1
|
Donovan FM, Ampel NM, Thompson GR. Updates in Coccidioidomycosis. Infect Dis Clin North Am 2024:S0891-5520(24)00087-4. [PMID: 39710556 DOI: 10.1016/j.idc.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Coccidioidomycosis is the clinical disease caused by the dimorphic pathogenic fungi Coccidioides immitis and C posadasii. The number of clinically recognized coccidioidomycosis cases continues to increase yearly including in regions outside the traditional regions of endemicity. Following inhalation of Coccidioides spores, the course may range from asymptomatic exposure with resultant immunity, to a subacute pulmonary illness, to life-threatening disseminated infection. This review will summarize recent advances in our understanding of the infection and will include the ecology of Coccidioides, epidemiology and risk factors for infection, vaccine and novel antifungals in development, and management of immunosuppressed patients.
Collapse
Affiliation(s)
- Fariba M Donovan
- Internal Medicine, Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, USA; Department of Internal Medicine, Division of Infectious Diseases, University of Arizona Medical Center, Tucson, AZ, USA
| | - Neil M Ampel
- College of Medicine, University of Arizona, 1656 E Mabel Street, Tucson, AZ 85724, USA
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA, USA; Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA; UC-Davis Center for Valley Fever.
| |
Collapse
|
2
|
Vanbiervliet Y, Van Nieuwenhuyse T, Aerts R, Lagrou K, Spriet I, Maertens J. Review of the novel antifungal drug olorofim (F901318). BMC Infect Dis 2024; 24:1256. [PMID: 39511507 PMCID: PMC11542455 DOI: 10.1186/s12879-024-10143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
There is clearly a need for novel antifungal agents, not only concerning spectrum, but also oral bioavailability, tolerability, and drug-drug interactions. There is growing concern for antifungal resistance for current available antifungals, mainly driven by environmental fungicide use or long-term exposure to antifungals, in the setting of mould-active prophylaxis or for chronic antifungal infections, such as chronic pulmonary aspergillosis. Moreover, the incidence of breakthrough infections is increasing, because of the introduction of (mould-active) prophylaxis (1-4). There is emergence of difficult to treat invasive fungal infections, such as those caused by Lomentospora prolificans, cryptic species of Aspergillus, Scedosporium and Coccidioides. Olorofim (F901318) is the first-in class of the orotomides, a novel antifungal class targeting dihydroorotate dehydrogenase (DHODH), a key enzyme in the biosynthesis of pyrimidines. Olorofim shows good in vitro and in vivo activity against Aspergillus species, rare and difficult to treat moulds and endemic dimorphic fungi, including azole- and amphotericin-resistant isolates. It lacks activity against yeasts and the Mucorales species. It is only orally available and shows very promising results in ongoing clinical trials. In this review we will describe the mechanism of action of olorofim, the spectrum of activity in vitro and in vivo, pharmacokinetics, pharmacodynamics, drug-drug interactions, resistance, and clinical outcomes.
Collapse
Affiliation(s)
- Yuri Vanbiervliet
- Department of Haematology, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | - Tine Van Nieuwenhuyse
- Pharmacy Department, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Robina Aerts
- Department of Haematology, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine and National Reference Center for Mycosis, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Isabel Spriet
- Department Of Pharmaceutical and Pharmacological Sciences, Pharmacy Department University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Johan Maertens
- Department of Haematology, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
3
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
4
|
Feuss A, Bougnoux ME, Dannaoui E. The Role of Olorofim in the Treatment of Filamentous Fungal Infections: A Review of In Vitro and In Vivo Studies. J Fungi (Basel) 2024; 10:345. [PMID: 38786700 PMCID: PMC11121921 DOI: 10.3390/jof10050345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Invasive fungal infections have recently been recognized by the WHO as a major health, epidemiological, and economic issue. Their high mortality rates and the emergence of drug resistance have driven the development of new molecules, including olorofim, an antifungal belonging to a new family of compounds, the orotomides. A review was conducted on the PubMed database and the ClinicalTrials.gov website to summarize the microbiological profile of olorofim and its role in the treatment of filamentous fungal infections. Twenty-four articles were included from the search and divided into two groups: an "in vitro" group focusing on minimum inhibitory concentration (MIC) results for various fungi and an "in vivo" group evaluating the pharmacokinetics (PK), pharmacodynamics (PD), efficacy, and tolerability of olorofim in animal models of fungal infection and in humans. Olorofim demonstrated in vitro and in vivo activity against numerous filamentous fungi, including azole-resistant Aspergillus fumigatus, various dermatophytes, and endemic and dimorphic fungi. in vitro results showed higher MICs for certain Fusarium species and dematiaceous fungi Alternaria alternata and Exophiala dermatitidis; further in vivo studies are needed. Published PK-PD data in humans are limited. The results of the ongoing phase III clinical trial are eagerly awaited to evaluate olorofim's clinical impact.
Collapse
Affiliation(s)
- Aliosha Feuss
- Mycology Unit, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France; (A.F.); (M.-E.B.)
| | - Marie-Elisabeth Bougnoux
- Mycology Unit, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France; (A.F.); (M.-E.B.)
- Faculty of Medicine, Paris Cité University, Necker Campus, 75015 Paris, France
| | - Eric Dannaoui
- Faculty of Medicine, Paris Cité University, Necker Campus, 75015 Paris, France
- DYNAMYC UR 7380, Faculty of Medicine, Paris-Est Créteil University (UPEC), 94000 Créteil, France
| |
Collapse
|
5
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Walker J, Edwards WS, Hall NM, Pappas PG. Challenges in management of invasive fungal infections in stem cell transplant. Transpl Infect Dis 2023; 25 Suppl 1:e14175. [PMID: 37864814 DOI: 10.1111/tid.14175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Invasive fungal infections cause significant morbidity and mortality in hematopoietic stem cell transplant recipients. In order to minimize these infections, prophylaxis has become routine, although the agents used have changed over time. This presents new challenges as we consider an approach to breakthrough infections and recognize the epidemiologic shift toward isolates with higher rates of drug resistance. This review outlines the management of the most common pathogens (Candida, Aspergillus, Mucorales) as well as rarer pathogens that have higher rates of resistance (Trichosporon, Fusarium, Scedosporium, and Lomentospora). We discuss potential approaches to proven or possible breakthrough infections with yeast and pulmonary mold disease. Finally, we outline the role for combination therapy and newer antifungals, acknowledging current knowledge gaps and areas for future exploration.
Collapse
Affiliation(s)
- Jeremey Walker
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - W Seth Edwards
- Department of Pharmacy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicole M Hall
- Department of Pharmacy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Friedman DZP, Schwartz IS. Emerging Diagnostics and Therapeutics for Invasive Fungal Infections. Infect Dis Clin North Am 2023; 37:593-616. [PMID: 37532392 DOI: 10.1016/j.idc.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Recently, there have been significant advances in the diagnosis and management of invasive fungal infections. Compared with traditional fungal diagnostics, molecular assays promise improved sensitivity and specificity, the ability to test a range of samples (including noninvasive samples, ie, blood), the detection of genetic mutations associated with antifungal resistance, and the potential for a faster turnaround time. Antifungals in late-stage clinical development include agents with novel mechanisms of action (olorofim and fosmanogepix) and new members of existing classes with distinct advantages over existing antifungals in toxicity, drug-drug interactions, and dosing convenience (oteseconazole, opelconazole, rezafungin, ibrexafungerp, encochleated amphotericin B).
