1
|
dos Santos Vasconcelos CR, Rezende AM. Systematic in silico Evaluation of Leishmania spp. Proteomes for Drug Discovery. Front Chem 2021; 9:607139. [PMID: 33987166 PMCID: PMC8111926 DOI: 10.3389/fchem.2021.607139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a group of neglected infectious diseases, with approximately 1. 3 million new cases each year, for which the available therapies have serious limitations. Therefore, it is extremely important to apply efficient and low-cost methods capable of selecting the best therapeutic targets to speed up the development of new therapies against those diseases. Thus, we propose the use of integrated computational methods capable of evaluating the druggability of the predicted proteomes of Leishmania braziliensis and Leishmania infantum, species responsible for the different clinical manifestations of leishmaniasis in Brazil. The protein members of those proteomes were assessed based on their structural, chemical, and functional contexts applying methods that integrate data on molecular function, biological processes, subcellular localization, drug binding sites, druggability, and gene expression. These data were compared to those extracted from already known drug targets (BindingDB targets), which made it possible to evaluate Leishmania proteomes for their biological relevance and treatability. Through this methodology, we identified more than 100 proteins of each Leishmania species with druggability characteristics, and potential interaction with available drugs. Among those, 31 and 37 proteins of L. braziliensis and L. infantum, respectively, have never been tested as drug targets, and they have shown evidence of gene expression in the evolutionary stage of pharmacological interest. Also, some of those Leishmania targets showed an alignment similarity of <50% when compared to the human proteome, making these proteins pharmacologically attractive, as they present a reduced risk of side effects. The methodology used in this study also allowed the evaluation of opportunities for the repurposing of compounds as anti-leishmaniasis drugs, inferring potential interaction between Leishmania proteins and ~1,000 compounds, of which only 15 have already been tested as a treatment for leishmaniasis. Besides, a list of potential Leishmania targets to be tested using drugs described at BindingDB, such as the potential interaction of the DEAD box RNA helicase, TRYR, and PEPCK proteins with the Staurosporine compound, was made available to the public.
Collapse
Affiliation(s)
- Crhisllane Rafaele dos Santos Vasconcelos
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| | - Antonio Mauro Rezende
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Souza JM, de Carvalho ÉAA, Candido ACBB, de Mendonça RP, Fernanda da Silva M, Parreira RLT, Dias FGG, Ambrósio SR, Arantes AT, da Silva Filho AA, Nascimento AN, Costa MR, Sairre MI, Veneziani RCS, Magalhães LG. Licochalcone a Exhibits Leishmanicidal Activity in vitro and in Experimental Model of Leishmania ( Leishmania) Infantum. Front Vet Sci 2020; 7:527. [PMID: 33363224 PMCID: PMC7758436 DOI: 10.3389/fvets.2020.00527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
The efficacy of Licochalcone A (LicoA) and its two analogs were reported against Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) infantum in vitro, and in experimental model of L. (L.) infantum in vitro. Initially, LicoA and its analogs were screened against promastigote forms of L. (L.) amazonensis. LicoA was the most active compound, with IC50 values of 20.26 and 3.88 μM at 24 and 48 h, respectively. Against amastigote forms, the IC50 value of LicoA was 36.84 μM at 48 h. In the next step, the effectivity of LicoA was evaluated in vitro against promastigote and amastigote forms of L. (L.) infantum. Results demonstrated that LicoA exhibited leishmanicidal activity in vitro against promastigote forms with IC50 values of 41.10 and 12.47 μM at 24 and 48 h, respectively; against amastigote forms the IC50 value was 29.58 μM at 48 h. Assessment of cytotoxicity demonstrated that LicoA exhibited moderate mammalian cytotoxicity against peritoneal murine macrophages; the CC50 value was 123.21 μM at 48 h and showed about 30% of hemolytic activity at concentration of 400 μM. L. (L.) infantum-infected hamsters and treated with LicoA at 50 mg/kg for eight consecutive days was able to significantly reduce the parasite burden in both liver and spleen in 43.67 and 39.81%, respectively, when compared with negative control group. These findings suggest that chalcone-type flavonoids can be a promising class of natural products to be considered in the search of new, safe, and effective compounds capable to treat canine visceral leishmaniosis (CVL).
