1
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|
2
|
Abstract
Eukaryotic cells have evolved a myriad of ion channels, transporters, and pumps to maintain and regulate transmembrane ion gradients. As intracellular parasites, viruses also have evolved ion channel proteins, called viroporins, which disrupt normal ionic homeostasis to promote viral replication and pathogenesis. The first viral ion channel (influenza M2 protein) was confirmed only 23 years ago, and since then studies on M2 and many other viroporins have shown they serve critical functions in virus entry, replication, morphogenesis, and immune evasion. As new candidate viroporins and viroporin-mediated functions are being discovered, we review the experimental criteria for viroporin identification and characterization to facilitate consistency within this field of research. Then we review recent studies on how the few Ca(2+)-conducting viroporins exploit host signaling pathways, including store-operated Ca(2+) entry, autophagy, and inflammasome activation. These viroporin-induced aberrant Ca(2+) signals cause pathophysiological changes resulting in diarrhea, vomiting, and proinflammatory diseases, making both the viroporin and host Ca(2+) signaling pathways potential therapeutic targets for antiviral drugs.
Collapse
Affiliation(s)
- Joseph M Hyser
- Alkek Center for Metagenomic and Microbiome Research.,Department of Molecular Virology and Microbiology, and
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, and.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411;
| |
Collapse
|
3
|
Ong HL, Jang SI, Ambudkar IS. Distinct contributions of Orai1 and TRPC1 to agonist-induced [Ca(2+)](i) signals determine specificity of Ca(2+)-dependent gene expression. PLoS One 2012; 7:e47146. [PMID: 23115638 PMCID: PMC3480383 DOI: 10.1371/journal.pone.0047146] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/10/2012] [Indexed: 12/30/2022] Open
Abstract
Regulation of critical cellular functions, including Ca2+-dependent gene expression, is determined by the temporal and spatial aspects of agonist-induced Ca2+ signals. Stimulation of cells with physiological concentrations of agonists trigger increases [Ca2+]i due to intracellular Ca2+ release and Ca2+ influx. While Orai1-STIM1 channels account for agonist-stimulated [Ca2+]i increase as well as activation of NFAT in cells such as lymphocytes, RBL and mast cells, both Orai1-STIM1 and TRPC1-STIM1 channels contribute to [Ca2+]i increases in human submandibular gland (HSG) cells. However, only Orai1-mediated Ca2+ entry regulates the activation of NFAT in HSG cells. Since both TRPC1 and Orai1 are activated following internal Ca2+ store depletion in these cells, it is not clear how the cells decode individual Ca2+ signals generated by the two channels for the regulation of specific cellular functions. Here we have examined the contributions of Orai1 and TRPC1 to carbachol (CCh)-induced [Ca2+]i signals and activation of NFAT in single cells. We report that Orai1-mediated Ca2+ entry generates [Ca2+]i oscillations at different [CCh], ranging from very low to high. In contrast, TRPC1-mediated Ca2+ entry generates sustained [Ca2+]i elevation at high [CCh] and contributes to frequency of [Ca2+]i oscillations at lower [agonist]. More importantly, the two channels are coupled to activation of distinct Ca2+ dependent gene expression pathways, consistent with the different patterns of [Ca2+]i signals mediated by them. Nuclear translocation of NFAT and NFAT-dependent gene expression display “all-or-none” activation that is exclusively driven by local [Ca2+]i generated by Orai1, independent of global [Ca2+]i changes or TRPC1-mediated Ca2+ entry. In contrast, Ca2+ entry via TRPC1 primarily regulates NFκB-mediated gene expression. Together, these findings reveal that Orai1 and TRPC1 mediate distinct local and global Ca2+ signals following agonist stimulation of cells, which determine the functional specificity of the channels in activating different Ca2+-dependent gene expression pathways.
Collapse
Affiliation(s)
- Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shyh-Ing Jang
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Indu Suresh Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Alexandru N, Jardín I, Popov D, Simionescu M, García-Estañ J, Salido GM, Rosado JA. Effect of homocysteine on calcium mobilization and platelet function in type 2 diabetes mellitus. J Cell Mol Med 2009; 12:2586-97. [PMID: 18088391 PMCID: PMC3828875 DOI: 10.1111/j.1582-4934.2008.00195.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes mellitus induces a characteristic platelet hyperactivity that might be due to several factors including oxidative stress and abnormal intracellular Ca2+ homeostasis. Hyperhomocysteinaemia is considered a risk factor in the development of thrombosis although its effect on platelet function and the mechanisms involved are still poorly understood. Here we show that homocysteine (Hcy) induce a concentration-dependent increase in endogenous production of reactive oxygen species (ROS), which was significantly greater in platelets from diabetic patients than in controls. Platelet treatment with Hcy resulted in Ca2+ release from the dense tubular system and the acidic stores. Ca2+ mobilisation-induced by Hcy consisted in two components, an initial slow increase in intracellular free Ca2+ concentration ([Ca2+]i) and a rapid and marked increase in [Ca2+]i, the second leading to the activation of platelet aggregation. As well as ROS generation, Ca2+ mobilization and platelet aggregation were significantly greater in platelets from diabetic donors than in controls, which indicate that platelets from diabetic donors are more sensitive to Hcy. These findings, together with the hyperhomocysteinaemia reported in diabetic patients, strongly suggest that Hcy might be considered a risk factor in the development of cardiovascular complications associated to type 2 diabetes mellitus.