Collapse
Affiliation(s)
- Daniel Z P Friedman
- Section of Infectious Diseases and Global Health, The University of Chicago, 5841 South Maryland Avenue, MC5065, Chicago, IL 60637, USA
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, 315 Trent Drive, Durham, NC 27705, USA.
| |
Collapse
|
8
|
Qin Y, Wang J, Lv Q, Han B. Recent Progress in Research on Mitochondrion-Targeted Antifungal Drugs: a Review. Antimicrob Agents Chemother 2023; 67:e0000323. [PMID: 37195189 PMCID: PMC10269089 DOI: 10.1128/aac.00003-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Fungal infections, which commonly occur in immunocompromised patients, can cause high morbidity and mortality. Antifungal agents act by disrupting the cell membrane, inhibiting nucleic acid synthesis and function, or inhibiting β-1,3-glucan synthase. Because the incidences of life-threatening fungal infections and antifungal drug resistance are continuously increasing, there is an urgent need for the development of new antifungal agents with novel mechanisms of action. Recent studies have focused on mitochondrial components as potential therapeutic drug targets, owing to their important roles in fungal viability and pathogenesis. In this review, we discuss novel antifungal drugs targeting mitochondrial components and highlight the unique fungal proteins involved in the electron transport chain, which is useful for investigating selective antifungal targets. Finally, we comprehensively summarize the efficacy and safety of lead compounds in clinical and preclinical development. Although fungus-specific proteins in the mitochondrion are involved in various processes, the majority of the antifungal agents target dysfunction of mitochondria, including mitochondrial respiration disturbance, increased intracellular ATP, reactive oxygen species generation, and others. Moreover, only a few drugs are under clinical trials, necessitating further exploration of possible targets and development of effective antifungal agents. The unique chemical structures and targets of these compounds will provide valuable hints for further exploiting new antifungals.
Collapse
Affiliation(s)
- Yulin Qin
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Jinxin Wang
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics (Basel) 2023; 12:884. [PMID: 37237787 PMCID: PMC10215229 DOI: 10.3390/antibiotics12050884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The use of antifungal drugs started in the 1950s with polyenes nystatin, natamycin and amphotericin B-deoxycholate (AmB). Until the present day, AmB has been considered to be a hallmark in the treatment of invasive systemic fungal infections. Nevertheless, the success and the use of AmB were associated with severe adverse effects which stimulated the development of new antifungal drugs such as azoles, pyrimidine antimetabolite, mitotic inhibitors, allylamines and echinochandins. However, all of these drugs presented one or more limitations associated with adverse reactions, administration route and more recently the development of resistance. To worsen this scenario, there has been an increase in fungal infections, especially in invasive systemic fungal infections that are particularly difficult to diagnose and treat. In 2022, the World Health Organization (WHO) published the first fungal priority pathogens list, alerting people to the increased incidence of invasive systemic fungal infections and to the associated risk of mortality/morbidity. The report also emphasized the need to rationally use existing drugs and develop new drugs. In this review, we performed an overview of the history of antifungals and their classification, mechanism of action, pharmacokinetic/pharmacodynamic (PK/PD) characteristics and clinical applications. In parallel, we also addressed the contribution of fungi biology and genetics to the development of resistance to antifungal drugs. Considering that drug effectiveness also depends on the mammalian host, we provide an overview on the roles of therapeutic drug monitoring and pharmacogenomics as means to improve the outcome, prevent/reduce antifungal toxicity and prevent the emergence of antifungal resistance. Finally, we present the new antifungals and their main characteristics.
Collapse
Affiliation(s)
- Anália Carmo
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Marilia Rocha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Patricia Pereirinha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Rui Tomé
- Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal;
| | - Eulália Costa
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
10
|
Stemler J, Többen C, Lass-Flörl C, Steinmann J, Ackermann K, Rath PM, Simon M, Cornely OA, Koehler P. Diagnosis and Treatment of Invasive Aspergillosis Caused by Non- fumigatus Aspergillus spp. J Fungi (Basel) 2023; 9:500. [PMID: 37108955 PMCID: PMC10141595 DOI: 10.3390/jof9040500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
With increasing frequency, clinical and laboratory-based mycologists are consulted on invasive fungal diseases caused by rare fungal species. This review aims to give an overview of the management of invasive aspergillosis (IA) caused by non-fumigatus Aspergillus spp.-namely A. flavus, A. terreus, A. niger and A. nidulans-including diagnostic and therapeutic differences and similarities to A. fumigatus. A. flavus is the second most common Aspergillus spp. isolated in patients with IA and the predominant species in subtropical regions. Treatment is complicated by its intrinsic resistance against amphotericin B (AmB) and high minimum inhibitory concentrations (MIC) for voriconazole. A. nidulans has been frequently isolated in patients with long-term immunosuppression, mostly in patients with primary immunodeficiencies such as chronic granulomatous disease. It has been reported to disseminate more often than other Aspergillus spp. Innate resistance against AmB has been suggested but not yet proven, while MICs seem to be elevated. A. niger is more frequently reported in less severe infections such as otomycosis. Triazoles exhibit varying MICs and are therefore not strictly recommended as first-line treatment for IA caused by A. niger, while patient outcome seems to be more favorable when compared to IA due to other Aspergillus species. A. terreus-related infections have been reported increasingly as the cause of acute and chronic aspergillosis. A recent prospective international multicenter surveillance study showed Spain, Austria, and Israel to be the countries with the highest density of A. terreus species complex isolates collected. This species complex seems to cause dissemination more often and is intrinsically resistant to AmB. Non-fumigatus aspergillosis is difficult to manage due to complex patient histories, varying infection sites and potential intrinsic resistances to antifungals. Future investigational efforts should aim at amplifying the knowledge on specific diagnostic measures and their on-site availability, as well as defining optimal treatment strategies and outcomes of non-fumigatus aspergillosis.
