1
|
Barrett MP. Transforming the chemotherapy of human African trypanosomiasis. Clin Microbiol Rev 2025:e0015323. [PMID: 39772631 DOI: 10.1128/cmr.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
SUMMARYPrior to 2019, when the orally available drug fexinidazole began its clinical use, the treatment of human African trypanosomiasis (HAT) was complex and unsatisfactory for many reasons. Two sub-species of the Trypanosoma brucei parasite are responsible for HAT, namely the rhodesiense form found in East and Southern Africa and the gambiense form found in Central and West Africa. Diseases caused by both forms manifest in two stages: stage 1 before and stage 2 after central nervous system involvement. Prior to 2019, different drugs were required for each of the two parasite sub-species at each stage. Gambiense disease required pentamidine or nifurtimox-eflornithine combination therapy, while for rhodesiense disease, suramin or melarsoprol was given for stages 1 and 2, respectively. These drugs all suffered complications including protracted administration regimens involving multiple injections with drug-induced adverse effects common. Today, a single drug, fexinidazole, can be given orally in most cases for both diseases at either stage. Another compound, acoziborole, effective in both stages 1 and 2 gambiense disease with a single dosing is anticipated to become available within a few years. Moreover, the recent engagement of multilateral organizations in seeking other compounds that could be used in HAT therapy has also been successful, and a rich vein of new trypanocides has been discovered. Here, the clinical use, modes of action, and resistance risks for drugs used against HAT are discussed.
Collapse
Affiliation(s)
- Michael P Barrett
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Patel S, Naik L, Das M, Nayak DK, Dandsena PK, Mishra A, Kumar A, Dirisala VR, Mishra A, Das S, Singh R, Behura A, Dhiman R. Furamidine-induced autophagy exerts an anti-mycobacterial effect in a SIRT1-pAMPK-FOXO3a-dependent manner by elevation of intracellular Ca 2+ level expression. Microbiol Res 2025; 290:127976. [PMID: 39591744 DOI: 10.1016/j.micres.2024.127976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), continues to be a major contributor to global mortality rates. To effectively combat this pandemic, TB control has to be enhanced in several areas, including point-of-care diagnostics, shorter and safer drug regimens, and preventative vaccination. The latest findings have highlighted autophagy as a host-defense mechanism that eradicates many invading bacteria, including M. tb. Thus, novel approaches like the stimulation of autophagy using various pharmaceutical drugs can be undertaken to deal with this noxious pathogen. The present study has been formulated to evaluate the anti-mycobacterial potential of Furamidine, a DNA minor groove binder (MGB). Initially, a non-cytotoxic concentration of Furamidine (10 µM) was used to assess its impact on the intracellular persistence of mycobacteria in differentiated THP-1 (dTHP-1) cells. Furamidine treatment compromised intracellular mycobacterial growth compared to control cells. Autophagy, a well-known host-defensive strategy, was investigated as a possible contributor to revealing the mechanism of action. Multiparametric approaches such as LC3-I to II conversion, protein level expression of different autophagic markers, and MDC staining were employed to study autophagic response that conclusively suggested the autophagy induction potential of Furamidine in dTHP-1 cells. Further, elevated LC3-II expression and increased autophagic vacuole accumulation under Baf-A1 treatment demonstrated the positive regulation of autophagic flux upon Furamidine treatment. Mechanistic investigations showed increased intracellular calcium (Ca2+) level expression, SIRT1, pAMPK, and FOXO3a activation upon its treatment. Inhibition of Ca2+ level expression suppressed Ca2+-mediated-FOXO3a level in Furamidine-treated cells. Furthermore, administering various inhibitors hampered the Furamidine-induced autophagy that impacted intracellular mycobacteria clearance. These results conclude that Furamidine triggered the Ca2+/pAMPK/SIRT1/FOXO3a pathway, causing less mycobacterial load in dTHP-1 cells.