Collapse
Affiliation(s)
- Julia M. Souza
- Núcleo de Pesquisa em Ciências Exatas e Tecnológica, Universidade de Franca, Franca, Brazil
| | | | | | | | | | - Renato L. T. Parreira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológica, Universidade de Franca, Franca, Brazil
| | | | - Sérgio R. Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológica, Universidade de Franca, Franca, Brazil
| | | | - Ademar A. da Silva Filho
- Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Aline N. Nascimento
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC, Santo André, Brazil
| | - Monique R. Costa
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC, Santo André, Brazil
| | - Mirela I. Sairre
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC, Santo André, Brazil
| | | | - Lizandra G. Magalhães
- Núcleo de Pesquisa em Ciências Exatas e Tecnológica, Universidade de Franca, Franca, Brazil
- Pós Graduação em Ciência Animal, Universidade de Franca, Franca, Brazil
| |
Collapse
|
3
|
2-Amino-1,3,4-thiadiazoles as prospective agents in trypanosomiasis and other parasitoses. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:259-290. [PMID: 32074064 DOI: 10.2478/acph-2020-0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 01/19/2023]
Abstract
Parasitic diseases are a serious public health problem affecting hundreds of millions of people worldwide. African trypanosomiasis, American trypanosomiasis, leishmaniasis, malaria and toxoplasmosis are the main parasitic infections caused by protozoan parasites with over one million deaths each year. Due to old medications and drug resistance worldwide, there is an urgent need for new antiparasitic drugs. 1,3,4-Thiadiazoles have been widely studied for medical applications. The chemical, physical and pharmacokinetic properties recommend 1,3,4-thiadiazole ring as a target in drug development. Many scientific papers report the antiparasitic potential of 2-amino-1,3,4-thiadiazoles. This review presents synthetic 2-amino-1,3,4-thiadiazoles exhibiting antitrypanosomal, antimalarial and antitoxoplasmal activities. Although there are insufficient results to state the quality of 2-amino-1,3,4-thiadiazoles as a new class of antiparasitic agents, many reported derivatives can be considered as lead compounds for drug synthesis and a promise for the future treatment of parasitosis and provide a valid strategy for the development of potent antiparasitic drugs.
Collapse
|
4
|
Serban G. Future Prospects in the Treatment of Parasitic Diseases: 2-Amino-1,3,4-Thiadiazoles in Leishmaniasis. Molecules 2019; 24:E1557. [PMID: 31010226 PMCID: PMC6514673 DOI: 10.3390/molecules24081557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023] Open
Abstract
Neglected tropical diseases affect the lives of a billion people worldwide. Among them, the parasitic infections caused by protozoan parasites of the Trypanosomatidae family have a huge impact on human health. Leishmaniasis, caused by Leishmania spp., is an endemic parasitic disease in over 88 countries and is closely associated with poverty. Although significant advances have been made in the treatment of leishmaniasis over the last decade, currently available chemotherapy is far from satisfactory. The lack of an approved vaccine, effective medication and significant drug resistance worldwide had led to considerable interest in discovering new, inexpensive, efficient and safe antileishmanial agents. 1,3,4-Thiadiazole rings are found in biologically active natural products and medicinally important synthetic compounds. The thiadiazole ring exhibits several specific properties: it is a bioisostere of pyrimidine or benzene rings with prevalence in biologically active compounds; the sulfur atom increases lipophilicity and combined with the mesoionic character of thiadiazoles imparts good oral absorption and good cell permeability, resulting in good bioavailability. This review presents synthetic 2-amino-1,3,4-thiadiazole derivatives with antileishmanial activity. Many reported derivatives can be considered as lead compounds for the synthesis of future agents as an alternative to the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Georgeta Serban
- Pharmaceutical Chemistry Department, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga, 410028 Oradea, Romania.