Collapse
Affiliation(s)
- Jannik Stemler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
| | - Christina Többen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, European Diamond Excellence Center for Medical Mycology (ECMM), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jörg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital Essen, European Diamond Excellence Center for Medical Mycology (ECMM), 45147 Essen, Germany
| | - Katharina Ackermann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, European Diamond Excellence Center for Medical Mycology (ECMM), 45147 Essen, Germany
| | - Michaela Simon
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Oliver Andreas Cornely
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, 50935 Cologne, Germany
| | - Philipp Koehler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
11
|
Rollin-Pinheiro R, Xisto MIDDS, de Castro-Almeida Y, Rochetti VP, Borba-Santos LP, Fontes YDS, Ferreira-Pereira A, Rozental S, Barreto-Bergter E. Pandemic Response Box® library as a source of antifungal drugs against Scedosporium and Lomentospora species. PLoS One 2023; 18:e0280964. [PMID: 36735743 PMCID: PMC9897528 DOI: 10.1371/journal.pone.0280964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Scedosporium and Lomentospora species are opportunistic filamentous fungi that cause localized and disseminated infections in immunocompetent and immunocompromised patients. These species are considered resistant fungi due to their low susceptibility to most current antifungal agents used in healthcare settings. The search for new compounds that could work as promising candidate antifungal drugs is an increasing field of interest. In this context, in the present study we screened the Pandemic Response Box® library (Medicines for Malaria Venture [MMV], Switzerland) to identify compounds with antifungal activity against Scedosporium and Lomentospora species. An initial screening of the drugs from this collection at 5 μM was performed using a clinical Scedosporium aurantiacum isolate according to the EUCAST protocol. Compounds with activity against this fungus were also tested against four other species (S. boydii¸ S. dehoogii, S. apiospermum and L. prolificans) at concentrations ranging from 0.078 to 10 μM. Seven compounds inhibited more than 80% of S. aurantiacum growth, three of them (alexidine, amorolfine and olorofim) were selected due to their differences in mechanism of action, especially when compared to drugs from the azole class. These compounds were more active against biofilm formation than against preformed biofilm in Scedosporium and Lomentospora species, except alexidine, which was able to decrease preformed biofilm about 50%. Analysis of the potential synergism of these compounds with voriconazole and caspofungin was performed by the checkerboard method for S. aurantiacum. The analysis by Bliss methodology revealed synergistic effects among selected drugs with caspofungin. When these drugs were combined with voriconazole, only alexidine and amorolfine showed a synergistic effect, whereas olorofim showed an antagonistic effect. Scanning electron microscopy revealed that alexidine induces morphology alterations in S. aurantiacum biofilm grown on a catheter surface. Reactive oxygen species production, mitochondrial activity and surface components were analyzed by fluorescent probes when S. aurantiacum was treated with selected drugs and revealed that some cell parameters are altered by these compounds. In conclusion, alexidine, amorolfine and olorofim were identified as promising compounds to be studied against scedosporiosis and lomentosporiosis.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (RRP); (EBB)
| | - Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yuri de Castro-Almeida
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Pereira Rochetti
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana Pereira Borba-Santos
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yasmin da Silva Fontes
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sonia Rozental
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (RRP); (EBB)
| |
Collapse
|
12
|
Ledoux MP, Herbrecht R. Invasive Pulmonary Aspergillosis. J Fungi (Basel) 2023; 9:jof9020131. [PMID: 36836246 PMCID: PMC9962768 DOI: 10.3390/jof9020131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Invasive pulmonary aspergillosis is growing in incidence, as patients at risk are growing in diversity. Outside the classical context of neutropenia, new risk factors are emerging or newly identified, such as new anticancer drugs, viral pneumonias and hepatic dysfunctions. Clinical signs remain unspecific in these populations and the diagnostic work-up has considerably expanded. Computed tomography is key to assess the pulmonary lesions of aspergillosis, whose various features must be acknowledged. Positron-emission tomography can bring additional information for diagnosis and follow-up. The mycological argument for diagnosis is rarely fully conclusive, as biopsy from a sterile site is challenging in most clinical contexts. In patients with a risk and suggestive radiological findings, probable invasive aspergillosis is diagnosed through blood and bronchoalveolar lavage fluid samples by detecting galactomannan or DNA, or by direct microscopy and culture for the latter. Diagnosis is considered possible with mold infection in lack of mycological criterion. Nevertheless, the therapeutic decision should not be hindered by these research-oriented categories, that have been completed by better adapted ones in specific settings. Survival has been improved over the past decades with the development of relevant antifungals, including lipid formulations of amphotericin B and new azoles. New antifungals, including first-in-class molecules, are awaited.
Collapse
|
13
|
Antagonism of the Azoles to Olorofim and Cross-Resistance Are Governed by Linked Transcriptional Networks in Aspergillus fumigatus. mBio 2022; 13:e0221522. [PMID: 36286521 PMCID: PMC9765627 DOI: 10.1128/mbio.02215-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillosis, in its various manifestations, is a major cause of morbidity and mortality. Very few classes of antifungal drugs have been approved for clinical use to treat these diseases and resistance to the first-line therapeutic class, the triazoles are increasing. A new class of antifungals that target pyrimidine biosynthesis, the orotomides, are currently in development with the first compound in this class, olorofim in late-stage clinical trials. In this study, we identified an antagonistic action of the triazoles on the action of olorofim. We showed that this antagonism was the result of an azole-induced upregulation of the pyrimidine biosynthesis pathway. Intriguingly, we showed that loss of function in the higher order transcription factor, HapB a member of the heterotrimeric HapB/C/E (CBC) complex or the regulator of nitrogen metabolic genes AreA, led to cross-resistance to both the azoles and olorofim, indicating that factors that govern resistance were under common regulatory control. However, the loss of azole-induced antagonism required decoupling of the pyrimidine biosynthetic pathway in a manner independent of the action of a single transcription factor. Our study provided evidence for complex transcriptional crosstalk between the pyrimidine and ergosterol biosynthetic pathways. IMPORTANCE Aspergillosis is a spectrum of diseases and a major cause of morbidity and mortality. To treat these diseases, there are a few classes of antifungal drugs approved for clinical use. Resistance to the first line treatment, the azoles, is increasing. The first antifungal, olorofim, which is in the novel class of orotomides, is currently in development. Here, we showed an antagonistic effect between the azoles and olorofim, which was a result of dysregulation of the pyrimidine pathway, the target of olorofim, and the ergosterol biosynthesis pathway, the target of the azoles.
Collapse
|
14
|
Lamoth F, Lewis RE, Kontoyiannis DP. Investigational Antifungal Agents for Invasive Mycoses: A Clinical Perspective. Clin Infect Dis 2022; 75:534-544. [PMID: 34986246 DOI: 10.1093/cid/ciab1070] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/13/2023] Open
Abstract
Treatment of invasive fungal infections (IFIs) remains challenging, because of the limitations of the current antifungal agents (ie, mode of administration, toxicity, and drug-drug interactions) and the emergence of resistant fungal pathogens. Therefore, there is an urgent need to expand our antifungal armamentarium. Several compounds are reaching the stage of phase II or III clinical assessment. These include new drugs within the existing antifungal classes or displaying similar mechanism of activity with improved pharmacologic properties (rezafungin and ibrexafungerp) or first-in-class drugs with novel mechanisms of action (olorofim and fosmanogepix). Although critical information regarding the performance of these agents in heavily immunosuppressed patients is pending, they may provide useful additions to current therapies in some clinical scenarios, including IFIs caused by azole-resistant Aspergillus or multiresistant fungal pathogens (eg, Candida auris, Lomentospora prolificans). However, their limited activity against Mucorales and some other opportunistic molds (eg, some Fusarium spp.) persists as a major unmet need.