Collapse
Affiliation(s)
- N Alexandru
- Institute of Cellular Biology and Pathology N. Simionescu, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
5
|
Alexandru N, Jardín I, Popov D, Simionescu M, García-Estañ J, Salido GM, Rosado JA. Effect of homocysteine on calcium mobilization and platelet function in type 2 diabetes mellitus. J Cell Mol Med 2009; 12:2015-26. [PMID: 19012728 PMCID: PMC4506167 DOI: 10.1111/j.1582-4934.2008.00200.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Type 2 diabetes mellitus induces a characteristic platelet hyperactivity that might be due to several factors including oxidativ stress and abnormal intracellular Ca2+ homeostasis. Hyperhomocysteinaemia is considered a risk factor in the development of thrombosis although its effect on platelet function and the mechanisms involved are still poorly understood. Here we show tha homocysteine induce a concentration-dependent increase in endogenous production of reactive oxygen species (ROS), which was significantly greater in platelets from diabetic patients than in controls. Platelet treatment with homocysteine resulted in Ca2+ release from the dense tubular system and the acidic stores. Ca2+ mobilization-induced by homocysteine consisted in two components, an initial slow increase in intracellular free Ca + concentration ([Ca +]i) and a rapid and marked increase in [Ca2+]i, th second leading to the activation of platelet aggregation. As well as ROS generation, Ca2+ mobilization and platelet aggregation were significantly greater in platelets from diabetic donors than in controls, which indicate that platelets from diabetic donors are more sensitive to homocysteine. These findings, together with the hyperhomocysteinaemia reported in diabetic patients, strongly suggest that homocysteine might be considered a risk factor in the development of cardiovascular complications associated to type 2 diabetes mellitus.
Collapse
Affiliation(s)
- N Alexandru
- Institute of Cellular Biology and Pathology N. Simionescu, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
6
|
Morales S, Diez A, Puyet A, Camello PJ, Camello-Almaraz C, Bautista JM, Pozo MJ. Calcium controls smooth muscle TRPC gene transcription via the CaMK/calcineurin-dependent pathways. Am J Physiol Cell Physiol 2006; 292:C553-63. [PMID: 16956967 DOI: 10.1152/ajpcell.00096.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential protein family C (TRPC) has been proposed as a candidate for channels involved in capacitative Ca(2+) entry (CCE) mechanisms, but the modulation of their gene expression remains unexplored. In this study we show that guinea pig gallbladder smooth muscle contains mRNA encoding TRPC1, TRPC2, TRPC3, and TRPC4 proteins whose abundance depends on cytosolic Ca(2+) level ([Ca(2+)](i)). Thus lowering the levels of cellular calcium with the chelators EGTA and BAPTA AM results in a downregulation of TRPC1-TRPC4 gene and protein expression. In contrast, activation of Ca(2+) influx through L-type Ca(2+) channels and Ca(2+) release from intracellular stores induced an increase in TRPC1-TRPC4 mRNA and protein abundance. Activation of Ca(2+)/calmodulin-dependent kinases (CaMK) and phosphorylation of cAMP-response element binding protein accounts for the increase in TRPC mRNA transcription in response to L-type channel-mediated Ca(2+) influx . In addition to this mechanism, activation of TRPC gene expression by intracellular Ca(2+) release also involves calcineurin pathway. According to the proposed role for these channels, activation of CCE induced an increase in TRPC1 and TRPC3 mRNA abundance, which depends on the integrity of the calcineurin and CaMK pathways. These findings show for the first time an essential autoregulatory role of Ca(2+) in Ca(2+) homeostasis at the level of TRPC gene and protein expression.
