1
|
Maetens L, Maiti B, Cools F, Verheye S, Daelemans D, Persoons L, Temmerman L, Kieswetter A, Van der Eycken EV, Coppola GA, Vackier T, Steenackers HP. Optimizing biofilm inhibitors: Balancing activity and toxicity in 2N-aminated 5-aryl-2-aminoimidazoles. Bioorg Med Chem 2025; 121:118115. [PMID: 40010036 DOI: 10.1016/j.bmc.2025.118115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
To evaluate the effect of amination on biofilm inhibition against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, representative compounds of two previously described 5-aryl-2-aminoimidazole (5-Ar-2-AI) classes were aminated by installing an amino group at the end of the substituted n-alkyl chain. Amination led to an improvement in activity for one of the two classes, the 2N-substituted 5-Ar-2-AI class. Based on these findings, a more extensive library of 2N-substituted-aminated 5-Ar-2-AIs was synthesized having different n-alkyl and halogen substitutions on the 2N-position and the 4(5)-phenyl ring, respectively. Compounds were evaluated for their biofilm inhibitory activity against E. coli, P. aeruginosa, S. aureus, Staphylococcus epidermidis and MRSA. Additionally, their toxicity was tested on eight continuous cell lines, peripheral blood mononuclear cells and Caenorhabditis elegans, along with their genotoxicity on Capan-1. Halogenation and elongation of the n-alkyl substituent showed a positive effect on biofilm inhibitory activity, but also increased toxicity. Compromising between activity and toxicity, a non-halogenated 2N-substituted-aminated 5-Ar-2-AI compound with an intermediate n-heptyl substitution demonstrated promising broad-spectrum biofilm inhibition, making it a suitable candidate for further research in anti-infectious medical applications.
Collapse
Affiliation(s)
- Lynn Maetens
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; Amynas, Euster 104, 2570 Duffel, Belgium.
| | - Banibrata Maiti
- Laboratory for Organic & Microwave-assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | - Dirk Daelemans
- Molecular Genetics and Therapeutics in Virology and Oncology Research Group, Immunology and Transplantation, Department of Microbiology, KU Leuven, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium.
| | - Leentje Persoons
- Molecular Genetics and Therapeutics in Virology and Oncology Research Group, Immunology and Transplantation, Department of Microbiology, KU Leuven, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium.
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Amanda Kieswetter
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; People's Friendship University of Russia, RUDN University, Miklukho-Maklaya Street 6, RU-117198 Moscow, Russia.
| | - Guglielmo A Coppola
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; Laboratory for Organic & Microwave-assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Thijs Vackier
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Hans P Steenackers
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Joos M, Vackier T, Mees MA, Coppola G, Alexandris S, Geunes R, Thielemans W, Steenackers HPL. Antimicrobial Activity of Glycyrrhizinic Acid Is pH-Dependent. ACS APPLIED BIO MATERIALS 2024; 7:8223-8235. [PMID: 39592134 DOI: 10.1021/acsabm.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
In recent years, antimicrobial hydrogels have attracted much attention in biomedical applications due to their biocompatibility and high water content. Glycyrrhizin (GA) is an antimicrobial that can form pH-dependent hydrogels due to the three carboxyl groups of GA that differ in pKa value. The influence of GA protonation on the antimicrobial activity, however, has never been studied before. Therefore, we investigated the effect of the pH on the antimicrobial activity of GA against Pseudomonas aeruginosa, Staphylococcus aureus, MRSA, Staphylococcus epidermidis, Acinetobacter baumannii, Klebsiella pneumoniae, Klebsiella aerogenes, and two strains of Escherichia coli. In general, the antimicrobial activity of GA increases as a function of decreasing pH (and thus increasing protonation of GA). More specifically, fully protonated GA hydrogels (pH = 3) are required for growth inhibition and killing of E. coli UTI89 and Klebsiella in the suspension above the hydrogel, while the staphylococci strains and A. baumannii are already inhibited by fully deprotonated GA (pH = 6.8). P. aeruginosa and E. coli DH5α showed moderate susceptibility, as they are completely inhibited by a hydrogel at pH 3.8, containing partly protonated GA, but not by fully deprotonated GA (pH = 6.8). The antimicrobial activity of the hydrogel cannot solely be attributed to the resulting pH decrease of the suspension, as the presence of GA significantly increases the activity. Instead, this increased activity is due to the release of GA from the hydrogel into the suspension, where it directly interacts with the bacteria. Moreover, we provide evidence indicating that the pH dependency of the antimicrobial activity is due to differences in GA protonation state by treating the pathogens with GA solutions differing in their GA protonation distribution. Finally, we show by LC-MS that there is no chemical or enzymatic breakdown of GA. Overall, our results demonstrate that the pH influences not only the physical but also the antimicrobial properties of the GA hydrogels.