Collapse
Affiliation(s)
- Frederic Lamoth
- Infectious Diseases Service and Institute of Microbiology, University Hospital of Lausanne and Lausanne University, Lausanne, Switzerland
| | - Russell E Lewis
- Clinic of Infectious Diseases, S'Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italyand
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Wiederhold NP. Pharmacodynamics, Mechanisms of Action and Resistance, and Spectrum of Activity of New Antifungal Agents. J Fungi (Basel) 2022; 8:jof8080857. [PMID: 36012845 PMCID: PMC9410397 DOI: 10.3390/jof8080857] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 12/21/2022] Open
Abstract
Several new antifungals are currently in late-stage development, including those with novel pharmacodynamics/mechanisms of action that represent new antifungal classes (manogepix, olorofim, ATI-2307, GR-2397). Others include new agents within established classes or with mechanisms of action similar to clinically available antifungals (ibrexafungerp, rezafungin, oteseconazole, opelconazole, MAT2203) that have been modified in order to improve certain characteristics, including enhanced pharmacokinetics and greater specificity for fungal targets. Many of the antifungals under development also have activity against Candida and Aspergillus strains that have reduced susceptibility or acquired resistance to azoles and echinocandins, whereas others demonstrate activity against species that are intrinsically resistant to most clinically available antifungals. The tolerability and drug–drug interaction profiles of these new agents also appear to be promising, although the number of human subjects that have been exposed to many of these agents remains relatively small. Overall, these agents have the potential for expanding our antifungal armamentarium and improving clinical outcomes in patients with invasive mycoses.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
Novel agents in the treatment of invasive fungal infections in solid organ transplant recipients. Curr Opin Organ Transplant 2022; 27:235-242. [PMID: 36354248 DOI: 10.1097/mot.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE OF REVIEW Recipients of solid organ transplants (SOTs) suffer a significant burden of invasive fungal infections (IFIs). The emergence of drug-resistant fungi and toxicities of currently used antifungal agents as well as drug-drug interactions with immunosuppressants make their treatment challenging. This review discusses selected novel antifungal agents in the development pipeline that can currently be used through clinical trials or may be commercially available in the near future. RECENT FINDINGS These agents in development have novel pharmacokinetics and pharmacodynamics, expanded spectra of activity and excellent safety profiles. SUMMARY The properties of novel antifungal agents have the potential to expand the therapeutic options for IFIs in recipients of SOTs.
Collapse
|
17
|
Abstract
Invasive fungal diseases due to resistant yeasts and molds are an important and increasing public health threat, likely due to a growing population of immunosuppressed hosts, increases in antifungal resistance, and improvements in laboratory diagnostics. The significant morbidity and mortality associated with these pathogens bespeaks the urgent need for novel safe and effective therapeutics. This review highlights promising investigational antifungal agents in clinical phases of development: fosmanogepix, ibrexafungerp, rezafungin, encochleated amphotericin B, oteseconazole (VT-1161), VT-1598, PC945, and olorofim. We discuss three first-in-class members of three novel antifungal classes, as well as new agents within existing antifungal classes with improved safety and tolerability profiles due to enhanced pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Samantha E Jacobs
- Division of Infectious Diseases, Icahn School of Medicine, New York, NY, 10029-5674, USA
| | - Panagiotis Zagaliotis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.,Departments Pediatrics and Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
18
|
Buil JB, Oliver JD, Law D, Baltussen T, Zoll J, Hokken MWJ, Tehupeiory-Kooreman M, Melchers WJG, Birch M, Verweij PE. Resistance profiling of Aspergillus fumigatus to olorofim indicates absence of intrinsic resistance and unveils the molecular mechanisms of acquired olorofim resistance. Emerg Microbes Infect 2022; 11:703-714. [PMID: 35109772 PMCID: PMC8890541 DOI: 10.1080/22221751.2022.2034485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Olorofim (F901318) is a new antifungal currently under clinical development that shows both in vitro and in vivo activity against a number of filamentous fungi including Aspergillus fumigatus. In this study, we screened A. fumigatus isolates for intrinsic olorofim-resistant A. fumigatus and evaluated the ability of A. fumigatus to acquire an olorofim-resistant phenotype. No intrinsic resistance was found in 975 clinical A. fumigatus isolates. However, we found that isolates with increased olorofim MICs (> 8 mg/L) could be selected using a high number of conidia and olorofim exposure under laboratory conditions. Assessment of the frequency of acquired olorofim resistance development of A. fumigatus was shown to be higher than for voriconazole but lower than for itraconazole. Sequencing the PyrE gene of isogenic isolates with olorofim MICs of >8 mg/L identified various amino acid substitutions with a hotspot at locus G119. Olorofim was shown to have reduced affinity to mutated target protein dihydroorotate dehydrogenase (DHODH) and the effect of these mutations was proven by introducing the mutations directly in A. fumigatus. We then investigated whether G119 mutations were associated with a fitness cost in A. fumigatus. These experiments showed a small but significant reduction in growth rate for strains with a G119V substitution, while strains with a G119C substitution did not exhibit a reduction in growth rate. These in vitro findings were confirmed in an in vivo pathogenicity model.
Collapse
Affiliation(s)
- Jochem B Buil
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | | | - Derek Law
- F2G Ltd, Lankro Way, Manchester, United Kingdom
| | - Tim Baltussen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Zoll
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Margriet W J Hokken
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marlou Tehupeiory-Kooreman
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Mike Birch
- F2G Ltd, Lankro Way, Manchester, United Kingdom
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Echeverria-Esnal D, Martín-Ontiyuelo C, Navarrete-Rouco ME, Barcelo-Vidal J, Conde-Estévez D, Carballo N, De-Antonio Cuscó M, Ferrández O, Horcajada JP, Grau S. Pharmacological management of antifungal agents in pulmonary aspergillosis: an updated review. Expert Rev Anti Infect Ther 2021; 20:179-197. [PMID: 34328373 DOI: 10.1080/14787210.2021.1962292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Aspergillus may cause different types of lung infections: invasive, chronic pulmonary or allergic bronchopulmonary aspergillosis. Pharmacological management with antifungals poses as a challenge. Patients diagnosed with pulmonary aspergillosis are complex, as well as the problems associated with antifungal agents. AREAS COVERED This article reviews the pharmacology of antifungal agents in development and currently used to treat pulmonary aspergillosis, including the mechanisms of action, pharmacokinetics, pharmacodynamics, dosing, therapeutic drug monitoring and safety. Recommendations to manage situations that arise in daily clinical practice are provided. A literature search of PubMed was conducted on November 15th, 2020 and updated on March 30th, 2021. EXPERT OPINION Recent and relevant developments in the treatment of pulmonary aspergillosis have taken place. Novel antifungals with new mechanisms of action that extend antifungal spectrum and improve pharmacokinetic-related aspects, drug-drug interactions and safety are under current study. For those antifungals already marketed, new data related to pharmacokinetics, pharmacodynamics, dose adjustments in special situations, therapeutic drug monitoring and safety are available. To maximize efficacy and reduce the risk of associated toxicities, it is essential to choose the most appropriate antifungal; optimize its dose, interval, route of administration and length of treatment; and prevent side effects.
