1
|
Li J, Li Q, Xia S, Tu J, Zheng L, Wang Q, Jiang S, Wang C. Design of MERS-CoV entry inhibitory short peptides based on helix-stabilizing strategies. Bioorg Med Chem Lett 2024; 97:129569. [PMID: 38008340 DOI: 10.1016/j.bmcl.2023.129569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Interaction between Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) protein heptad repeat-1 domain (HR1) and heptad repeat-2 domain (HR2) is critical for the MERS-CoV fusion process. This interaction is mediated by the α-helical region from HR2 and the hydrophobic groove in a central HR1 trimeric coiled coil. We sought to develop a short peptidomimetic to act as a MERS-CoV fusion inhibitor by reproducing the key recognition features of HR2 helix. This was achieved by the use of helix-stabilizing strategies, including substitution with unnatural helix-favoring amino acids, introduction of ion pair interactions, and conjugation of palmitic acid. The resulting 23-mer lipopeptide, termed AEEA-C16, inhibits MERS-CoV S protein-mediated cell-cell fusion at a low micromolar level comparable to that of the 36-mer HR2 peptide HR2P-M2. Collectively, our studies provide new insights into developing short peptide-based antiviral agents to treat MERS-CoV infection.
Collapse
Affiliation(s)
- Jichun Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Jiahuang Tu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Longbo Zheng
- Key Laboratory of Structure-based Drug Design & Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China.
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China.
| |
Collapse
|
2
|
Wang H, Wang X, Li J, Li Q, Feng S, Lu L, Wang C, Jiang S. Design of artificial α-helical peptides targeting both gp41 deep pocket and subpocket as potent HIV-1 fusion inhibitors. Eur J Med Chem 2022; 236:114336. [PMID: 35395438 DOI: 10.1016/j.ejmech.2022.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
Abstract
Both the deep pocket region and its neighboring subpocket site on the N-trimer of HIV-1 gp41 protein can serve as targets for the development of HIV-1 entry inhibitors. Pocket-binding domain (PBD)-containing peptides with the potential to inhibit HIV-1 fusion through targeting the deep pocket have been extensively exploited. However, using an artificial peptide strategy, we herein report the design of α-helical lipopeptides with non-native protein sequences as HIV-1 fusion inhibitors that can occupy both gp41 deep cavity and subpocket sites. The most active compound, PP24C, inhibited HIV-1 replication, including T20-resistant HIV-1 mutants, at low nanomolar level. Biophysical approaches revealed that both the artificial α-helical peptide P35A4 and its cholesterol-tagged peptide PP24C could bind to T21 peptide used as a target surrogate comprising both pockets. Our study offers a new template for the design of artificial anti-HIV-1 therapeutics and highlights the novel concept of peptide secondary structure-based virus fusion inhibitors.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Road, Shanghai, 200032, China
| | - Jiahui Li
- Key Laboratory of Structure-based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Meng G, Pu J, Li Y, Han A, Tian Y, Xu W, Zhang T, Li X, Lu L, Wang C, Jiang S, Liu K. Design and Biological Evaluation of m-Xylene Thioether-Stapled Short Helical Peptides Targeting the HIV-1 gp41 Hexameric Coiled-Coil Fusion Complex. J Med Chem 2019; 62:8773-8783. [PMID: 31513410 DOI: 10.1021/acs.jmedchem.9b00882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Short peptide-based inhibition of fusion remains an attractive goal in antihuman immunodeficiency virus (HIV) research based on its potential for the development of technically and economically desirable antiviral agents. Herein, we report the use of the dithiol bisalkylation reaction to generate a series of m-xylene thioether-stapled 22-residue α-helical peptides that have been identified as fusion inhibitors targeting HIV-1 glycoprotein 41 (gp41). The peptide sequence is based on the helix-zone binding domain of the gp41 C-terminal heptad repeat region. We found that one of these stapled peptides, named hCS6ERE, showed promising inhibitory potency against HIV-1 Env-mediated cell-cell fusion and viral replication at a level comparable to the clinically used 36-mer peptide T20. Furthermore, combining hCS6ERE with a fusion inhibitor having a different target site, such as HP23, produced synergistic anti-HIV-1 activity. Collectively, our study offers new insight into the design of anti-HIV peptides with short sequences.