Collapse
Affiliation(s)
- Mathieu Joos
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Maarten A Mees
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Guglielmo Coppola
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven 3001, Belgium
| | - Stelios Alexandris
- Department of Chemical Engineering, KU Leuven - Laboratory for Soft Matter, Rheology and Technology (SMaRT), Leuven 3001, Belgium
| | - Robbe Geunes
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Wim Thielemans
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Hans P L Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
3
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
de Souza JB, de Lacerda Coriolano D, dos Santos Silva RC, da Costa Júnior SD, de Almeida Campos LA, Cavalcanti IDL, Lira Nogueira MCDB, Pereira VRA, Brelaz-de-Castro MCA, Cavalcanti IMF. Ceftazidime and Usnic Acid Encapsulated in Chitosan-Coated Liposomes for Oral Administration against Colorectal Cancer-Inducing Escherichia coli. Pharmaceuticals (Basel) 2024; 17:802. [PMID: 38931469 PMCID: PMC11206294 DOI: 10.3390/ph17060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli has been associated with the induction of colorectal cancer (CRC). Thus, combined therapy incorporating usnic acid (UA) and antibiotics such as ceftazidime (CAZ), co-encapsulated in liposomes, could be an alternative. Coating the liposomes with chitosan (Chi) could facilitate the oral administration of this nanocarrier. Liposomes were prepared using the lipid film hydration method, followed by sonication and chitosan coating via the drip technique. Characterization included particle size, polydispersity index, zeta potential, pH, encapsulation efficiency, and physicochemical analyses. The minimum inhibitory concentration and minimum bactericidal concentration were determined against E. coli ATCC 25922, NCTC 13846, and H10407 using the microdilution method. Antibiofilm assays were conducted using the crystal violet method. The liposomes exhibited sizes ranging from 116.5 ± 5.3 to 240.3 ± 3.5 nm and zeta potentials between +16.4 ± 0.6 and +28 ± 0.8 mV. The encapsulation efficiencies were 51.5 ± 0.2% for CAZ and 99.94 ± 0.1% for UA. Lipo-CAZ-Chi and Lipo-UA-Chi exhibited antibacterial activity, inhibited biofilm formation, and preformed biofilms of E. coli. The Lipo-CAZ-UA-Chi and Lipo-CAZ-Chi + Lipo-UA-Chi formulations showed enhanced activities, potentially due to co-encapsulation or combination effects. These findings suggest potential for in vivo oral administration in future antibacterial and antibiofilm therapies against CRC-inducing bacteria.
