguanine when irradiated with light.
Collapse
Affiliation(s)
- Ayan Samanta
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
14
|
Thunemann M, Schmidt K, de Wit C, Han X, Jain RK, Fukumura D, Feil R. Correlative intravital imaging of cGMP signals and vasodilation in mice. Front Physiol 2014; 5:394. [PMID: 25352809 PMCID: PMC4196583 DOI: 10.3389/fphys.2014.00394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023] Open
Abstract
Cyclic guanosine monophosphate (cGMP) is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO)-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET)-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1) epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2) ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to “watch” biochemistry, (patho-)physiology, and pharmacotherapy in the context of a living mammalian organism.
Collapse
Affiliation(s)
- Martin Thunemann
- Interfakultäres Institut für Biochemie, University of Tübingen Tübingen, Germany
| | | | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck Lübeck, Germany
| | - Xiaoxing Han
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen Tübingen, Germany
| |
Collapse
|
15
|
Kröner C, Thunemann M, Vollmer S, Kinzer M, Feil R, Richert C. Endless: a purine-binding RNA motif that can be expressed in cells. Angew Chem Int Ed Engl 2014; 53:9198-202. [PMID: 25045108 DOI: 10.1002/anie.201403579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/29/2014] [Indexed: 01/16/2023]
Abstract
It is becoming increasingly clear that nature uses RNAs extensively for regulating vital functions of the cell, and short sequences are frequently used to suppress gene expression. However, controlling the concentration of small molecules intracellularly through designed RNA sequences that fold into ligand-binding structures is difficult. The development of "endless", a triplex-based folding motif that can be expressed in mammalian cells and binds the second messenger 3',5'-cyclic guanosine monophosphate (cGMP), is described. In vitro, DNA or RNA versions of endless show low micromolar to nanomolar dissociation constants for cGMP. To test its functionality in vivo, four endless RNA motifs arranged in tandem were co-expressed with a fluorescent cGMP sensor protein in murine vascular smooth muscle cells. Nitric oxide induced endogenous cGMP signals were suppressed in endless-expressing cells compared to cells expressing a control motif, which suggests that endless can act as a genetically encoded cGMP sink to modulate signal transduction in cells.
Collapse
Affiliation(s)
- Christoph Kröner
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany)
| | | | | | | | | | | |
Collapse
|
16
|
Kröner C, Thunemann M, Vollmer S, Kinzer M, Feil R, Richert C. Endless: A Purine-Binding RNA Motif that Can Be Expressed in Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Catalytic activity of cGMP-dependent protein kinase type I in intact cells is independent of N-terminal autophosphorylation. PLoS One 2014; 9:e98946. [PMID: 24897423 PMCID: PMC4045857 DOI: 10.1371/journal.pone.0098946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
Although cGMP-dependent protein kinase type I (cGKI) is an important mediator of cGMP signaling and upcoming drug target, its in vivo-biochemistry is not well understood. Many studies showed that purified cGKI autophosphorylates multiple sites at its N-terminus. Autophosphorylation might be involved in kinase activation, but it is unclear whether this happens also in intact cells. To study cGKI autophosphorylation in vitro and in vivo, we have generated phospho-specific antisera against major in vitro-autophosphorylation sites of the cGKI isoforms, cGKIα and cGKIβ. These antisera detected specifically and with high sensitivity phospho-cGKIα (Thr58), phospho-cGKIα (Thr84), or phospho-cGKIβ (Thr56/Ser63/Ser79). Using these antisera, we show that ATP-induced autophosphorylation of cGKI in purified preparations and cell extracts did neither require nor induce an enzyme conformation capable of substrate heterophosphorylation; it was even inhibited by pre-incubation with cGMP. Interestingly, phospho-cGKI species were not detectable in intact murine cells and tissues, both under basal conditions and after induction of cGKI catalytic activity. We conclude that N-terminal phosphorylation, although readily induced in vitro, is not required for the catalytic activity of cGKIα and cGKIβ in vivo. These results will also inform screening strategies to identify novel cGKI modulators.