Collapse
Affiliation(s)
- Guangpeng Meng
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Yue Li
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Aixin Han
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Xue Li
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China.,Lindsley F. Kimball Research Institute , New York Blood Center , 310 East 67th Street , New York , New York 10065 , United States
| | - Keliang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China.,State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| |
Collapse
|
4
|
Bolarinwa O, Zhang M, Mulry E, Lu M, Cai J. Sulfono-γ-AA modified peptides that inhibit HIV-1 fusion. Org Biomol Chem 2018; 16:7878-7882. [PMID: 30306175 PMCID: PMC6209519 DOI: 10.1039/c8ob02159g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The utilization of bioactive peptides in the development of highly selective and potent pharmacological agents for the disruption of protein-protein interactions is appealing for drug discovery. It is known that HIV-1 entry into a host cell is through a fusion process that is mediated by the trimeric viral glycoprotein gp120/41, which is derived from gp160 through proteolytic processing. Peptides derived from the HIV gp41 C-terminus have proven to be potent in inhibiting the fusion process. These peptides bind tightly to the hydrophobic pocket on the gp-41 N-terminus, which was previously identified as a potential inhibitor binding site. In this study, we introduce modified 23-residue C-peptides, 3 and 4, bearing a sulfono-γ-AA residue substitution and hydrocarbon stapling, respectively, which were developed for HIV-1 gp-41 N-terminus binding. Intriguingly, both 3 and 4 were capable of inhibiting envelope-mediated membrane fusion in cell-cell fusion assays at nanomolar potency. Our study reveals that sulfono-γ-AA modified peptides could be used for the development of more potent anti-HIV agents.
Collapse
Affiliation(s)
- Olapeju Bolarinwa
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA.
| | | | | | | | | |
Collapse
|
5
|
Pei Y, Wang Q, Zhang J, Guo Y, Feng J. Characterization and Evaluation of Key Sites in the Peptide Inhibitor of TAB1/p38α Interaction. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-017-9607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Wang C, Xia S, Zhang P, Zhang T, Wang W, Tian Y, Meng G, Jiang S, Liu K. Discovery of Hydrocarbon-Stapled Short α-Helical Peptides as Promising Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Fusion Inhibitors. J Med Chem 2018; 61:2018-2026. [PMID: 29442512 PMCID: PMC7075646 DOI: 10.1021/acs.jmedchem.7b01732] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hexameric α-helical coiled-coil formed between the C-terminal and N-terminal heptad repeat (CHR and NHR) regions of class I viral fusion proteins plays an important role in mediating the fusion of the viral and cellular membranes and provides a clear starting point for molecular mimicry that drives viral fusion inhibitor design. Unfortunately, such peptide mimicry of the short α-helical region in the CHR of Middle East respiratory syndrome coronavirus (MERS-CoV) spike protein has been thwarted by the loss of the peptide's native α-helical conformation when taken out of the parent protein structure. Here, we describe that appropriate all-hydrocarbon stapling of the short helical portion-based peptide to reinforce its bioactive secondary structure remarkably improves antiviral potency. The resultant stapled peptide P21S10 could effectively inhibit infection by MERS-CoV pseudovirus and its spike protein-mediated cell-cell fusion; additionally, P21S10 exhibits improved pharmacokinetic properties than HR2P-M2, suggesting strong potential for development as an anti-MERS-CoV therapeutic.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center , Fudan University , 130 Dong An Road , Shanghai 200032 , China
| | - Peiyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Weicong Wang
- Pharmaceutical Preparation Section, Plastic Surgery Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100144 , China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Guangpeng Meng
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center , Fudan University , 130 Dong An Road , Shanghai 200032 , China.,Lindsley F. Kimball Research Institute , New York Blood Center , New York , New York 10065 , United States
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China.,Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| |
Collapse
|
7
|
Luo X, Wang TS, Zhang Y, Wang F, Schultz P. Stabilizing Protein Motifs with a Genetically Encoded Metal-Ion Chelator. Cell Chem Biol 2016; 23:1098-1102. [DOI: 10.1016/j.chembiol.2016.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 01/25/2023]
|
8
|
Lu L, Yu F, Cai L, Debnath AK, Jiang S. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41. Curr Top Med Chem 2016; 16:1074-90. [PMID: 26324044 PMCID: PMC4775441 DOI: 10.2174/1568026615666150901114527] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/17/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development.