Collapse
Affiliation(s)
- Jaqueline Barbosa de Souza
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Davi de Lacerda Coriolano
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Rayza Camila dos Santos Silva
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Sérgio Dias da Costa Júnior
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Luís André de Almeida Campos
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Iago Dillion Lima Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Valéria Rêgo Alves Pereira
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
| | - Maria Carolina Accioly Brelaz-de-Castro
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
- Laboratory of Parasitology, Academic Center of Vitoria (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| |
Collapse
|
5
|
Villanueva X, Zhen L, Ares JN, Vackier T, Lange H, Crestini C, Steenackers HP. Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Front Microbiol 2023; 13:987164. [PMID: 36687646 PMCID: PMC9853077 DOI: 10.3389/fmicb.2022.987164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/18/2022] [Indexed: 01/08/2023] Open
Abstract
Background Tannins have demonstrated antibacterial and antibiofilm activity, but there are still unknown aspects on how the chemical properties of tannins affect their biological properties. We are interested in understanding how to modulate the antibiofilm activity of tannins and in delineating the relationship between chemical determinants and antibiofilm activity. Materials and methods The effect of five different naturally acquired tannins and their chemical derivatives on biofilm formation and planktonic growth of Salmonella Typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was determined in the Calgary biofilm device. Results Most of the unmodified tannins exhibited specific antibiofilm activity against the assayed bacteria. The chemical modifications were found to alter the antibiofilm activity level and spectrum of the tannins. A positive charge introduced by derivatization with higher amounts of ammonium groups shifted the anti-biofilm spectrum toward Gram-negative bacteria, and derivatization with lower amounts of ammonium groups and acidifying derivatization shifted the spectrum toward Gram-positive bacteria. Furthermore, the quantity of phenolic OH-groups per molecule was found to have a weak impact on the anti-biofilm activity of the tannins. Conclusion We were able to modulate the antibiofilm activity of several tannins by specific chemical modifications, providing a first approach for fine tuning of their activity and antibacterial spectrum.
Collapse
Affiliation(s)
- Xabier Villanueva
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Lili Zhen
- Department of Chemical Science and Technologies, University of Rome ‘Tor Vergata’, Rome, Italy,CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy
| | - José Nunez Ares
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Heverlee, Belgium
| | - Thijs Vackier
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Heiko Lange
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Claudia Crestini
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
| | - Hans P. Steenackers
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium,*Correspondence: Hans P. Steenackers,
| |
Collapse
|
6
|
Liu X, Wang Y, Zaleta-Pinet DA, Borris RP, Clark BR. Antibacterial and Anti-Biofilm Activity of Pyrones from a Pseudomonas mosselii Strain. Antibiotics (Basel) 2022; 11:1655. [PMID: 36421300 PMCID: PMC9686599 DOI: 10.3390/antibiotics11111655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 08/27/2023] Open
Abstract
The emergence of drug resistant microbes over recent decades represents one of the greatest threats to human health; the resilience of many of these organisms can be attributed to their ability to produce biofilms. Natural products have played a crucial role in drug discovery, with microbial natural products in particular proving a rich and diverse source of antimicrobial agents. During antimicrobial activity screening, the strain Pseudomonas mosselii P33 was found to inhibit the growth of multiple pathogens. Following chemical investigation of this strain, pseudopyronines A-C were isolated as the main active principles, with all three pseudopyronines showing outstanding activity against Staphylococcus aureus. The analogue pseudopyronine C, which has not been well-characterized previously, displayed sub-micromolar activity against S. aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. Moreover, the inhibitory abilities of the pseudopyronines against the biofilms of S. aureus were further studied. The results indicated all three pseudopyronines could directly reduce the growth of biofilm in both adhesion stage and maturation stage, displaying significant activity at micromolar concentrations.
Collapse
Affiliation(s)
- Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Yali Wang
- College of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
| | - Diana A. Zaleta-Pinet
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Robert P. Borris
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Benjamin R. Clark
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
A potent antibiotic-loaded bone-cement implant against staphylococcal bone infections. Nat Biomed Eng 2022; 6:1180-1195. [PMID: 36229662 PMCID: PMC10101771 DOI: 10.1038/s41551-022-00950-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/08/2022] [Indexed: 12/14/2022]
Abstract
New antibiotics should ideally exhibit activity against drug-resistant bacteria, delay the development of bacterial resistance to them and be suitable for local delivery at desired sites of infection. Here, we report the rational design, via molecular-docking simulations, of a library of 17 candidate antibiotics against bone infection by wild-type and mutated bacterial targets. We screened this library for activity against multidrug-resistant clinical isolates and identified an antibiotic that exhibits potent activity against resistant strains and the formation of biofilms, decreases the chances of bacterial resistance and is compatible with local delivery via a bone-cement matrix. The antibiotic-loaded bone cement exhibited greater efficacy than currently used antibiotic-loaded bone cements against staphylococcal bone infections in rats. Potent and locally delivered antibiotic-eluting polymers may help address antimicrobial resistance.