Collapse
Affiliation(s)
- Daniel Echeverria-Esnal
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | | | | | - David Conde-Estévez
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Nuria Carballo
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | | | - Olivia Ferrández
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | - Juan Pablo Horcajada
- Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain.,Infectious Diseases Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
In vivo efficacy of olorofim against systemic scedosporiosis and lomentosporiosis. Antimicrob Agents Chemother 2021; 65:e0043421. [PMID: 34252298 DOI: 10.1128/aac.00434-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinically relevant members of the Scedosporium/Pseudallescheria species complex and Lomentospora prolificans are generally resistant against currently available systemic antifungal agents in vitro and the infection due to these species is difficult to treat. We studied the in vivo efficacy of a new fungicidal agent olorofim (formerly F901318) against scedosporiosis and lomentosporiosis in neutropenic animals. Cyclophosphamide immunosuppressed CD-1 mice infected by Scedosporium apiospermum, Pseudallescheria boydii (Scedosporium boydii) and Lomentospora prolificans were treated by intraperitoneal administration of olorofim (15 mg/kg every 8 h for 9 days). The efficacy of olorofim treatment was assessed by the survival rate at 10 days post infection, levels of serum (1-3)-β-d-glucan (BG), histopathology, and fungal burden of kidneys 3 days post infection. Olorofim therapy significantly improved survival compared to the untreated controls; 80%, 100% and 100% of treated mice survived infection by Scedosporium apiospermum, Pseudallescheria boydii, and Lomentospora prolificans, respectively while less than 20% of the control mice (PBS-treated) survived at 10 days post infection. In the olorofim-treated neutropenic CD-1 mice infected with all three species, serum BG levels were significantly suppressed and fungal DNA detected in the target organs was significantly lower than controls. Furthermore, histopathology of kidneys revealed no or only few lesions with hyphal elements in the olorofim-treated mice, while numerous fungal hyphae were present in control mice. These results indicate olorofim to be a promising therapeutic agent for systemic scedosporiosis/lomentosporiosis, a devastating emerging fungal infection difficult to treat with currently available antifungals.
Collapse
|
21
|
Abstract
Introduction: Invasive fungal infection carries a high morbidity, mortality and economic cost. In recent times, a rising incidence of fungal infection and antifungal resistance is occurring which has prompted the development of novel antifungal agents.Areas covered:In this perspective, the authors describe the current status of registered antifungals and their limitations in the treatment of invasive fungal infection. They also go on to describe the new antifungal agents that are in the clinical stage of development and how they might be best utilized in patient care in the future.Expert opinion: The antifungal drug development pipeline has responded to a growing need for new agents to effectively treat fungal disease without concomitant toxicity or issues with drug tolerance. Olorofim (F901318), ibrexafungerp (SCY-078), fosmanogepix (APX001), rezafungin (CD101), oteseconazole (VT-1161), encochleated amphotericin B (MAT2203), nikkomycin Z (NikZ) and ATI-2307 are all in the clinical stage of development and offer great promise in offering clinicians better agents to treat these difficult infections.
Collapse
Affiliation(s)
- Adam G Stewart
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| | - David L Paterson
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| |
Collapse
|
22
|
Abstract
Invasive fungal diseases due to resistant yeasts and molds are an important and increasing public health threat, likely due to a growing population of immunosuppressed hosts, increases in antifungal resistance, and improvements in laboratory diagnostics. The significant morbidity and mortality associated with these pathogens bespeaks the urgent need for novel safe and effective therapeutics. This review highlights promising investigational antifungal agents in clinical phases of development: fosmanogepix, ibrexafungerp, rezafungin, encochleated amphotericin B, oteseconazole (VT-1161), VT-1598, PC945, and olorofim. We discuss three first-in-class members of three novel antifungal classes, as well as new agents within existing antifungal classes with improved safety and tolerability profiles due to enhanced pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Samantha E. Jacobs
- Division of Infectious Diseases, Icahn School of Medicine, New York, NY, 10029-5674, USA
| | - Panagiotis Zagaliotis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Departments Pediatrics and Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
23
|
Rivero-Menendez O, Cuenca-Estrella M, Alastruey-Izquierdo A. In vitro activity of olorofim against clinical isolates of Scedosporium species and Lomentospora prolificans using EUCAST and CLSI methodologies. J Antimicrob Chemother 2021; 75:3582-3585. [PMID: 32856079 DOI: 10.1093/jac/dkaa351] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To evaluate the in vitro activity of olorofim, a new broad-spectrum antifungal with a novel mechanism of action, against a collection of 123 Spanish clinical isolates belonging to five Scedosporium species and Lomentospora prolificans. METHODS The activity of olorofim against Scedosporium apiospermum (n = 30), Scedosporium boydii (n = 30), Scedosporium ellipsoideum (n = 10), Scedosporium aurantiacum (n = 20), Scedosporium dehoogii (n = 3) and Lomentospora prolificans (n = 30) was compared with that of amphotericin B, voriconazole, isavuconazole and micafungin by performing EUCAST and CLSI reference methods for antifungal susceptibility testing. RESULTS Amphotericin B and isavuconazole showed MICs ≥2 mg/L for all the species evaluated and voriconazole was moderately active (GM, MIC50 and MIC90 values ≤2 mg/L) against all of them except L. prolificans. Micafungin was effective against S. apiospermum complex strains, but exhibited elevated MECs for S. dehoogii and S. aurantiacum. Olorofim showed low MICs for all the Scedosporium strains tested (GM values were lower than 0.130 and 0.339 by the EUCAST method and the CLSI method, respectively, for all of the species), including those belonging to the MDR species L. prolificans, for which GM values were 0.115 and 0.225 mg/L by the EUCAST method and the CLSI method, respectively, while the GMs for the rest of the antifungals evaluated were higher than 3.732 mg/L using both methodologies. CONCLUSIONS Olorofim displayed promising in vitro activity against the Scedosporium and L. prolificans strains tested, some of which have reduced susceptibility to the antifungals that are currently in use.
Collapse
Affiliation(s)
- Olga Rivero-Menendez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Investigational Agents for the Treatment of Resistant Yeasts and Molds. CURRENT FUNGAL INFECTION REPORTS 2021; 15:104-115. [PMID: 34075318 PMCID: PMC8162489 DOI: 10.1007/s12281-021-00419-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Purpose of Review This review summarizes the investigational antifungals in clinical development with the potential to address rising drug resistance patterns. The relevant pharmacodynamics, spectrum of activity, preclinical studies, and latest clinical trial data are described. Recent Findings Agricultural and medicinal antifungal use has been selected for inherently drug-resistant fungi and acquired resistance mechanisms. The rates of fungal infections and immunocompromised populations continue to grow as few new antifungals have hit the market. Several agents with the potential to address the emergence of multidrug-resistant (MDR) molds and yeasts are in clinical development. Summary Evolved formulations of echinocandins, polyenes, and triazoles offer less toxicity, convenient dosing, and greater potency, potentially expanding these classes’ indications. Ibrexafungerp, olorofim, oteseconazole, and fosmanogepix possess novel mechanisms of actions with potent activity against MDR fungi. Successful clinical development is neither easy nor guaranteed; thus, perpetual efforts to discover new antifungals are needed.