Collapse
Affiliation(s)
| | | | | | | | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Building #13, Shanghai 200032, China.
| |
Collapse
|
9
|
Hydrophobic mutations in buried polar residues enhance HIV-1 gp41 N-terminal heptad repeat-C-terminal heptad repeat interactions and C-peptides' anti-HIV activity. AIDS 2014; 28:1251-60. [PMID: 24625369 DOI: 10.1097/qad.0000000000000255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effect of mutations in a highly conserved buried polar area on the function of HIV-1 gp41. DESIGN During HIV-1 entry, a six helical bundle (6-HB) formation between the C-terminal and N-terminal heptad repeat (CHR and NHR) of gp41 provides energy for virus cell membrane fusion. In 6-HB, residues at a and d (a-d) positions of CHR directly interact with NHR and are buried. They are considered critical residues for 6-HB stability and for anti-HIV-1 activity of CHR-derived peptides (C-peptides). Most of a-d residues in CHR are hydrophobic, as buried hydrophobic residues facilitate protein stability. However, HIV-1 gp41 CHR contains a highly conserved polar area with four successive buried a-d polar residues: S649/Q652/N656/E659. We mutated these buried polar residues to hydrophobic residues, either Leu or Ile, and studied its effect on the gp41 NHR-CHR interactions and anti-HIV activities of the C-peptides. METHODS We measured the C-peptide mutants' ability to form 6-HB with NHR, thermal stability of the 6-HBs and C-peptides' inhibitory activity against both T20-sensitive and resistant HIV-1 strains. RESULTS All the mutated C-peptides retained their ability to form stable 6-HB with NHR and strongly inhibited HIV-1 replication. Strikingly, S649L and E659I mutations endow C-peptide with a significantly enhanced activity against T20-resistant HIV-1 strains. CONCLUSION The highly conserved buried a-d polar residues in HIV-1 gp41 CHR can be mutated as a means of developing new fusion inhibitors against drug-resistant HIV-1 strains. The concept can also be utilized to design fusion inhibitors against other viruses with similar mechanisms.
Collapse
|
10
|
Wang C, Shi W, Cai L, Lu L, Yu F, Wang Q, Jiang X, Xu X, Wang K, Xu L, Jiang S, Liu K. Artificial peptides conjugated with cholesterol and pocket-specific small molecules potently inhibit infection by laboratory-adapted and primary HIV-1 isolates and enfuvirtide-resistant HIV-1 strains. J Antimicrob Chemother 2014; 69:1537-45. [DOI: 10.1093/jac/dku010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
NMR-assisted computational studies of peptidomimetic inhibitors bound in the hydrophobic pocket of HIV-1 glycoprotein 41. J Comput Aided Mol Des 2013; 27:569-82. [PMID: 23893342 DOI: 10.1007/s10822-013-9662-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
Due to the inherently flexible nature of a protein-protein interaction surface, it is difficult both to inhibit the association with a small molecule, and to predict how it might bind to the surface. In this study, we have examined small molecules that mediate the interaction between a WWI motif on the C-helix of HIV-1 glycoprotein-41 (gp41) and a deep hydrophobic pocket contained in the interior N-helical trimer. Association between these two components of gp41 leads to virus-cell and cell-cell fusion, which could be abrogated in the presence of an inhibitor that binds tightly in the pocket. We have studied a comprehensive combinatorial library of α-helical peptidomimetics, and found that compounds with strongly hydrophobic side chains had the highest affinity. Computational docking studies produced multiple possible binding modes due to the flexibility of both the binding site and the peptidomimetic compounds. We applied a transferred paramagnetic relaxation enhancement experiment to two selected members of the library, and showed that addition of a few experimental constraints enabled definitive identification of unique binding poses. Computational docking results were extremely sensitive to side chain conformations, and slight variations could preclude observation of the experimentally validated poses. Different receptor structures were required for docking simulations to sample the correct pose for the two compounds. The study demonstrated the sensitivity of predicted poses to receptor structure and indicated the importance of experimental verification when docking to a malleable protein-protein interaction surface.