Collapse
|
8
|
Pertusati F, Pileggi E, Richards J, Wootton M, Van Leemputte T, Persoons L, De Coster D, Villanueva X, Daelemans D, Steenackers H, McGuigan C, Serpi M. Drug repurposing: phosphate prodrugs of anticancer and antiviral FDA-approved nucleosides as novel antimicrobials. J Antimicrob Chemother 2021; 75:2864-2878. [PMID: 32688391 DOI: 10.1093/jac/dkaa268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Following a drug repurposing approach, we aimed to investigate and compare the antibacterial and antibiofilm activities of different classes of phosphate prodrugs (HepDirect, cycloSal, SATE and mix SATE) of antiviral and anticancer FDA-approved nucleoside drugs [zidovudine (AZT), floxouridine (FUDR) and gemcitabine (GEM)] against a variety of pathogenic Gram-positive and -negative bacteria. METHODS Ten prodrugs were synthesized and screened for antibacterial activity against seven Gram-negative and two Gram-positive isolates fully susceptible to traditional antibiotics, alongside six Gram-negative and five Gram-positive isolates with resistance mechanisms. Their ability to prevent and eradicate biofilms of different bacterial pathogens in relation to planktonic growth inhibition was also evaluated, together with their effect on proliferation, viability and apoptosis of different eukaryotic cells. RESULTS The prodrugs showed decreased antibacterial activity compared with the parent nucleosides. cycloSal-GEM-monophosphate (MP) prodrugs 20a and 20b were the most active agents against Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) and retained their activity against antibiotic-resistant isolates. cycloSal-FUDR-MP 21a partially retained good activity against the Gram-positive bacteria E. faecalis, Enterococcus faecium and S. aureus. Most of the prodrugs tested displayed very potent preventive antibiofilm specific activity, but not curative. In terms of cytotoxicity, AZT prodrugs did not affect apoptosis or cell viability at the highest concentration tested, and only weak effects on apoptosis and/or cell viability were observed for GEM and FUDR prodrugs. CONCLUSIONS Among the different prodrug approaches, the cycloSal prodrugs appeared the most effective. In particular, cycloSal (17a) and mix SATE (26) AZT prodrugs combine the lowest cytotoxicity with high and broad antibacterial and antibiofilm activity against Gram-negative bacteria.
Collapse
Affiliation(s)
- Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Elisa Pileggi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Jennifer Richards
- Public Health Wales Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Mandy Wootton
- Public Health Wales Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Thijs Van Leemputte
- Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, bus 2460, B-3001 Leuven, Belgium
| | - Leentje Persoons
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, Leuven 3000, Belgium
| | - David De Coster
- Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, bus 2460, B-3001 Leuven, Belgium
| | - Xabier Villanueva
- Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, bus 2460, B-3001 Leuven, Belgium
| | - Dirk Daelemans
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, Leuven 3000, Belgium
| | - Hans Steenackers
- Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, bus 2460, B-3001 Leuven, Belgium
| | - Christopher McGuigan
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| |
Collapse
|
9
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
10
|
Walsh DJ, Livinghouse T, Durling GM, Arnold AD, Brasier W, Berry L, Goeres DM, Stewart PS. Novel phenolic antimicrobials enhanced activity of iminodiacetate prodrugs against biofilm and planktonic bacteria. Chem Biol Drug Des 2021; 97:134-147. [PMID: 32844569 PMCID: PMC7821224 DOI: 10.1111/cbdd.13768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022]
Abstract
Prodrugs are pharmacologically attenuated derivatives of drugs that undergo bioconversion into the active compound once reaching the targeted site, thereby maximizing their efficiency. This strategy has been implemented in pharmaceuticals to overcome obstacles related to absorption, distribution, and metabolism, as well as with intracellular dyes to ensure concentration within cells. In this study, we provide the first examples of a prodrug strategy that can be applied to simple phenolic antimicrobials to increase their potency against mature biofilms. The addition of (acetoxy)methyl iminodiacetate groups increases the otherwise modest potency of simple phenols. Biofilm-forming bacteria exhibit a heightened tolerance toward antimicrobial agents, thereby accentuating the need for new antibiotics as well as those, which incorporate novel delivery strategies to enhance activity toward biofilms.