Collapse
|
18
|
Thunemann M, Wen L, Hillenbrand M, Vachaviolos A, Feil S, Ott T, Han X, Fukumura D, Jain RK, Russwurm M, de Wit C, Feil R. Transgenic mice for cGMP imaging. Circ Res 2013; 113:365-71. [PMID: 23801067 DOI: 10.1161/circresaha.113.301063] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Cyclic GMP (cGMP) is an important intracellular signaling molecule in the cardiovascular system, but its spatiotemporal dynamics in vivo is largely unknown. OBJECTIVE To generate and characterize transgenic mice expressing the fluorescence resonance energy transfer-based ratiometric cGMP sensor, cGMP indicator with an EC50 of 500 nmol/L (cGi500), in cardiovascular tissues. METHODS AND RESULTS Mouse lines with smooth muscle-specific or ubiquitous expression of cGi500 were generated by random transgenesis using an SM22α promoter fragment or by targeted integration of a Cre recombinase-activatable expression cassette driven by the cytomegalovirus early enhancer/chicken β-actin/β-globin promoter into the Rosa26 locus, respectively. Primary smooth muscle cells isolated from aorta, bladder, and colon of cGi500 mice showed strong sensor fluorescence. Basal cGMP concentrations were < 100 nmol/L, whereas stimulation with cGMP-elevating agents such as 2-(N,N-diethylamino)-diazenolate-2-oxide diethylammonium salt (DEA/NO) or the natriuretic peptides, atrial natriuretic peptide, and C-type natriuretic peptide evoked fluorescence resonance energy transfer changes corresponding to cGMP peak concentrations of ≈ 3 µmol/L. However, different types of smooth muscle cells had different sensitivities of their cGMP responses to DEA/NO, atrial natriuretic peptide, and C-type natriuretic peptide. Robust nitric oxide-induced cGMP transients with peak concentrations of ≈ 1 to > 3 µmol/L could also be monitored in blood vessels of the isolated retina and in the cremaster microcirculation of anesthetized mice. Moreover, with the use of a dorsal skinfold chamber model and multiphoton fluorescence resonance energy transfer microscopy, nitric oxide-stimulated vascular cGMP signals associated with vasodilation were detected in vivo in an acutely untouched preparation. CONCLUSIONS These cGi500 transgenic mice permit the visualization of cardiovascular cGMP signals in live cells, tissues, and mice under normal and pathological conditions or during pharmacotherapy with cGMP-elevating drugs.
Collapse
Affiliation(s)
- Martin Thunemann
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Thunemann M, Fomin N, Krawutschke C, Russwurm M, Feil R. Visualization of cGMP with cGi biosensors. Methods Mol Biol 2013; 1020:89-120. [PMID: 23709028 DOI: 10.1007/978-1-62703-459-3_6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cyclic guanosine 3'-5'-monophosphate (cGMP) is an important signaling molecule in physiology, pathophysiology, and pharmacological therapy. It has been proposed that the functional outcome of an increase of cGMP in a given cell largely depends on the existence of global versus local cGMP pools. The recent development of genetically encoded fluorescent biosensors for cGMP is a major technical advance in order to monitor the spatiotemporal dynamics and compartmentalization of cGMP signals in living cells. Here we give an overview of the available cGMP sensors and how they can be used to visualize cGMP. The focus is on the fluorescence resonance energy transfer (FRET)-based cGi-type sensors (Russwurm et al., Biochem J 407:69-77, 2007), which are currently among the most useful tools for cGMP imaging in cells, tissues, and living organisms. We present detailed protocols that cover the entire imaging experiment, from the isolation of primary cells from cGi-transgenic mice and adenoviral expression of cGi sensors to the description of the setup required to record FRET changes in single cells and tissues. In-cell calibration of sensors and data evaluation is also described in detail and the limitations and common pitfalls of cGMP imaging are discussed. Specifically, we outline the use of FRET microscopy to visualize cGMP in murine smooth muscle cells (from aorta, bladder, and colon) and cerebellar granule neurons expressing cGi sensors. Most of the protocols can be easily adapted to other cell types and cGMP indicators and can be used as general guidelines for cGMP imaging in living cells, tissues and, eventually, whole organisms.