Collapse
|
12
|
Wang C, Shi W, Cai L, Lu L, Wang Q, Zhang T, Li J, Zhang Z, Wang K, Xu L, Jiang X, Jiang S, Liu K. Design, synthesis, and biological evaluation of highly potent small molecule-peptide conjugates as new HIV-1 fusion inhibitors. J Med Chem 2013; 56:2527-39. [PMID: 23458727 DOI: 10.1021/jm3018964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The small molecule fusion inhibitors N-(4-carboxy-3-hydroxyphenyl)-2,5-dimethylpyrrole (NB-2) and N-(3-carboxy-4-hydroxyphenyl)-2,5-dimethylpyrrole (A12) target a hydrophobic pocket of HIV-1 gp41 and have moderate anti-HIV-1 activity. In this paper, we report the design, synthesis, and structure-activity relationship of a group of hybrid molecules in which the pocket-binding domain segment of the C34 peptide was replaced with NB-2 and A12 derivatives. In addition, the synergistic effect between the small molecule and peptide moieties was analyzed, and lead compounds with a novel scaffold were discovered. We found that either the nonpeptide or peptide part alone showed weak activity against HIV-1-mediated cell-cell fusion, but the conjugates properly generated a strong synergistic effect. Among them, conjugates Aoc-βAla-P26 and Noc-βAla-P26 exhibited a low nanomolar IC50 in the cell-cell fusion assay and effectively inhibited T20-sensitive and -resistant HIV-1 strains. Furthermore, the new molecules exhibited better stability against proteinase K digestion than T20 and C34.
Collapse
Affiliation(s)
- Chao Wang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gochin M. A suite of modular fluorescence assays interrogate the human immunodeficiency virus glycoprotein-41 coiled coil and assist in determining binding mechanism of low molecular weight fusion inhibitors. Assay Drug Dev Technol 2012; 10:407-16. [PMID: 22897493 DOI: 10.1089/adt.2012.464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several different segments of the gp41 N-heptad repeat coiled coil have been constructed using N-terminal bipyridyl modification of composite peptides and inducing trimerization by adding ferrous ions. These metallopeptides act as receptors in fluorescence-binding assays with corresponding fluorescently labeled C-peptide probes. The Fe(II) coordination complex quenches C-peptide fluorescence upon binding, and reversal of quenching by a small molecule inhibitor can be used to obtain the inhibitor-binding constant. A total of 10 peptide pairs targeting 25-46 residue segments of the coiled coil were constructed, with C-peptide probes of different lengths and binding affinities. The result is a suite of assays for exploring binding in the mM to nM range to any desired region of the coiled coil, including the hydrophobic pocket (HP), extended regions on either side of the pocket, or a region associated with T20 resistance mutations. These assays are high-throughput ready, and could be used to discover novel compounds binding along various regions of the gp41 coiled coil groove. They were used to evaluate a sub-μM low molecular weight fusion inhibitor, resulting in the finding that the molecule bound specifically to the HP and attained its potency from a low off-rate.