Collapse
Affiliation(s)
- Danica J. Walsh
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
| | - Tom Livinghouse
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Greg M. Durling
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Adrienne D. Arnold
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
- Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Whitney Brasier
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
| | - Luke Berry
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Darla M. Goeres
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
| | | |
Collapse
|
11
|
Jacobs L, Meesters J, Parijs I, Hooyberghs G, Van der Eycken EV, Lories B, Steenackers HP. 2-Aminoimidazoles as potent inhibitors of contaminating brewery biofilms. BIOFOULING 2021; 37:61-77. [PMID: 33573402 DOI: 10.1080/08927014.2021.1874366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Cleaning and disinfection protocols are not always able to remove biofilm microbes present in breweries, indicating that novel anti-biofilm strategies are needed. The preventive activities of three in-house synthesized members of the 2-aminoimidazole class of anti-biofilm molecules were studied against 17 natural brewery biofilms and benchmarked against 18 known inhibitors. Two 2-aminoimidazoles belonged to the top six inhibitors, which were retested against 12 defined brewery biofilm models. For the three best inhibitors, tannic acid (n° 1), 2-aminoimidazole imi-AAC-5 (n° 2), and baicalein (n° 3), the effect on the microbial metabolic activity was evaluated. Here, the top three inhibitors showed similar effectiveness, with baicalein possessing a slightly higher efficacy. Even though the 2-aminoimidazole was the second-best inhibitor, it showed a lower biocidal activity than tannic acid, making it less prone to resistance evolution. Overall, this study supports the potential of 2-aminoimidazoles as a preventive anti-biofilm strategy.
Collapse
Affiliation(s)
- Lene Jacobs
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | | | - Ilse Parijs
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | - Geert Hooyberghs
- Laboratory for Organic and Microwave-Assisted Chemistry - LOMAC, KU Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic and Microwave-Assisted Chemistry - LOMAC, KU Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Bram Lories
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | | |
Collapse
|
12
|
Dieltjens L, Appermans K, Lissens M, Lories B, Kim W, Van der Eycken EV, Foster KR, Steenackers HP. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat Commun 2020; 11:107. [PMID: 31919364 PMCID: PMC6952394 DOI: 10.1038/s41467-019-13660-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023] Open
Abstract
Bacteria commonly form dense biofilms encased in extracellular polymeric substances (EPS). Biofilms are often extremely tolerant to antimicrobials but their reliance on shared EPS may also be a weakness as social evolution theory predicts that inhibiting shared traits can select against resistance. Here we show that EPS of Salmonella biofilms is a cooperative trait whose benefit is shared among cells, and that EPS inhibition reduces both cell attachment and antimicrobial tolerance. We then compare an EPS inhibitor to conventional antimicrobials in an evolutionary experiment. While resistance against conventional antimicrobials rapidly evolves, we see no evolution of resistance to EPS inhibition. We further show that a resistant strain is outcompeted by a susceptible strain under EPS inhibitor treatment, explaining why resistance does not evolve. Our work suggests that targeting cooperative traits is a viable solution to the problem of antimicrobial resistance. Bacterial biofilms rely on shared extracellular polymeric substances (EPS) and are often highly tolerant to antibiotics. Here, the authors show in in vitro experiments that Salmonella does not evolve resistance to EPS inhibition because such strains are outcompeted by a susceptible strain under inhibitor treatment.