Collapse
Affiliation(s)
- Sara Morales
- Department of Physiology, Nursing School, University of Extremadura, Avenida Universidad s/n, 10071 Cáceres, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Jiang N, Zhang ZM, Liu L, Zhang C, Zhang YL, Zhang ZC. Effects of Ca2+ channel blockers on store-operated Ca2+ channel currents of Kupffer cells after hepatic ischemia/reperfusion injury in rats. World J Gastroenterol 2006; 12:4694-8. [PMID: 16937441 PMCID: PMC4087835 DOI: 10.3748/wjg.v12.i29.4694] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To study the effects of hepatic ischemia/reperfusion (I/R) injury on store-operated calcium channel (SOC) currents (I(SOC)) in freshly isolated rat Kupffer cells, and the effects of Ca(2+) channel blockers, 2-aminoethoxydiphenyl borate (2-APB), SK and F96365, econazole and miconazole, on I(SOC) in isolated rat Kupffer cells after hepatic I/R injury. METHODS The model of rat hepatic I/R injury was established. Whole-cell patch-clamp techniques were performed to investigate the effects of 2-APB, SK and F96365, econazole and miconazole on I(SOC) in isolated rat Kupffer cells after hepatic I /R injury. RESULTS I/R injury significantly increased I(SOC) from -80.4 +/- 25.2pA to -159.5 +/- 34.5pA ((b)P < 0.01, n = 30). 2-APB (20, 40, 60, 80, 100 micromol/L), SK and F96365 (5, 10, 20, 40, 50 micromol/L), econazole (0.1, 0.3, 1, 3, 10 micromol/L) and miconazole (0.1, 0.3, 1, 3, 10 micromol/L) inhibited I(SOC) in a concentration-dependent manner with IC50 of 37.41 micromol/L (n = 8), 5.89 micromol/L (n = 11), 0.21 micromol/L (n = 13), and 0.28 micromol/L (n = 10). The peak value of I(SOC) in the I-V relationship was decreased by the blockers in different concentrations, but the reverse potential of I(SOC) was not transformed. CONCLUSION SOC is the main channel for the influx of Ca(2+) during hepatic I/R injuries. Calcium channel blockers, 2-APB, SK and F96365, econazole and miconazole, have obviously protective effects on I/R injury, probably by inhibiting I(SOC) in Kupffer cells and preventing the activation of Kupffer cells.
Collapse
Affiliation(s)
- Nan Jiang
- Department of General Surgery, Digestive Medical Center, First Affiliated Hospital of Tsinghua University, Beijing 100016, China
| | | | | | | | | | | |
Collapse
|
8
|
Kim JH, Choi S, Jung JE, Roh EJ, Kim HJ. Capacitative Ca2+ entry is involved in regulating soluble amyloid precursor protein (sAPPalpha) release mediated by muscarinic acetylcholine receptor activation in neuroblastoma SH-SY5Y cells. J Neurochem 2006; 97:245-54. [PMID: 16524374 DOI: 10.1111/j.1471-4159.2006.03734.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have demonstrated that stimulation of phospholipase C-linked G-protein-coupled receptors, including muscarinic M1 and M3 receptors, increases the release of the soluble form of amyloid precursor protein (sAPPalpha) by alpha-secretase cleavage. In this study, we examined the involvement of capacitative Ca2+ entry (CCE) in the regulation of muscarinic acetylcholine receptor (mAChR)-dependent sAPPalpha release in neuroblastoma SH-SY5Y cells expressing abundant M3 mAChRs. The sAPPalpha release stimulated by mAChR activation was abolished by EGTA, an extracellular Ca2+ chelator, which abolished mAChR-mediated Ca2+ influx without affecting Ca2+ mobilization from intracellular stores. However, mAChR-mediated sAPPalpha release was not inhibited by thapsigargin, which increases basal [Ca2+]i by depletion of Ca2+ from intracellular stores. While these results indicate that the mAChR-mediated increase in sAPPalpha release is regulated largely by Ca2+ influx rather than by Ca2+ mobilization from intracellular stores, we further investigated the Ca2+ entry mechanisms regulating this phenomenon. CCE inhibitors such as Gd3+, SKF96365, and 2-aminoethoxydiphenyl borane (2-APB), dose dependently reduced both Ca2+ influx and sAPPalpha release stimulated by mAChR activation, whereas inhibition of voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, or Na+-pumps was without effect. These results indicate that CCE plays an important role in the mAChR-mediated release of sAPPalpha.