Collapse
Affiliation(s)
- Martin Thunemann
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
20
|
Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med 2012. [PMID: 23202294 DOI: 10.1038/nm.3019] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Skeletal muscle atrophy occurs in aging and pathological conditions, including cancer, diabetes and AIDS. Treatment of atrophy is based on either preventing protein-degradation pathways, which are activated during atrophy, or activating protein-synthesis pathways, which induce muscle hypertrophy. Here we show that neuronal nitric oxide synthase (nNOS) regulates load-induced hypertrophy by activating transient receptor potential cation channel, subfamily V, member 1 (TRPV1). The overload-induced hypertrophy was prevented in nNOS-null mice. nNOS was transiently activated within 3 min after overload. This activation promoted formation of peroxynitrite, a reaction product of nitric oxide with superoxide, which was derived from NADPH oxidase 4 (Nox4). Nitric oxide and peroxynitrite then activated Trpv1, resulting in an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) that subsequently triggered activation of mammalian target of rapamycin (mTOR). Notably, administration of the TRPV1 agonist capsaicin induced hypertrophy without overload and alleviated unloading- or denervation-induced atrophy. These findings identify nitric oxide, peroxynitrite and [Ca(2+)](i) as the crucial mediators that convert a mechanical load into an intracellular signaling pathway and lead us to suggest that TRPV1 could be a new therapeutic target for treating muscle atrophy.
Collapse
Affiliation(s)
- Naoki Ito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | | | | | | | | |
Collapse
|
21
|
Müller PM, Gnügge R, Dhayade S, Thunemann M, Krippeit-Drews P, Drews G, Feil R. H₂O₂ lowers the cytosolic Ca²⁺ concentration via activation of cGMP-dependent protein kinase Iα. Free Radic Biol Med 2012; 53:1574-83. [PMID: 22922339 DOI: 10.1016/j.freeradbiomed.2012.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/21/2022]
Abstract
The cGMP-dependent protein kinase I (cGKI) is a key mediator of cGMP signaling, but the specific functions of its two isoforms, cGKIα and cGKIβ, are poorly understood. Recent studies indicated a novel cGMP-independent role for cGKIα in redox sensing. To dissect the effects of oxidative stress on the cGKI isoforms, we used mouse embryonic fibroblasts and vascular smooth muscle cells (VSMCs) expressing both, one, or none of them. In cGKIα-expressing cells, but not in cells expressing only cGKIβ, incubation with H₂O₂ induced the formation of a disulfide bond between the two identical subunits of the dimeric enzyme. Oxidation of cGKIα was associated with increased phosphorylation of its substrate, vasodilator-stimulated phosphoprotein. H₂O₂ did not stimulate cGMP production, indicating that it activates cGKIα directly via oxidation. Interestingly, there was a mutual influence of H₂O₂ and cGMP on cGKI activity and disulfide bond formation, respectively; preoxidation of the kinase with H₂O₂ slightly impaired its activation by cGMP, whereas preactivation of the enzyme with cGMP attenuated its oxidation by H₂O₂. To evaluate the functional relevance of the noncanonical H₂O₂-cGKIα pathway, we studied the regulation of the cytosolic Ca²⁺ concentration ([Ca²⁺](i)). H₂O₂ suppressed norepinephrine-induced Ca²⁺ transients in cGKIα-expressing VSMCs and, to a lower extent, in VSMCs expressing only cGKIβ or none of the isoforms. Thus, H₂O₂ lowers [Ca²⁺](i) mainly via a cGKIα-dependent pathway. These results indicate that oxidative stress selectively targets the cGKIα isoform, which then modulates cellular processes in a cGMP-independent manner. A decrease in [Ca²⁺](i) in VSMCs via activation of cGKIα might be a major mechanism of H₂O₂-induced vasodilation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcium/metabolism
- Cells, Cultured
- Cyclic GMP/metabolism
- Cyclic GMP-Dependent Protein Kinase Type I/metabolism
- Cytosol/metabolism
- Disulfides/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/enzymology
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/enzymology
- Hydrogen Peroxide/pharmacology
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Oxidants/pharmacology
- Signal Transduction
Collapse
Affiliation(s)
- Paul Markus Müller
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Johnson JLF, Leroux MR. cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia. Trends Cell Biol 2010; 20:435-44. [PMID: 20541938 DOI: 10.1016/j.tcb.2010.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