| |
Collapse
|
5
|
Lima GS, Castro-Pinto DB, Machado GC, Maciel MAM, Echevarria A. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1133-1137. [PMID: 26547537 DOI: 10.1016/j.phymed.2015.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/22/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Leishmaniasis comprises several infectious diseases caused by protozoa parasites of Leishmania genus. In recent years, there has been a growing interest in the therapeutic use of natural products to treat parasitic diseases. Among them Croton cajucara Benth. (Euphorbiaceae) is a plant found in the Amazonian region with a history of safe use in folk medicine. PURPOSE The purpose of this study was to investigate the effects of clerodane diterpenes, trans-dehydrocrotonin (DCTN), trans-crotonin (CTN) and acetylaleuritolic acid (AAA) obtained from powdered bark of C. cajucara against promastigotes, axenic and intracellular amastigotes of Leishmania amazonensis. Furthermore, the effects of DCTN and CTN on the trypanotiona reductase enzyme were also investigated. The extraction of the terpenes was carried out as previously reported (Maciel et al., 1998; 2003). METHODS The effect of the isolated compounds (DCTN, CTN and AAA) from the bark of C. cajucara was assessed in vitro against promastigotes, axenic amastigotes and intracellular amastigotes of L. amazonensis by counting of remaining parasites in a Neubauer chamber in comparison to pentamidine used as standard drug. The action of natural products on trypanothione reductase was assessed using soluble protein fraction of promastigotes. The assays were performed by incubation with HEPES, EDTA, NADPH and trypanothione disulfide to quantify the NAPH consumption by TryR. RESULTS The results showed very high efficacy, especially of the diterpene DCTN, against promastigotes (IC50 = 6.30 ± 0.06 µg/ml) and axenic amastigotes (IC50 = 19.98 ± 0.05 µg/ml) of L. amazonenesis. The cytotoxic effect of the best active natural product was evaluated on mouse peritoneal infected macrophages (IC50 = 0.47 ± 0.03 µg/ml in 24 h of culture), and the treatment revealed that DCTN never reaches toxic concentrations while reducing the infection and, most importantly, with no toxicity (>100 µg/ml with 0% of macrophage kill) when compared to pentamidine (37.5 µg/ml with 100% of macrophage kill). Furthermore, all of the natural products assayed on the trypanothione reductase enzyme inhibited the enzyme activity compared to the control. CONCLUSION Clerodane diterpenes from C. cajucara showed promising in vitro antileishmanial effects against L. amazonensis, specially the DCTN with no macrophage toxicity up to the assayed concentration. In addition, the action on trypanothione reductase enzyme revealed a possible mechanism of action.
Collapse
Affiliation(s)
- Gerson S Lima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil; Biomanguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Denise B Castro-Pinto
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Gerzia C Machado
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Maria A M Maciel
- Universidade Potiguar Laureate International Universities, Programa de Pós-graduação em Biotecnologia, Campus Salgado Filho, Natal-RN, Brazil; Universidade Federal do Rio Grande do Norte, Instituto de Química, Campus Lagoa Nova, Natal-RN, Brazil
| | - Aurea Echevarria
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
6
|
Synthesis, antileishmanial activity and structure–activity relationship of 1-N-X-phenyl-3-N′-Y-phenyl-benzamidines. Eur J Med Chem 2013; 67:166-74. [DOI: 10.1016/j.ejmech.2013.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/21/2013] [Accepted: 06/18/2013] [Indexed: 11/23/2022]
|
7
|
Bento DB, de Souza B, Steckert AV, Dias RO, Leffa DD, Moreno SE, Petronilho F, de Andrade VM, Dal-Pizzol F, Romão PR. Oxidative stress in mice treated with antileishmanial meglumine antimoniate. Res Vet Sci 2013; 95:1134-41. [PMID: 24012348 DOI: 10.1016/j.rvsc.2013.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 11/17/2022]
Abstract
In order to improve the understanding of the toxicity of pentavalent antimony (Sb(V)), we investigated the acute effects of meglumine antimoniate (MA) on the oxidative stress in heart, liver, kidney, spleen and brain tissue of mice. Levels of lipoperoxidation and protein carbonylation were measured to evaluate the oxidative status, whereas superoxide dismutase/catalase activity and glutathione levels were recorded to examine the antioxidative status. We observed that MA caused significant protein carbonylation in the heart, spleen and brain tissue. Increased lipoperoxidation was found in the liver and brain tissue. An imbalance between superoxide dismutase and catalase activities could be observed in heart, liver, spleen and brain tissue. Our results suggest that MA causes oxidative stress in several vital organs of mice. This indicates that the production of highly reactive oxygen and nitrogen species induced by MA might be involved in some of its toxic adverse effects.