Collapse
Affiliation(s)
- Jin Hyoung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | | | | | | | |
Collapse
|
9
|
Kim DC, Lee SY, Jun DJ, Kim SH, Lee JH, Hur EM, Baek NI, Kim KT. Inhibition of store-operated calcium entry-mediated superoxide generation by histamine trifluoromethyltoluide independent of histamine receptors. Biochem Pharmacol 2005; 70:1613-22. [PMID: 16219299 DOI: 10.1016/j.bcp.2005.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/02/2005] [Accepted: 09/06/2005] [Indexed: 11/26/2022]
Abstract
Store-operated calcium entry (SOCE) plays an important role in shaping the Ca(2+) response of various tissues and cell types. In this report, we show that thapsigargin (TG)-induced SOCE was inhibited by the histamine receptor agonist, histamine-trifluoromethyltoluide (HTMT), in U937 and HL-60 human promyelocytes. Preincubation of HTMT resulted in a significant inhibition of subsequent TG-induced Ca(2+) elevation without affecting Ca(2+) release from intracellular stores. HTMT also inhibited TG-induced Ca(2+) current and Ba(2+)/Mn(2+) influx in a concentration-dependent manner. In contrast with HTMT, other H1 histamine receptor agonists, histamine, 2-methylhistamine and 2-thiazolylethylamine, did not affect TG-induced SOCE. In addition, HTMT also attenuated TG-induced cytosolic superoxide generation. Taken together, our data clearly suggest that the anti-inflammatory effect of HTMT may occur through direct inhibition of SOCE.
Collapse
Affiliation(s)
- Dong-Chan Kim
- Division of Molecular and Life Science, SBD-NCRC, Pohang University of Science and Technology, Pohang 790-784, POSTECH, San 31, Hyoja Dong, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Moneer Z, Pino I, Taylor E, Broad L, Liu Y, Tovey S, Staali L, Taylor C. Different phospholipase-C-coupled receptors differentially regulate capacitative and non-capacitative Ca2+ entry in A7r5 cells. Biochem J 2005; 389:821-9. [PMID: 15918794 PMCID: PMC1180733 DOI: 10.1042/bj20050145] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several receptors, including those for AVP (Arg8-vasopressin) and 5-HT (5-hydroxytryptamine), share an ability to stimulate PLC (phospholipase C) and so production of IP3 (inositol 1,4,5-trisphosphate) and DAG (diacylglycerol) in A7r5 vascular smooth muscle cells. Our previous analysis of the effects of AVP on Ca2+ entry [Moneer, Dyer and Taylor (2003) Biochem. J. 370, 439-448] showed that arachidonic acid released from DAG stimulated NO synthase. NO then stimulated an NCCE (non-capacitative Ca2+ entry) pathway, and, via cGMP and protein kinase G, it inhibited CCE (capacitative Ca2+ entry). This reciprocal regulation ensured that, in the presence of AVP, all Ca2+ entry occurred via NCCE to be followed by a transient activation of CCE only when AVP was removed [Moneer and Taylor (2002) Biochem. J. 362, 13-21]. We confirm that, in the presence of AVP, all Ca2+ entry occurs via NCCE, but 5-HT, despite activating PLC and evoking release of Ca2+ from intracellular stores, stimulates Ca2+ entry only via CCE. We conclude that two PLC-coupled receptors differentially regulate CCE and NCCE. We also address evidence that, in some A7r5 cells lines, AVP fails either to stimulate NCCE or inhibit CCE [Brueggemann, Markun, Barakat, Chen and Byron (2005) Biochem. J. 388, 237-244]. Quantitative PCR analysis suggests that these cells predominantly express TRPC1 (transient receptor potential canonical 1), whereas cells in which AVP reciprocally regulates CCE and NCCE express a greater variety of TRPC subtypes (TRPC1=6>2>3).
Collapse
Affiliation(s)
- Zahid Moneer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Irene Pino
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Emily J. A. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Lisa M. Broad
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Yingjie Liu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Stephen C. Tovey
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Leila Staali
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Colin W. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
11
|
Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005; 437:902-5. [PMID: 16208375 PMCID: PMC1618826 DOI: 10.1038/nature04147] [Citation(s) in RCA: 1128] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 08/22/2005] [Indexed: 01/09/2023]
Abstract
As the sole Ca2+ entry mechanism in a variety of non-excitable cells, store-operated calcium (SOC) influx is important in Ca2+ signalling and many other cellular processes. A calcium-release-activated calcium (CRAC) channel in T lymphocytes is the best-characterized SOC influx channel and is essential to the immune response, sustained activity of CRAC channels being required for gene expression and proliferation. The molecular identity and the gating mechanism of SOC and CRAC channels have remained elusive. Previously we identified Stim and the mammalian homologue STIM1 as essential components of CRAC channel activation in Drosophila S2 cells and human T lymphocytes. Here we show that the expression of EF-hand mutants of Stim or STIM1 activates CRAC channels constitutively without changing Ca2+ store content. By immunofluorescence, EM localization and surface biotinylation we show that STIM1 migrates from endoplasmic-reticulum-like sites to the plasma membrane upon depletion of the Ca2+ store. We propose that STIM1 functions as the missing link between Ca2+ store depletion and SOC influx, serving as a Ca2+ sensor that translocates upon store depletion to the plasma membrane to activate CRAC channels.