Collapse
|
25
|
Zhang J, Liu H, Xi L, Chang YC, Kwon-Chung KJ, Seyedmousavi S. Antifungal Susceptibility Profiles of Olorofim (Formerly F901318) and Currently Available Systemic Antifungals against Mold and Yeast Phases of Talaromyces marneffei. Antimicrob Agents Chemother 2021; 65:e00256-21. [PMID: 33753341 PMCID: PMC8316025 DOI: 10.1128/aac.00256-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
In vitro antifungal susceptibility profiling of 32 clinical and environmental Talaromyces marneffei isolates recovered from southern China was performed against olorofim and 7 other systemic antifungals, including amphotericin B, 5-flucytosine, posaconazole, voriconazole, caspofungin, and terbinafine, using CLSI methodology. In comparison, olorofim was the most active antifungal agent against both mold and yeast phases of all tested Talaromyces marneffei isolates, exhibiting an MIC range, MIC50, and MIC90 of 0.0005 to 0.002 μg/ml, 0.0005 μg/ml, and 0.0005 μg/ml, respectively.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Dermatology and Venerology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongfang Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Liyan Xi
- Department of Dermatology and Venerology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yun C Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seyedmojtaba Seyedmousavi
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Georgacopoulos O, Nunnally NS, Ransom EM, Law D, Birch M, Lockhart SR, Berkow EL. In Vitro Activity of Novel Antifungal Olorofim against Filamentous Fungi and Comparison to Eight Other Antifungal Agents. J Fungi (Basel) 2021; 7:jof7050378. [PMID: 34065811 PMCID: PMC8150786 DOI: 10.3390/jof7050378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022] Open
Abstract
Olorofim is a novel antifungal drug that belongs to the orotomide drug class which inhibits fungal dihydroorotate dehydrogenase (DHODH), thus halting pyrimidine biosynthesis and ultimately DNA synthesis, cell growth and division. It is being developed at a time when many invasive fungal infections exhibit antifungal resistance or have limited treatment options. The goal of this study was to evaluate the in vitro effectiveness of olorofim against a large collection of recently isolated, clinically relevant American mold isolates. In vitro antifungal activity was determined for 246 azole-susceptible Aspergillus fumigatus isolates, five A. fumigatus with TR34/L98H-mediated resistance, 19 Rhizopus species isolates, 21 Fusarium species isolates, and one isolate each of six other species of molds. Olorofim minimum inhibitory concentrations (MICs) were compared to antifungal susceptibility testing profiles for amphotericin B, anidulafungin, caspofungin, isavuconazole, itraconazole, micafungin, posaconazole, and voriconazole. Olorofim MICs were significantly lower than those of the echinocandin and azole drug classes and amphotericin B. A. fumigatus wild type and resistant isolates shared the same MIC50 = 0.008 μg/mL. In non-Aspergillus susceptible isolates (MIC ≤ 2 μg/mL), the geometric mean (GM) MIC to olorofim was 0.54 μg/mL with a range of 0.015–2 μg/mL. Olorofim had no antifungal activity (MIC ≥ 2 μg/mL) against 10% of the collection (31 in 297), including some isolates from Rhizopus spp. and Fusarium spp. Olorofim showed promising activity against A. fumigatus and other molds regardless of acquired azole resistance.
Collapse
Affiliation(s)
- Ourania Georgacopoulos
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (N.S.N.); (S.R.L.); (E.L.B.)
- Correspondence:
| | - Natalie S. Nunnally
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (N.S.N.); (S.R.L.); (E.L.B.)
| | - Eric M. Ransom
- Association of Public Health Laboratories, Silver Springs, MD 20910, USA;
| | - Derek Law
- F2G Ltd., Manchester M30 0LX, UK; (D.L.); (M.B.)
| | - Mike Birch
- F2G Ltd., Manchester M30 0LX, UK; (D.L.); (M.B.)
| | - Shawn R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (N.S.N.); (S.R.L.); (E.L.B.)
| | - Elizabeth L. Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (N.S.N.); (S.R.L.); (E.L.B.)
| |
Collapse
|
27
|
Youngs J, Low JM, Whitney L, Logan C, Chase J, Yau T, Klammer M, Koh M, Bicanic T. Safety and Efficacy of Intermittent High-Dose Liposomal Amphotericin B Antifungal Prophylaxis in Haemato-Oncology: An Eight-Year Single-Centre Experience and Review of the Literature. J Fungi (Basel) 2020; 6:jof6040385. [PMID: 33371513 PMCID: PMC7767522 DOI: 10.3390/jof6040385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Triazoles remain first-line agents for antifungal prophylaxis in high-risk haemato-oncology patients, but their use is increasingly contraindicated due to drug–drug interactions and additive toxicities with novel treatments. In this retrospective, single-centre, observational study, we present our eight-year experience of antifungal prophylaxis using intermittent high-dose liposomal Amphotericin B (L-AmB). All adults identified through our Antifungal Stewardship Programme as receiving L-AmB prophylaxis at 7.5 mg/kg once-weekly between February 2012 and January 2020 were included. Adverse reactions, including infusion reactions, electrolyte loss, and nephrotoxicity, were recorded. ‘Breakthrough’ invasive fungal infection (IFI) occurring within four weeks of L-AmB was classified using European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) criteria. Moreover, 114 courses of intermittent high-dose L-AmB prophylaxis administered to 92 unique patients were analysed. Hypokalaemia was the most common grade 3–4 adverse event, with 26 (23%) courses. Grade 3 nephrotoxicity occurred in 8 (7%) and reversed in all six patients surviving to 90 days. There were two (1.8%) episodes of breakthrough IFI, one ‘probable’ and one ‘possible’. In this study, the largest evaluation of intermittent high-dose L-AmB prophylaxis conducted to date, toxicity was manageable and reversible and breakthrough IFI was rare. L-AmB prophylaxis represents a viable alternative for patients with a contraindication to triazoles.
Collapse
Affiliation(s)
- Jonathan Youngs
- Institute of Infection & Immunity, St George’s University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK;
- Department of Infection, St George’s University Hospitals NHS Foundation Trust, Blackshaw Rd, Tooting, London SW17 0QT, UK
- Clinical Academic Group in Infection and Immunity, St George’s University of London, Cranmer Terrace, London SW17 0RE, UK;
- Correspondence: (J.Y.); (T.B.); Tel.: +078-5467-7681 (J.Y.); +020-8725-2911 (T.B.)
| | - Jen Mae Low
- St George’s University Hospitals NHS Foundation Trust, Blackshaw Rd, Tooting, London SW17 0QT, UK;
| | - Laura Whitney
- Pharmacy Department, St George’s University Hospitals NHS Foundation Trust, Blackshaw Rd, Tooting, London SW17 0QT, UK; (L.W.); (J.C.); (T.Y.)
| | - Clare Logan
- Institute of Infection & Immunity, St George’s University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK;
- Department of Infection, St George’s University Hospitals NHS Foundation Trust, Blackshaw Rd, Tooting, London SW17 0QT, UK
- Clinical Academic Group in Infection and Immunity, St George’s University of London, Cranmer Terrace, London SW17 0RE, UK;
| | - Janice Chase
- Pharmacy Department, St George’s University Hospitals NHS Foundation Trust, Blackshaw Rd, Tooting, London SW17 0QT, UK; (L.W.); (J.C.); (T.Y.)
| | - Ting Yau
- Pharmacy Department, St George’s University Hospitals NHS Foundation Trust, Blackshaw Rd, Tooting, London SW17 0QT, UK; (L.W.); (J.C.); (T.Y.)