Collapse
Affiliation(s)
- Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Pramathesh Kumar Dandsena
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur District, AP-522213, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad, Haryana 121001, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
3
|
Soto-Sánchez J, Garza-Treviño G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics 2024; 16:1239. [PMID: 39458571 PMCID: PMC11510106 DOI: 10.3390/pharmaceutics16101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Neglected tropical diseases (NTDs), including leishmaniasis, trypanosomiasis, and schistosomiasis, impose a significant public health burden, especially in developing countries. Despite control efforts, treatment remains challenging due to drug resistance and lack of effective therapies. Objective: This study aimed to synthesize the current research on the combination therapy and phytochemical-loaded nanosystems, which have emerged as promising strategies to enhance treatment efficacy and safety. Methods/Results: In the present review, we conducted a systematic search of the literature and identified several phytochemicals that have been employed in this way, with the notable efficacy of reducing the parasite load in the liver and spleen in cases of visceral leishmaniasis, as well as lesion size in cutaneous leishmaniasis. Furthermore, they have a synergistic effect against Trypanosoma brucei rhodesiense rhodesain; reduce inflammation, parasitic load in the myocardium, cardiac hypertrophy, and IL-15 production in Chagas disease; and affect both mature and immature stages of Schistosoma mansoni, resulting in improved outcomes compared to the administration of phytochemicals alone or with conventional drugs. Moreover, the majority of the combinations studied demonstrated enhanced solubility, efficacy, and selectivity, as well as increased immune response and reduced cytotoxicity. Conclusions: These formulations appear to offer significant therapeutic benefits, although further research is required to validate their clinical efficacy in humans and their potential to improve treatment outcomes in affected populations.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| | - Gilberto Garza-Treviño
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| |
Collapse
|
4
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
5
|
Chen W, Zou R, Mei Y, Li J, Xuan Y, Cui B, Zou J, Wang J, Lin S, Zhang Z, Wang C. Structural insights into drug transport by an aquaglyceroporin. Nat Commun 2024; 15:3985. [PMID: 38734677 PMCID: PMC11088622 DOI: 10.1038/s41467-024-48445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.
Collapse
Affiliation(s)
- Wanbiao Chen
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 581055, China
| | - Rongfeng Zou
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen, 518000, China
| | - Yi Mei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Jiawei Li
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 581055, China
- Department of Geriatric Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yumi Xuan
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 581055, China
| | - Bing Cui
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 581055, China
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Junjie Zou
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen, 518000, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Shaoquan Lin
- Centre for Polymers in Medicine, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 581055, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China.
| | - Chongyuan Wang
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 581055, China.
| |
Collapse
|
6
|
Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes. Microbiol Mol Biol Rev 2024; 88:e0004223. [PMID: 38099688 PMCID: PMC10966946 DOI: 10.1128/mmbr.00042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
SUMMARYAcidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
8
|
Audshasai T, Coles JA, Panagiotou S, Khandaker S, Scales HE, Kjos M, Baltazar M, Vignau J, Brewer JM, Kadioglu A, Yang M. Streptococcus pneumoniae Rapidly Translocate from the Nasopharynx through the Cribriform Plate to Invade the Outer Meninges. mBio 2022; 13:e0102422. [PMID: 35924840 PMCID: PMC9426477 DOI: 10.1128/mbio.01024-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
The entry routes and translocation mechanisms of microorganisms or particulate materials into the central nervous system remain obscure We report here that Streptococcus pneumoniae (pneumococcus), or polystyrene microspheres of similar size, appear in the meninges of the dorsal cortex of mice within minutes of inhaled delivery. Recovery of viable bacteria from dissected tissue and fluorescence microscopy show that up to at least 72 h, pneumococci and microspheres were predominantly found in the outer of the two meninges: the pachymeninx. No pneumococci were found in blood or cerebrospinal fluid. Intravital imaging through the skull, aligned with flow cytometry showed recruitment and activation of LysM+ cells in the dorsal pachymeninx at 5 and 10 hours following intranasal infection. Imaging of the cribriform plate suggested that both pneumococci and microspheres entered through the foramina via an inward flow of fluid connecting the nose to the pachymeninx. Our findings bring new insight into the varied mechanisms of pneumococcal invasion of the central nervous system, but they are also pertinent to the delivery of drugs to the brain and the entry of airborne particulate matter into the cranium. IMPORTANCE Using two-photon imaging, we show that pneumococci translocate from the nasopharynx to the dorsal meninges of a mouse in the absence of any bacteria found in blood or cerebrospinal fluid. Strikingly, this takes place within minutes of inhaled delivery of pneumococci, suggesting the existence of an inward flow of fluid connecting the nasopharynx to the meninges, rather than a receptor-mediated mechanism. We also show that this process is size dependent, as microspheres of the same size as pneumococci can translocate along the same pathway, while larger size microspheres cannot. Furthermore, we describe the host response to invasion of the outer meninges. Our study provides a completely new insight into the key initial events that occur during the translocation of pneumococci directly from the nasal cavity to the meninges, with relevance to the development of intranasal drug delivery systems and the investigations of brain damage caused by inhaled air pollutants.