Collapse
Affiliation(s)
- Shenyuan L. Zhang
- Department of Physiology and Biophysics and Center for Immunology, University of California, Irvine, California 92697, USA
| | - Ying Yu
- Department of Physiology and Biophysics and Center for Immunology, University of California, Irvine, California 92697, USA
| | - Jack Roos
- TorreyPines Therapeutics, Inc., La Jolla, California 92037, USA
| | - J. Ashot Kozak
- Department of Physiology and Biophysics and Center for Immunology, University of California, Irvine, California 92697, USA
| | - Thomas J. Deerinck
- National Center for Microscopy and Imaging Research, Center for Research in Biological Structure and the Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Structure and the Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Michael D. Cahalan
- Department of Physiology and Biophysics and Center for Immunology, University of California, Irvine, California 92697, USA
- Corresponding author: Michael D. Cahalan telephone: (949) 824-7776 fax: (949) 824-3143
| |
Collapse
|
12
|
Xie Q, Zhang Y, Sun XC, Zhai C, Bonanno JA. Expression and functional evaluation of transient receptor potential channel 4 in bovine corneal endothelial cells. Exp Eye Res 2005; 81:5-14. [PMID: 15978249 PMCID: PMC4110920 DOI: 10.1016/j.exer.2005.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 01/06/2005] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
We previously found that activation of purinergic receptors mobilizes Ca2+ and enhances bicarbonate transport in bovine corneal endothelial cells (BCEC). Since transient receptor potential channel 4 (TRPC) has been reported to be a candidate for capacitative calcium entry (CCE) and receptor operated calcium entry (ROC), we examined the expression of TRPC4 and evaluated the potential involvement of TRPC4 in CCE or ROC in BCEC. The C-terminus of TRPC4 was fused into the glutathione S-transferase (GST) expression vector. The fusion protein GST-TRPC4c was induced in bacteria and purified by affinity chromatography. An antibody was raised in rabbit by using the purified GST-TRPC4c antigen. In Western blotting, the TRPC4 antibody recognized the fusion protein while the pre-immune IgG did not. The TRPC4 antibody recognized a band at around 80 kD for membrane proteins from both the fresh and cultured BCEC. The pre-immune IgG could not detect bands at the same size. Incubation with the TRPC4c antigen abolished the 80 kD band. Immunofluorescence using the TRPC4 antibody stained both fresh and cultured BCEC, while pre-immune IgG did not. RNAi knocked down the expression of TRPC4 in cultured BCEC. Ca2+ entry induced by the purinergic receptor agonist ATP, was increased in TRPC4-siRNA transfected cells compared with the scrambled siRNA control, while Ca2+ entry induced by store depletion through blocking the endoplasmic reticulum Ca2+ pump, did not differ between the siRNA and scrambled siRNA-treated cells. Taken together, these results show that TRPC4 protein is expressed in the bovine corneal endothelial cells and may be a negative regulator in ROC stimulated by purinergic activation, but not by store depletion itself.
Collapse
Affiliation(s)
| | | | | | | | - Joseph A. Bonanno
- Corresponding author. Dr Joseph A. Bonanno, School of Optometry, Indiana University, 800 E Atwater Avenue, Bloomington, IN 47405-3680, USA. (J.A. Bonanno)
| |
Collapse
|
13
|
Gill DL, Patterson RL. Toward a consensus on the operation of receptor-induced calcium entry signals. Sci Signal 2004; 2004:pe39. [PMID: 15280581 DOI: 10.1126/stke.2432004pe39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Receptor-induced Ca2+ signals involve both Ca2+ release from intracellular stores and extracellular Ca2+ entry across the plasma membrane. The channels mediating Ca2+ entry and the mechanisms controlling their function remain largely a mystery. Here we critically assess current views on the Ca2+ entry process and consider certain modifications to the widely held hypothesis that Ca2+ store emptying is the fundamental trigger for receptor-induced Ca2+ entry channels. Under physiological conditions, receptor-induced store depletion may be quite limited. A number of distinct channel activities appear to mediate receptor-induced Ca2+ entry, and their activation is observed to occur through quite diverse coupling processes.
Collapse
Affiliation(s)
- Donald L Gill
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|