An exciting discovery of the new millennium is that primary cilia, organelles found on most eukaryotic cells, play crucial roles in vertebrate development by modulating Hedgehog, Wnt and PDGF signaling. Analysis of the literature and sequence databases reveals that the ancient signal transduction pathway, which uses cGMP in eukaryotes or related cyclic di-GMP in bacteria, exists in virtually all eukaryotes. However, many eukaryotes that secondarily lost cilia during evolution, including flowering plants, slime molds and most fungi, lack otherwise evolutionarily conserved cGMP signaling components. Based on this intriguing phylogenetic distribution, the presence of cGMP signaling proteins within cilia, and the indispensable roles that cGMP plays in transducing environmental signals in divergent ciliated cells (e.g. vertebrate photoreceptors and Caenorhabditis elegans sensory neurons), we propose that cGMP signaling has a strong ciliary basis. cAMP signaling, also inherent to bacteria and crucial for cilium-dependent olfaction, similarly appears to have widespread usage in diverse cilia. Thus, we argue here that both cyclic nucleotides play essential and potentially ubiquitous roles in modulating ciliary functions.
Collapse
Affiliation(s)
- Jacque-Lynne F Johnson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | | |
Collapse
|
24
|
Mitrovic V, Hernandez AF, Meyer M, Gheorghiade M. Role of guanylate cyclase modulators in decompensated heart failure. Heart Fail Rev 2010; 14:309-19. [PMID: 19568931 DOI: 10.1007/s10741-009-9149-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this review we investigate the role of particulate and soluble guanylate cyclase (pGC and sGC, respectively) pathways in heart failure, and several novel drugs that modify guanylate cyclase. Nesiritide and ularitide/urodilatin are natriuretic peptides with vasodilating, natriuretic and diuretic effects, acting on pGC, whilst cinaciguat (BAY 58-2667) is a novel sGC activator. Cinaciguat has a promising and novel mode of action because it can stimulate cyclic guanosine-3',5'-monophosphate synthesis by targeting sGC in its nitric oxide-insensitive, oxidised ferric (Fe(3+)) or haem-free state. Thus, cinaciguat may also be effective under oxidative stress conditions resulting in oxidised or haem-free sGC refractory to traditional organic nitrate therapies. Preliminary studies of cinaciguat in patients with acute decompensated heart failure show substantial improvements in haemodynamics and symptoms, whilst maintaining renal function.
Collapse
|
25
|
Hoffmann LS, Schmidt PM, Keim Y, Schaefer S, Schmidt HHHW, Stasch JP. Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation. Br J Pharmacol 2009; 157:781-95. [PMID: 19466990 PMCID: PMC2721263 DOI: 10.1111/j.1476-5381.2009.00263.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/30/2009] [Accepted: 02/18/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In endothelial dysfunction, signalling by nitric oxide (NO) is impaired because of the oxidation and subsequent loss of the soluble guanylyl cyclase (sGC) haem. The sGC activator 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino)methyl[benzoic]acid (BAY 58-2667) is a haem-mimetic able to bind with high affinity to sGC when the native haem (the NO binding site) is removed and it also protects sGC from ubiquitin-triggered degradation. Here we investigate whether this protection is a unique feature of BAY 58-2667 or a general characteristic of haem-site ligands such as the haem-independent sGC activator 5-chloro-2-(5-chloro-thiophene-2-sulphonylamino-N-(4-(morpholine-4-sulphonyl)-phenyl)-benzamide sodium salt (HMR 1766), the haem-mimetic Zn-protoporphyrin IX (Zn-PPIX) or the haem-dependent sGC stimulator 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272). EXPERIMENTAL APPROACH The sGC inhibitor 1H-(1,2,4)-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) was used to induce oxidation-induced degradation of sGC. Activity and protein levels of sGC were measured in a Chinese hamster ovary cell line as well as in primary porcine endothelial cells. Cells expressing mutant sGC were used to elucidate the molecular mechanism underlying the effects observed. KEY RESULTS Oxidation-induced sGC degradation was prevented by BAY 58-2667 and Zn-PPIX in both cell types. In contrast, the structurally unrelated sGC activator, HMR 1766, and the sGC stimulator, BAY 41-2272, did not protect. Similarly, the constitutively haem-free sGC mutant beta(1)H105F was stabilized by BAY 58-2667 and Zn-PPIX. CONCLUSIONS The ability of BAY 58-2667 not only to activate but also to stabilize oxidized/haem-free sGC represents a unique example of bimodal target interaction and distinguishes this structural class from non-stabilizing sGC activators and sGC stimulators such as HMR 1766 and BAY 41-2272, respectively.