Collapse
Affiliation(s)
- D B Bento
- Laboratório de Biologia Celular e Molecular, Unidade Acadêmica de Ciências da Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chemoenzymatic synthesis and biological evaluation of 2- and 3-hydroxypyridine derivatives against Leishmania mexicana. Bioorg Med Chem 2012; 20:4614-24. [DOI: 10.1016/j.bmc.2012.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/08/2012] [Accepted: 06/15/2012] [Indexed: 01/01/2023]
|
9
|
Rodrigues RF, Castro-Pinto D, Echevarria A, dos Reis CM, Del Cistia CN, Sant'Anna CMR, Teixeira F, Castro H, Canto-Cavalheiro M, Leon LL, Tomás A. Investigation of trypanothione reductase inhibitory activity by 1,3,4-thiadiazolium-2-aminide derivatives and molecular docking studies. Bioorg Med Chem 2012; 20:1760-6. [PMID: 22304847 DOI: 10.1016/j.bmc.2012.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/28/2011] [Accepted: 01/05/2012] [Indexed: 11/28/2022]
Abstract
The biological activities of a series of mesoionic 1,3,4-thiadiazolium-2-aminide derivatives have been studied. The most active compounds (MI-HH; MI-3-OCH(3); MI-4-OCH(3) and MI-4-NO(2)) were evaluated to determine their effect on trypanothione reductase (TryR) activity in Leishmania sp. and Trypanosoma cruzi. Among the assayed compounds, only MI-4-NO(2) showed enzyme inhibition effect on extracts from different cultures of parasites, which was confirmed using the recombinant enzyme from T. cruzi (TcTryR) and Leishmania infantum (LiTryR). The enzyme kinetics determined with LiTryR demonstrated a non-competitive inhibition profile of MI-4-NO(2). A molecular docking study showed that the mesoionic compounds could effectively dock into the substrate binding site together with the substrate molecule. The mesoionic compounds were also effective ligands of the NADPH and FAD binding sites and the NADPH binding site was predicted as the best of all three binding sites. Based on the theoretical results, an explanation at the molecular level is proposed for the MI-4-NO(2) enzyme inhibition effect. Given TryR as a molecular target, it is important to continue the study of mesoionic compounds as part of a drug discovery campaign against Leishmaniasis or Chagas' disease.
Collapse
Affiliation(s)
- Raquel F Rodrigues
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rodrigues RF, Charret KS, Campos MC, Amaral V, Echevarria A, Dos Reis C, Canto-Cavalheiro MM, Leon LL. The in vivo activity of 1,3,4-thiadiazolium-2-aminide compounds in the treatment of cutaneous and visceral leishmaniasis. J Antimicrob Chemother 2011; 67:182-90. [PMID: 21987238 DOI: 10.1093/jac/dkr409] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Researchers have recently investigated the biological activities of mesoionic (MI) compounds, which have shown in vitro activity against many species of Leishmania, as well as Trypanosoma cruzi. The main goal of this study was to evaluate and compare the activity of three MI compounds against Leishmania amazonensis and Leishmania infantum infection in vivo. METHODS The experiments were carried out using BALB/c mice infected with L. amazonensis or L. infantum as a highly sensitive murine model. The infected mice were treated with MI-HH, MI-4-OCH(3), MI-4-NO(2) or meglumine antimoniate by different routes (intralesional, topical or intraperitoneal). RESULTS Treatment with MI-4-OCH(3) and MI-4-NO(2) efficiently contained the progression of cutaneous and visceral leishmaniasis in comparison with the control group or mice treated with meglumine antimoniate. Interestingly, these MI compounds did not produce toxicological effects after treatment. Furthermore, treatment with these compounds led to a modulation of the immune response that was correlated with disease control. In this study, MI compounds, and MI-4-NO(2) in particular, exhibited high activity in the L. infantum murine model. In the L. amazonensis model, intralesional treatment with MI-4-OCH(3) or MI-4-NO(2) showed greater therapeutic efficacy than treatment with meglumine antimoniate, and the new topical formulations of these compounds also displayed great activity in the cutaneous leishmaniasis model. CONCLUSIONS Upon comparison of each MI compound, MI-4-NO(2) was clearly the compound with the greatest activity in these two in vivo infection models by each administration route tested.
Collapse
Affiliation(s)
- Raquel F Rodrigues
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|