Collapse
Affiliation(s)
- Miriam Gochin
- Department of Basic Science, Touro University-California, Vallejo, California, USA
| |
Collapse
|
14
|
Cai L, Gochin M, Liu K. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design. Curr Top Med Chem 2012; 11:2959-84. [PMID: 22044229 DOI: 10.2174/156802611798808497] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/16/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.
Collapse
Affiliation(s)
- Lifeng Cai
- Beijing Institute of Pharmacology & Toxicology, Haidian District, Beijing 100850, China.
| | | | | |
Collapse
|
15
|
Garg H, Viard M, Jacobs A, Blumenthal R. Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy. Curr Top Med Chem 2012; 11:2947-58. [PMID: 22044225 DOI: 10.2174/156802611798808479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 02/28/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022]
Abstract
HIV gp41 is a metastable protein whose native conformation is maintained in the form of a heterodimer with gp120. The non-covalently associated gp41/gp120 complex forms a trimer on the virus surface. As gp120 engages with HIV's receptor, CD4, and coreceptor, CXCR4 or CCR5, gp41 undergoes several conformational changes resulting in fusion between the viral and cellular membranes. Several lipophilic and amphiphilic domains have been shown to be critical in that process. While the obvious function of gp41 in viral entry is well-established its role in cellular membrane fusion and the link with pathogenesis are only now beginning to appear. Recent targeting of gp41 via fusion inhibitors has revealed an important role of this protein not only in viral entry but also in bystander apoptosis and HIV pathogenesis. Studies by our group and others have shown that the phenomenon of gp41-mediated hemifusion initiates apoptosis in bystander cells and correlates with virus pathogenesis. More interestingly, recent clinical evidence suggests that gp41 mutants arising after Enfuvirtide therapy are associated with CD4 cell increase and immunological benefits. This has in turn been correlated to a decrease in bystander apoptosis in our in vitro as well as in vivo assays. Although a great deal of work has been done to unravel HIV-1 gp41-mediated fusion mechanisms, the factors that regulate gp41-mediated fusion versus hemifusion and the mechanism by which hemifusion initiates bystander apoptosis are not fully understood. Further insight into these issues will open new avenues for drug development making gp41 a critical anti-HIV target both for neutralization and virus attenuation.
Collapse
Affiliation(s)
- Himanshu Garg
- Center of Excellence for Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | | | | | | |
Collapse
|
16
|
Cai L, Pan C, Xu L, Shui Y, Liu K, Jiang S. Interactions between different generation HIV-1 fusion inhibitors and the putative mechanism underlying the synergistic anti-HIV-1 effect resulting from their combination. FASEB J 2011; 26:1018-26. [PMID: 22085645 DOI: 10.1096/fj.11-195289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously reported that the combinatorial use of T20 and T1144, the first and next generations of HIV fusion inhibitors, containing different functional domains resulted in synergistic anti-HIV-1 effect, but this effect diminished when T20 and T1144 were covalently linked together. To elucidate the mechanism underlying this synergistic anti-HIV-1 effect, we studied the interactions between T20 and T1144 either in a mixture state or in a covalently linked state. T20 alone in solution was largely featureless, while T1144 alone was in α-helical trimeric conformation. When mixed in solution, T20 and T1144 showed a loose and transient interaction, with a moderate 10% α-helical content increase, but this interaction was greatly enhanced in the linked state, and T20 and T1144 showed ∼100% α-helical content. These results suggested that the loose and transient interaction between T20 and T1144 may destabilize the T1144 trimer, which makes its otherwise shielded binding sites more accessible to N-terminal heptad repeat (NHR) and increases its associating rate, thus increasing its anti-HIV-1 potency against the temporarily exposed target in NHR and causing the synergistic anti-HIV-1 effect. However, the strong interaction between T20 and T1144 in the covalently linked state may shield their NHR-binding sites, resulting in reduction of the synergistic effect.