Collapse
Affiliation(s)
- L S Hoffmann
- Pharma Research Centre, Bayer HealthCare, Aprather Weg 18a, Wuppertal, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cyclic guanosine 3', 5'-monophosphate (cGMP) plays an integral role in the control of vascular function. Generated from guanylate cyclases in response to the endogenous ligands, nitric oxide (NO) and natriuretic peptides (NPs), cGMP influences a number of vascular cell types and regulates vasomotor tone, endothelial permeability, cell growth and differentiation, as well as platelet and blood cell interactions. Reciprocal regulation of the NO-cGMP and NP-cGMP pathways is evident in the vasculature such that one cGMP generating system may compensate for the dysfunction of the other. Indeed, aberrant cGMP production and/or signalling accompanies many vascular disorders such as hypertension, atherosclerosis, coronary artery disease and diabetic complications. This chapter highlights the main vascular functions of cGMP, its role in disease and the resulting current and potential therapeutic applications. With respect to pulmonary hypertension, heart failure and erectile dysfunction, as well as cGMP signal transduction, the reader is specifically referred to other dedicated chapters.
Collapse
Affiliation(s)
- Barbara Kemp-Harper
- Department of Pharmacology, Monash University, Melbourne (Clayton), VIC, 3800, Australia.
| | | |
Collapse
|
27
|
Abstract
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays a crucial role in the control of cardiovascular and gastrointestinal homeostastis, but its effects on neuronal functions are less established. This review summarizes recent biochemical and functional data on the role of the cGMP signalling pathway in the mammalian brain, with a focus on the regulation of synaptic plasticity, learning, and other complex behaviours. Expression profiling, along with pharmacological and genetic manipulations, indicates important functions of nitric oxide (NO)-sensitive soluble guanylyl cyclases (sGCs), cGMP-dependent protein kinases (cGKs), and cGMP-regulated phosphodiesterases (PDEs) as generators, effectors, and modulators of cGMP signals in the brain, respectively. In addition, neuronal cGMP signalling can be transmitted through cyclic nucleotide-gated (CNG) or hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. The canonical NO/sGC/cGMP/cGK pathway modulates long-term changes of synaptic activity in the hippocampus, amygdala, cerebellum, and other brain regions, and contributes to distinct forms of learning and memory, such as fear conditioning, motor adaptation, and object recognition. Behavioural studies indicate that cGMP signalling is also involved in anxiety, addiction, and the pathogenesis of depression and schizophrenia. At the molecular level, different cGK isoforms appear to mediate effects of cGMP on presynaptic transmitter release and postsynaptic functions. The cGKs have been suggested to modulate cytoskeletal organization, vesicle and AMPA receptor trafficking, and gene expression via phosphorylation of various substrates including VASP, RhoA, RGS2, hSERT, GluR1, G-substrate, and DARPP-32. These and other components of the cGMP signalling cascade may be attractive new targets for the treatment of cognitive impairment, drug abuse, and psychiatric disorders.