Collapse
Affiliation(s)
- Lise Dieltjens
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Kenny Appermans
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Maries Lissens
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Wook Kim
- Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.,Department of Biological Sciences, Duquesne University, Pittsburgh, USA
| | - Erik V Van der Eycken
- Department of Chemistry, Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), KU Leuven, Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, Russia
| | - Kevin R Foster
- Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium. .,Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Rodrigues ME, Gomes F, Rodrigues CF. Candida spp./Bacteria Mixed Biofilms. J Fungi (Basel) 2019; 6:jof6010005. [PMID: 31861858 PMCID: PMC7151131 DOI: 10.3390/jof6010005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022] Open
Abstract
The ability to form biofilms is a common feature of microorganisms, such as bacteria or fungi. These consortiums can colonize a variety of surfaces, such as host tissues, dentures, and catheters, resulting in infections highly resistant to drugs, when compared with their planktonic counterparts. This refractory effect is particularly critical in polymicrobial biofilms involving both fungi and bacteria. This review emphasizes Candida spp.-bacteria biofilms, the epidemiology of this community, the challenges in the eradication of such biofilms, and the most relevant treatments.
Collapse
Affiliation(s)
- Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO–Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.E.R.); (F.G.)
| | - Fernanda Gomes
- CEB, Centre of Biological Engineering, LIBRO–Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.E.R.); (F.G.)
| | - Célia F. Rodrigues
- LEPABE–Dep. of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
14
|
Walsh DJ, Livinghouse T, Goeres DM, Mettler M, Stewart PS. Antimicrobial Activity of Naturally Occurring Phenols and Derivatives Against Biofilm and Planktonic Bacteria. Front Chem 2019; 7:653. [PMID: 31632948 PMCID: PMC6779693 DOI: 10.3389/fchem.2019.00653] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.
Collapse
Affiliation(s)
- Danica J. Walsh
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Tom Livinghouse
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Darla M. Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Madelyn Mettler
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
15
|
Espinosa-Valdés MP, Borbolla-Alvarez S, Delgado-Espinosa AE, Sánchez-Tejeda JF, Cerón-Nava A, Quintana-Romero OJ, Ariza-Castolo A, García-Del Río DF, Loza-Mejía MA. Synthesis, In Silico, and In Vitro Evaluation of Long Chain Alkyl Amides from 2-Amino-4-Quinolone Derivatives as Biofilm Inhibitors. Molecules 2019; 24:molecules24020327. [PMID: 30658415 PMCID: PMC6359591 DOI: 10.3390/molecules24020327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/29/2023] Open
Abstract
Infection from multidrug resistant bacteria has become a growing health concern worldwide, increasing the need for developing new antibacterial agents. Among the strategies that have been studied, biofilm inhibitors have acquired relevance as a potential source of drugs that could act as a complement for current and new antibacterial therapies. Based on the structure of 2-alkyl-3-hydroxy-4-quinolone and N-acylhomoserine lactone, molecules that act as mediators of quorum sensing and biofilm formation in Pseudomonas aeruginosa, we designed, prepared, and evaluated the biofilm inhibition properties of long chain amide derivatives of 2-amino-4-quinolone in Staphylococcus aureus and P. aeruginosa. All compounds had higher biofilm inhibition activity in P. aeruginosa than in S. aureus. Particularly, compounds with an alkyl chain of 12 carbons exhibited the highest inhibition of biofilm formation. Docking scores and molecular dynamics simulations of the complexes of the tested compounds within the active sites of proteins related to quorum sensing had good correlation with the experimental results, suggesting the diminution of biofilm formation induced by these compounds could be related to the inhibition of these proteins.