| | - Matthias Klammer
- Department of Haematology, St George’s University Hospitals NHS Foundation Trust, Blackshaw Rd, Tooting, London SW17 0QT, UK;
| | - Mickey Koh
- Clinical Academic Group in Infection and Immunity, St George’s University of London, Cranmer Terrace, London SW17 0RE, UK;
- Department of Haematology, St George’s University Hospitals NHS Foundation Trust, Blackshaw Rd, Tooting, London SW17 0QT, UK;
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George’s University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK;
- Department of Infection, St George’s University Hospitals NHS Foundation Trust, Blackshaw Rd, Tooting, London SW17 0QT, UK
- Clinical Academic Group in Infection and Immunity, St George’s University of London, Cranmer Terrace, London SW17 0RE, UK;
- Correspondence: (J.Y.); (T.B.); Tel.: +078-5467-7681 (J.Y.); +020-8725-2911 (T.B.)
| |
Collapse
|
28
|
Olorofim Susceptibility Testing of 1,423 Danish Mold Isolates Obtained in 2018-2019 Confirms Uniform and Broad-Spectrum Activity. Antimicrob Agents Chemother 2020; 65:AAC.01527-20. [PMID: 33020160 DOI: 10.1128/aac.01527-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/01/2020] [Indexed: 01/22/2023] Open
Abstract
Olorofim is a novel antifungal drug in phase 2 trials. It has shown promising in vitro activity against various molds, except for Mucorales. Initially, we observed a broad range of EUCAST MICs for Aspergillus fumigatus Here, we explored the MIC variability in more detail and prospectively investigated the susceptibility of contemporary clinical mold isolates, as population data are needed for future epidemiological cutoff (ECOFF) settings. Fifteen A. fumigatus isolates previously found with low/medium/high MICs (≤0.002 to 0.25 mg/liter) were tested repeatedly and EUCAST MICs read in a blinded fashion by three observers. pyrE, encoding the olorofim target enzyme dihydroorotate dehydrogenase (DHODH), was sequenced. A total of 1,423 mold isolates (10 Aspergillus species complexes [including 1,032 A. fumigatus isolates] and 105 other mold/dermatophyte isolates) were examined. Olorofim susceptibility (modal MIC, MIC50, MIC90, and wild-type upper limits [WT-ULs] [species complexes with ≥15 isolates]) was determined and compared to that of four comparators. MICs (mg/liter) were within two 2-fold dilutions (0.016 to 0.03) for 473/476 determinations. The MIC range spanned four dilutions (0.008 to 0.06). No significant pyrE mutations were found. Modal MIC/WT-UL97.5 (mg/liter) values were 0.03/0.06 (A. terreus and A. flavus), 0.06/0.125 (A. fumigatus and Trichophyton rubrum), and 0.06/0.25 (A. niger and A. nidulans). The MIC range for Scedosporium spp. was 0.008 to 0.25. Olorofim susceptibility was similar for azole-resistant and -susceptible isolates of A. fumigatus but reduced for A. montevidensis and A. chevalieri (MICs of >1). With experience, olorofim susceptibility testing is robust. The testing of isolates from our center showed uniform and broad-spectrum activity. Single-center WT-ULs are suggested.
Collapse
|
29
|
Vahedi-Shahandashti R, Lass-Flörl C. Novel Antifungal Agents and Their Activity against Aspergillus Species. J Fungi (Basel) 2020; 6:E213. [PMID: 33050302 PMCID: PMC7711508 DOI: 10.3390/jof6040213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need for new antifungal agents, mainly due to increased incidence of invasive fungal infections (IFI), high frequency of associated morbidity and mortality and limitations of the current antifungal agents (e.g., toxicity, drug-drug interactions, and resistance). The clinically available antifungals for IFI are restricted to four main classes: polyenes, flucytosine, triazoles, and echinocandins. Several antifungals are hampered by multiple resistance mechanisms being present in fungi. Consequently, novel antifungal agents with new targets and modified chemical structures are required to combat fungal infections. This review will describe novel antifungals, with a focus on the Aspergillus species.
Collapse
Affiliation(s)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
30
|
Primary immunodeficiencies and invasive fungal infection: when to suspect and how to diagnose and manage. Curr Opin Infect Dis 2020; 32:531-537. [PMID: 31567735 DOI: 10.1097/qco.0000000000000593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Invasive fungal infections (IFIs) most often occur secondary to acquired immunodeficiency states such as transplantation, AIDS or immune-modulatory treatment for neoplastic and autoimmune disorders. Apart from these acquired conditions, several primary immunodeficiency disorders (PIDs) can present with IFIs in the absence of iatrogenic immunosuppression. This review highlights recent advances in our understanding of PIDs that cause IFIs, which may help clinicians in the diagnosis and management of such infections. RECENT FINDINGS A growing number of PIDs that cause varying combinations of invasive infections by commensal Candida, inhaled molds (primarily Aspergillus), Cryptococcus, Pneumocystis, endemic dimorphic fungi, dermatophytes, and/or agents of phaeohyphomycosis has uncovered the organ- and fungus-specific requirements for effective antifungal host defense in humans. Employing certain diagnostic algorithms tailored to the infecting fungus can facilitate the genetic diagnosis of the underlying PID, which has implications for the optimal management of affected patients. SUMMARY Heightened clinical suspicion is required for the diagnosis of underlying genetic defects in patients who develop IFIs in the absence of acquired immunodeficiency. Early initiation of antifungal therapy followed by long-term secondary prophylaxis is typically needed to achieve remission, but hematopoietic stem-cell transplantation may sometimes be necessary to promote immune restoration and infection control.
Collapse
|
31
|
Review of the Novel Investigational Antifungal Olorofim. J Fungi (Basel) 2020; 6:jof6030122. [PMID: 32751765 PMCID: PMC7557671 DOI: 10.3390/jof6030122] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The incidence of invasive fungal infections caused by molds and endemic fungi is increasing. There is also concern regarding increased rates of reduced susceptibility or frank resistance among Aspergillus and Coccidioides species, while Scedosporium species, Lomentospora prolificans, and Fusarium species are inherently less susceptible or intrinsically resistant to clinically available antifungals. Olorofim (formerly F901318) is the first member of the orotomide class of antifungals to be evaluated clinically for the treatment of invasive mold infections. This agent inhibits dihydroorotate dehydrogenase, a key enzyme in the biosynthesis of pyrimidines. Olorofim has activity against many molds and thermally dimorphic fungi, including species that are resistant to azoles and amphotericin B, but lacks activity against yeasts and the Mucorales. It is currently being developed for both oral and intravenous administration. Although published clinical outcome data have been limited to case reports to date, the results against invasive and refractory infections are promising. This review describes the mechanism of action of olorofim, its in vitro spectrum of activity, and what is currently known about its pharmacokinetic profile and clinical efficacy.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Although clinical outcomes in the treatment of aspergillosis have markedly improved with the availability of newer triazoles, the development of resistance to these antifungals, especially in Aspergillus fumigatus, is a growing concern. The purpose of this review is to provide an update on azole resistance mechanisms and their epidemiology in A. fumigatus, the clinical implications of azole resistance, and to discuss future treatment options against azole-resistant aspergillosis. RECENT FINDINGS Resistance may develop through either patient or environmental azole exposure. Environmental exposure is the most prevalent means of resistance development, and these isolates can cause disease in various at-risk groups, which now include those with influenza, and potentially COVID-19. Although current treatment options are limited, newer therapies are in clinical development. These include agents with novel mechanisms of action which have in vitro and in vivo activity against azole-resistant A. fumigatus. SUMMARY Azole-resistant A. fumigatus is an emerging threat that hampers our ability to successfully treat patients with aspergillosis. Certain geographic regions and patient populations appear to be at increased risk for this pathogen. As new patient groups are increasingly recognized to be at increased risk for invasive aspergillosis, studies to define the epidemiology and management of azole-resistant A. fumigatus are critically needed. While treatment options are currently limited, new agents under clinical development may offer hope.