Collapse
|
28
|
Schmidt HHHW, Schmidt PM, Stasch JP. NO- and haem-independent soluble guanylate cyclase activators. Handb Exp Pharmacol 2009:309-339. [PMID: 19089335 DOI: 10.1007/978-3-540-68964-5_14] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oxidative stress, a risk factor for several cardiovascular disorders, interferes with the NO/sGC/cGMP signalling pathway through scavenging of NO and formation of the strong intermediate oxidant, peroxynitrite. Under these conditions, endothelial and vascular dysfunction develops, culminating in different cardio-renal and pulmonary-vascular diseases. Substituting NO with organic nitrates that release NO (NO donors) has been an important principle in cardiovascular therapy for more than a century. However, the development of nitrate tolerance limits their continuous clinical application and, under oxidative stress and increased formation of peroxynitrite foils the desired therapeutic effect. To overcome these obstacles of nitrate therapy, direct NO- and haem-independent sGC activators have been developed, such as BAY 58-2667 (cinaciguat) and HMR1766 (ataciguat), showing unique biochemical and pharmacological properties. Both compounds are capable of selectively activating the oxidized/haem-free enzyme via binding to the enzyme's haem pocket, causing pronounced vasodilatation. The potential importance of these new drugs resides in the fact that they selectively target a modified state of sGC that is prevalent under disease conditions as shown in several animal models and human disease. Activators of sGC may be beneficial in the treatment of a range of diseases including systemic and pulmonary hypertension (PH), heart failure, atherosclerosis, peripheral arterial occlusive disease (PAOD), thrombosis and renal fibrosis. The sGC activator HMR1766 is currently in clinical development as an oral therapy for patients with PAOD. The sGC activator BAY 58-2667 has demonstrated efficacy in a proof-of-concept study in patients with acute decompensated heart failure (ADHF), reducing pre- and afterload and increasing cardiac output from baseline. A phase IIb clinical study for the indication of ADHF is currently underway.
Collapse
Affiliation(s)
- Harald H H W Schmidt
- Department of Pharmacology and Centre for Vascular Health, Monash University, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
29
|
Valtcheva N, Nestorov P, Beck A, Russwurm M, Hillenbrand M, Weinmeister P, Feil R. The commonly used cGMP-dependent protein kinase type I (cGKI) inhibitor Rp-8-Br-PET-cGMPS can activate cGKI in vitro and in intact cells. J Biol Chem 2008; 284:556-562. [PMID: 19008225 DOI: 10.1074/jbc.m806161200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small-molecule modulators of cGMP signaling are of interest to basic and clinical research. The cGMP-dependent protein kinase type I (cGKI) is presumably a major mediator of cGMP effects, and the cGMP analogue Rp-8-Br-PET-cGMPS (Rp-PET) (chemical name: beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp-isomer) is currently considered one of the most permeable, selective, and potent cGKI inhibitors available for intact cell studies. Here, we have evaluated the properties of Rp-PET using cGKI-expressing and cGKI-deficient primary vascular smooth muscle cells (VSMCs), purified cGKI isozymes, and an engineered cGMP sensor protein. cGKI activity in intact VSMCs was monitored by cGMP/cGKI-stimulated cell growth and phosphorylation of vasodilator-stimulated phosphoprotein. Unexpectedly, Rp-PET (100 microm) did not efficiently antagonize activation of cGKI by the agonist 8-Br-cGMP (100 microm) in intact VSMCs. Moreover, in the absence of 8-Br-cGMP, Rp-PET (100 microm) stimulated cell growth in a cGKIalpha-dependent manner. Kinase assays with purified cGKI isozymes confirmed the previously reported inhibition of the cGMP-stimulated enzyme by Rp-PET in vitro. However, in the absence of the agonist cGMP, Rp-PET partially activated the cGKIalpha isoform. Experiments with a fluorescence resonance energy transfer-based construct harboring the cGMP binding sites of cGKI suggested that binding of Rp-PET induces a conformational change similar to the agonist cGMP. Together, these findings indicate that Rp-PET is a partial cGKIalpha agonist that under certain conditions stimulates rather than inhibits cGKI activity in vitro and in intact cells. Data obtained with Rp-PET as cGKI inhibitor should be interpreted with caution and not be used as sole evidence to dissect the role of cGKI in signaling processes.
Collapse
Affiliation(s)
- Nadejda Valtcheva
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Peter Nestorov
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Alexander Beck
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Michael Russwurm
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Matthias Hillenbrand
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Pascal Weinmeister
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Robert Feil
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany.
| |
Collapse
|