Collapse
Affiliation(s)
- Mariana Paola Espinosa-Valdés
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Sara Borbolla-Alvarez
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Ana Elena Delgado-Espinosa
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Juan Francisco Sánchez-Tejeda
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Anabelle Cerón-Nava
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Osvaldo Javier Quintana-Romero
- Departamento de Química Orgánica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico.
| | - Armando Ariza-Castolo
- Departamento de Química Orgánica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico.
| | - Diego Fernando García-Del Río
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| | - Marco A Loza-Mejía
- Facultad de Ciencias Químicas, Universidad La Salle-México. Av. Benjamin Franklin 45, Cuauhtémoc, Mexico City 06140, Mexico.
| |
Collapse
|
16
|
Peeters E, Hooyberghs G, Robijns S, De Weerdt A, Kucharíková S, Tournu H, Braem A, Čeh K, Majdič G, Španič T, Pogorevc E, Claes B, Dovgan B, Girandon L, Impellizzeri F, Erdtmann M, Krona A, Vleugels J, Fröhlich M, Garcia-Forgas J, De Brucker K, Cammue BPA, Thevissen K, Van Dijck P, Vanderleyden J, Van der Eycken E, Steenackers HP. An antibiofilm coating of 5-aryl-2-aminoimidazole covalently attached to a titanium surface. J Biomed Mater Res B Appl Biomater 2018; 107:1908-1919. [PMID: 30549192 DOI: 10.1002/jbm.b.34283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 12/25/2022]
Abstract
Biofilms, especially those formed by Staphylococcus aureus, play a key role in the development of orthopedic implant infections. Eradication of these infections is challenging due to the elevated tolerance of biofilm cells against antimicrobial agents. In this study, we developed an antibiofilm coating consisting of 5-(4-bromophenyl)-N-cyclopentyl-1-octyl-1H-imidazol-2-amine, designated as LC0024, covalently bound to a titanium implant surface (LC0024-Ti). We showed in vitro that the LC0024-Ti surface reduces biofilm formation of S. aureus in a specific manner without reducing the planktonic cells above the biofilm, as evaluated by plate counting and fluorescence microscopy. The advantage of compounds that only inhibit biofilm formation without affecting the viability of the planktonic cells, is that reduced development of bacterial resistance is expected. To determine the antibiofilm activity of LC0024-Ti surfaces in vivo, a biomaterial-associated murine infection model was used. The results indicated a significant reduction in S. aureus biofilm formation (up to 96%) on the LC0024-Ti substrates compared to pristine titanium controls. Additionally, we found that the LC0024-Ti substrates did not affect the attachment and proliferation of human cells involved in osseointegration and bone repair. In summary, our results emphasize the clinical potential of covalent coatings of LC0024 on titanium implant surfaces to reduce the risk of orthopedic implant infections. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1908-1919, 2019.