Collapse
|
33
|
Kirchhoff L, Dittmer S, Buer J, Rath PM, Steinmann J. In vitro activity of olorofim (F901318) against fungi of the genus, Scedosporium and Rasamsonia as well as against Lomentospora prolificans, Exophiala dermatitidis and azole-resistant Aspergillus fumigatus. Int J Antimicrob Agents 2020; 56:106105. [PMID: 32721601 DOI: 10.1016/j.ijantimicag.2020.106105] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/19/2020] [Indexed: 01/06/2023]
Abstract
In recent decades, invasive infections caused by fungal pathogens have been reported with increasing frequency. Concurrently, the rates of detected resistance mechanisms against commonly used antifungal agents in fungi are increasing. The need for novel antifungal drugs is thus imminent. In this study, the novel drug olorofim (F901318) was tested for its antifungal activity against the human fungal pathogens Lomentospora prolificans (n = 20), Scedosporium aurantiacum (n = 2), Scedosporium apiospermum (n = 6), Rasamsonia argillacea species complex (n = 23), Exophiala dermatitidis (n = 10) and azole-resistant Aspergillus fumigatus (ARAF) (n = 25) in an in vitro broth microdilution assay according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations. Whilst olorofim was ascertained to be effective against R. argillacea species complex [minimum inhibitory concentrations (MICs) of ≤0.008 mg/L], Scedosporium spp. (MICs of 0.032-0.5 mg/L), L. prolificans (MICs of 0.032-0.5 mg/L) and ARAF (MICs of ≤0.008-0.032 mg/L), the drug had an MIC of >4 mg/L against E. dermatitidis. These data demonstrate the antifungal activity of olorofim against a broad range of filamentous fungal pathogens.
Collapse
Affiliation(s)
- Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Silke Dittmer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; Institute for Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nuernberg, Paracelsus Medical University, Prof.-Ernst-Nathan-Str. 1, 90419 Nuremberg, Germany.
| |
Collapse
|
34
|
du Pré S, Birch M, Law D, Beckmann N, Sibley GEM, Bromley MJ, Read ND, Oliver JD. The Dynamic Influence of Olorofim (F901318) on the Cell Morphology and Organization of Living Cells of Aspergillus fumigatus. J Fungi (Basel) 2020; 6:jof6020047. [PMID: 32290206 PMCID: PMC7345704 DOI: 10.3390/jof6020047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
The first characterized antifungal in the orotomide class is olorofim. It targets the de novo pyrimidine biosynthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH). The pyrimidines uracil, thymine and cytosine are the building blocks of DNA and RNA; thus, inhibition of their synthesis is likely to have multiple effects, including affecting cell cycle regulation and protein synthesis. Additionally, uridine-5′-triphosphate (UTP) is required for the formation of uridine-diphosphate glucose (UDP-glucose), which is an important precursor for several cell wall components. In this study, the dynamic effects of olorofim treatment on the morphology and organization of Aspergillus fumigatus hyphae were analyzed microscopically using confocal live-cell imaging. Treatment with olorofim led to increased chitin content in the cell wall, increased septation, enlargement of vacuoles and inhibition of mitosis. Furthermore, vesicle-like structures, which could not be stained or visualized with a range of membrane- or vacuole-selective dyes, were found in treated hyphae. A colocalization study of DHODH and MitoTracker Red FM confirmed for the first time that A. fumigatus DHODH is localized in the mitochondria. Overall, olorofim treatment was found to significantly influence the dynamic structure and organization of A. fumigatus hyphae.
Collapse
Affiliation(s)
- Saskia du Pré
- F2G Ltd., Lankro Way, Manchester M30 0LX, UK
- Manchester Fungal Infection Group, Institute of infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, Grafton Street, Manchester M13 9NT, UK
- Correspondence:
| | - Mike Birch
- F2G Ltd., Lankro Way, Manchester M30 0LX, UK
| | - Derek Law
- F2G Ltd., Lankro Way, Manchester M30 0LX, UK
| | | | | | - Michael J. Bromley
- Manchester Fungal Infection Group, Institute of infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, Grafton Street, Manchester M13 9NT, UK
| | - Nick D. Read
- Manchester Fungal Infection Group, Institute of infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, Grafton Street, Manchester M13 9NT, UK
| | | |
Collapse
|
35
|
Rauseo AM, Coler-Reilly A, Larson L, Spec A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect Dis 2020; 7:ofaa016. [PMID: 32099843 PMCID: PMC7031074 DOI: 10.1093/ofid/ofaa016] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging due to limitations in currently available antifungal therapies including toxicity, interactions, restricted routes of administration, and drug resistance. This review focuses on novel therapies in clinical development, including drugs and a device. These drugs have novel mechanisms of action to overcome resistance, and some offer new formulations providing distinct advantages over current therapies to improve safety profiles and reduce interactions. Among agents that target the cell wall, 2 glucan synthesis inhibitors are discussed (rezafungin and ibrexafungerp), as well as fosmanogepix and nikkomycin Z. Agents that target the cell membrane include 3 fourth-generation azoles, oral encochleated amphotericin B, and aureobasidin A. Among agents with intracellular targets, we will review olorofim, VL-2397, T-2307, AR-12, and MGCD290. In addition, we will describe neurapheresis, a device used as adjunctive therapy for cryptococcosis. With a field full of novel treatments for fungal infections, the future looks promising.
Collapse
Affiliation(s)
- Adriana M Rauseo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Lindsey Larson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
36
|
Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 2019; 183:111681. [PMID: 31557612 DOI: 10.1016/j.ejmech.2019.111681] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
Pyrimidines are essential for the cell survival and proliferation of living parasitic organisms, such as Helicobacter pylori, Plasmodium falciparum and Schistosoma mansoni, that are able to impact upon human health. Pyrimidine building blocks, in human cells, are synthesised via both de novo biosynthesis and salvage pathways, the latter of which is an effective way of recycling pre-existing nucleotides. As many parasitic organisms lack pyrimidine salvage pathways for pyrimidine nucleotides, blocking de novo biosynthesis is seen as an effective therapeutic means to selectively target the parasite without effecting the human host. Dihydroorotate dehydrogenase (DHODH), which is involved in the de novo biosynthesis of pyrimidines, is a validated target for anti-infective drug research. Recent advances in the DHODH microorganism field are discussed herein, as is the potential for the development of DHODH-targeted therapeutics.
Collapse
|