Collapse
Affiliation(s)
- Lifeng Cai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
17
|
The gp41 epitope, QARVLAVERY, is highly conserved and a potent inducer of IgA that neutralizes HIV-1 and inhibits viral transcytosis. Mucosal Immunol 2011; 4:539-53. [PMID: 21525865 DOI: 10.1038/mi.2011.21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mucosal surfaces are the predominant site of human immunodeficiency virus (HIV)-1 transmission. For prophylactic approaches to effectively prevent HIV infection and subsequent dissemination, the induction of mucosally relevant protective immunity will be critical. Here, we have characterized the antibody (Ab) response generated by a highly conserved gp41epitope, QARVLAVERY, in an optimized immunization model that elicits potent epitope-specific Abs in the serum, vaginal washes, and fecal secretions of immunized mice. Our results show that QARVLAVERY is indeed a potent inducer of IgA and importantly, QARVLAVERY-specific IgA was effective in neutralizing HIV and inhibiting viral transcytosis. Intriguingly, QARVLAVERY also generated an approximate 1:1 ratio of IgG:IgA in the serum of immunized mice, independent of the delivery regimen and produced early systemic IgA, even before IgG. In light of the significantly high IgA induction by QARVLAVERY and the functionality of epitope-specific Abs in the inhibition of HIV infection and transcytosis, QARVLAVERY is an attractive epitope to be considered in mucosal vaccination strategies against HIV.
Collapse
|
18
|
Cai L, Jiang S. Development of peptide and small-molecule HIV-1 fusion inhibitors that target gp41. ChemMedChem 2011; 5:1813-24. [PMID: 20845360 DOI: 10.1002/cmdc.201000289] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been 25 years since the development of the first efficient HIV-1/AIDS treatment. Scientists now know more about the HIV-1 infection life cycle, and more than 30 antiretroviral drugs have been developed, including HIV-1 fusion inhibitors. Fundamental work was begun in the early 1990s and led to the development of a novel class of anti-HIV-1 drugs, culminating in a peptide known as T20, which is currently the only HIV-1 fusion inhibitor approved by the US Food and Drug Administration. However, more work needs to be done to perfect the development of peptide and small-molecule HIV fusion inhibitors, particularly those that target gp41. Herein we present a brief overview of the development of this class of anti-HIV-1 drug by focusing on the achievements, challenges, and lessons learned. We cite hallmark studies of the past and comment on future drug development.
Collapse
Affiliation(s)
- Lifeng Cai
- Department of Medicinal Chemistry, Beijing Institute of Pharmacology & Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China.
| | | |
Collapse
|
19
|
Gochin M, Cai L. The role of amphiphilicity and negative charge in glycoprotein 41 interactions in the hydrophobic pocket. J Med Chem 2009; 52:4338-44. [PMID: 19534533 DOI: 10.1021/jm900190q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrophobic pocket within the coiled coil domain of HIV-1 gp41 is considered to be a hot-spot suitable for small molecule intervention of fusion, although so far it has yielded only microM inhibitors. Previous peptide studies have identified specific hydrophobic interactions and a Lys-Asp salt bridge as contributing to binding affinity in the pocket. Negative charge appears to be critical for activity of small molecules. We have examined the role of charge and amphiphilic character in the interaction by studying a series of short pocket binding peptides differing in charge, helical content, and in the presence or absence of the Lys-Asp salt bridge, and a series of fatty acid salts with varying charge and hydrocarbon length. Quantitative binding analysis revealed that long-range electrostatic forces and a greasy nonspecific hydrophobic interaction were sufficient for microM potency. The results suggest that an extended interaction site may be necessary for higher potency. We examined a region of the coiled coil immediately C-terminal to the pocket and found that specific salt bridge and hydrogen bond networks may reside in this region. Negatively charged groups extended toward or beyond the C-terminus of the pocket could therefore result in improved low molecular weight fusion inhibitors.
Collapse
Affiliation(s)
- Miriam Gochin
- Department of Basic Sciences, Touro University-California, Vallejo, California 94592, USA.
| | | |
Collapse
|