Collapse
Affiliation(s)
- Elien Peeters
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium
| | - Geert Hooyberghs
- Department of Chemistry, Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Stijn Robijns
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium
| | - Ami De Weerdt
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium
| | - Soňa Kucharíková
- Department of Molecular Microbiology, VIB, KU Leuven, Kasteelpark Arenberg 31 Box 2438, 3001 Leuven, Belgium.,Department of Biology, Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg 31 Box 2438, 3001 Leuven, Belgium
| | - Hélène Tournu
- Department of Molecular Microbiology, VIB, KU Leuven, Kasteelpark Arenberg 31 Box 2438, 3001 Leuven, Belgium.,Department of Biology, Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg 31 Box 2438, 3001 Leuven, Belgium
| | - Annabel Braem
- Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 Box 2450, 3001 Leuven, Belgium
| | - Katerina Čeh
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, 1000 Ljubljana, Slovenia
| | - Gregor Majdič
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, 1000 Ljubljana, Slovenia
| | - Tanja Španič
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, 1000 Ljubljana, Slovenia
| | - Estera Pogorevc
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, 1000 Ljubljana, Slovenia
| | - Birgit Claes
- Centre for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | | | | | | | | | - Annika Krona
- RISE - Research Institutes of Sweden, Bioscience and Materials, Box 5401, 402 29 Gothenburg, Sweden
| | - Jef Vleugels
- Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 Box 2450, 3001 Leuven, Belgium
| | - Mirjam Fröhlich
- Educell Ltd., Prevale 9, 1236 Trzin, Slovenia.,Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | - Katrijn De Brucker
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium
| | - Bruno P A Cammue
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium
| | - Patrick Van Dijck
- Department of Molecular Microbiology, VIB, KU Leuven, Kasteelpark Arenberg 31 Box 2438, 3001 Leuven, Belgium.,Department of Biology, Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg 31 Box 2438, 3001 Leuven, Belgium
| | - Jozef Vanderleyden
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium
| | - Erik Van der Eycken
- Department of Chemistry, Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium
| |
Collapse
|
17
|
Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 2018; 161:154-178. [PMID: 30347328 DOI: 10.1016/j.ejmech.2018.10.036] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Biofilm formation significantly contributes to microbial survival in hostile environments and it is currently considered a key virulence factor for pathogens responsible for serious chronic infections. In the last decade many efforts have been made to identify new agents able to modulate bacterial biofilm life cycle, and many compounds have shown interesting activities in inhibiting biofilm formation or in dispersing pre-formed biofilms. However, only a few of these compounds were tested using in vivo models for their clinical significance. Contrary to conventional antibiotics, most of the anti-biofilm compounds act as anti-virulence agents as they do not affect bacterial growth. In this review we selected the most relevant literature of the last decade, focusing on the development of synthetic small molecules able to prevent bacterial biofilm formation or to eradicate pre-existing biofilms of clinically relevant Gram-positive and Gram-negative pathogens. In addition, we provide a comprehensive list of the possible targets to counteract biofilm formation and development, as well as a detailed discussion the advantages and disadvantages of the different current biofilm-targeting strategies.
Collapse
|
18
|
Enhancing the anti-biofilm activity of 5-aryl-2-aminoimidazoles through nature inspired dimerisation. Bioorg Med Chem 2018; 26:1470-1480. [PMID: 29449125 DOI: 10.1016/j.bmc.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/22/2022]
Abstract
The increased tolerance of biofilms against disinfectants and antibiotics has stimulated research into new methods of biofilm prevention and eradication. In our previous work, we have identified the 5-aryl-2-aminoimidazole core as a scaffold that demonstrates preventive activity against biofilm formation of a broad range of bacterial and fungal species. Inspired by the dimeric nature of natural 2-aminoimidazoles of the oroidin family, we investigated the potential of dimers of our decorated 5-aryl-2-aminoimidazoles as biofilm inhibitors. A synthetic approach towards 2-aminoimidazole dimers linked by an alkyl chain was developed and a total of 48 dimers were synthesized. The linkers were introduced at two different positions, the N1-position or the N2-position, and the linker length and the substitution of the 5-phenyl ring (H, F, Cl, Br) were varied. Although, no clear correlation between linker length and biofilm inhibition was observed, a strong increase in anti-biofilm activity for almost all N1,N1'-linked dimers was obtained, compared to the respective monomers against Salmonella Typhimurium, Escherichia coli and Staphylococcus aureus. The N2,N2'-linked dimers, having a H- or F-substitution, were also found to show a strong increase in anti-biofilm activity compared to the respective monomers against these three bacterial species and against Pseudomonas aeruginosa. In addition, the obtained growth measurements suggest a broad concentration range with specific biofilm inhibition and no effect on the planktonic growth against Salmonella Typhimurium and Pseudomonas aeruginosa.
Collapse
|
19
|
Polysubstituted 2-aminoimidazoles as anti-biofilm and antiproliferative agents: Discovery of potent lead. Eur J Med Chem 2017; 138:152-169. [DOI: 10.1016/j.ejmech.2017.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/26/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022]
|