Collapse
Affiliation(s)
- Teerawit Audshasai
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Jonathan A. Coles
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Stavros Panagiotou
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Shadia Khandaker
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hannah E. Scales
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Murielle Baltazar
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Julie Vignau
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Université de Nantes, Nantes, France
| | - James M. Brewer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Aras Kadioglu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Marie Yang
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Zhang B, Jin Y, Zhang L, Wang H, Wang X. Pentamidine Ninety Years on: the Development and Applications of Pentamidine and its Analogs. Curr Med Chem 2022; 29:4602-4609. [PMID: 35289252 DOI: 10.2174/0929867329666220314121446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/25/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
Pentamidine, an FDA-approved human drug for many protozoal infections, was initially synthesized in the late 1930s and first reported to be curative for parasitosis in the 1940s. After ninety years of sometimes quiet growth, pentamidine and its derivatives have gone far beyond antibacterial agents, including but not limited to the ligands of DNA minor groove, modulators of PPIs (protein-protein interactions) of the transmembrane domain 5 of lateral membrane protein 1, and the blockers of the SARS-CoV-2 3a channel. This mini review highlights the development and applications of pentamidine and its analogs, aiming to provide insights for further developing pentamidine derivatives in the following decades.
Collapse
Affiliation(s)
- Bo Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China;
- Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yushan Jin
- Department of Immunology and Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3G3, Canada
| | - Lei Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China;
- Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
10
|
Quintana JF, Field MC. Evolution, function and roles in drug sensitivity of trypanosome aquaglyceroporins. Parasitology 2021; 148:1137-1142. [PMID: 33602349 PMCID: PMC8311954 DOI: 10.1017/s0031182021000354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Aquaglyceroporins (AQPs) are membrane proteins that function in osmoregulation and the uptake of low molecular weight solutes, in particular glycerol and urea. The AQP family is highly conserved, with two major subfamilies having arisen very early in prokaryote evolution and retained by eukaryotes. A complex evolutionary history indicates multiple lineage-specific expansions, losses and not uncommonly a complete loss. Consequently, the AQP family is highly evolvable and has been associated with significant events in life on Earth. In the African trypanosomes, a role for the AQP2 paralogue, in sensitivity to two chemotherapeutic agents, pentamidine and melarsoprol, is well established, albeit with the mechanisms for cell entry and resistance unclear until very recently. Here, we discuss AQP evolution, structure and mechanisms by which AQPs impact drug sensitivity, suggesting that AQP2 stability is highly sensitive to mutation while serving as the major uptake pathway for pentamidine.
Collapse
Affiliation(s)
- Juan F. Quintana
- Wellcome Centre for Integrative Parasitology (WCIP), Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, GlasgowG61 1QH, UK
| | - Mark C. Field
- School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005Ceske Budejovice, Czech Republic
| |
Collapse
|
11
|
Carruthers LV, Munday JC, Ebiloma GU, Steketee P, Jayaraman S, Campagnaro GD, Ungogo MA, Lemgruber L, Donachie AM, Rowan TG, Peter R, Morrison LJ, Barrett MP, De Koning HP. Diminazene resistance in Trypanosoma congolense is not caused by reduced transport capacity but associated with reduced mitochondrial membrane potential. Mol Microbiol 2021; 116:564-588. [PMID: 33932053 DOI: 10.1111/mmi.14733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 01/27/2023]
Abstract
Trypanosoma congolense is a principal agent causing livestock trypanosomiasis in Africa, costing developing economies billions of dollars and undermining food security. Only the diamidine diminazene and the phenanthridine isometamidium are regularly used, and resistance is widespread but poorly understood. We induced stable diminazene resistance in T. congolense strain IL3000 in vitro. There was no cross-resistance with the phenanthridine drugs, melaminophenyl arsenicals, oxaborole trypanocides, or with diamidine trypanocides, except the close analogs DB829 and DB75. Fluorescence microscopy showed that accumulation of DB75 was inhibited by folate. Uptake of [3 H]-diminazene was slow with low affinity and partly but reciprocally inhibited by folate and by competing diamidines. Expression of T. congolense folate transporters in diminazene-resistant Trypanosoma brucei brucei significantly sensitized the cells to diminazene and DB829, but not to oxaborole AN7973. However, [3 H]-diminazene transport studies, whole-genome sequencing, and RNA-seq found no major changes in diminazene uptake, folate transporter sequence, or expression. Instead, all resistant clones displayed a moderate reduction in the mitochondrial membrane potential Ψm. We conclude that diminazene uptake in T. congolense proceed via multiple low affinity mechanisms including folate transporters; while resistance is associated with a reduction in Ψm it is unclear whether this is the primary cause of the resistance.
Collapse
Affiliation(s)
- Lauren V Carruthers
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Pieter Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharth Jayaraman
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marzuq A Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Anne-Marie Donachie
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tim G Rowan
- Global Alliance for Livestock Veterinary Medicine, Pentlands Science Park, Edinburgh, UK
| | - Rose Peter
- Global Alliance for Livestock Veterinary Medicine, Pentlands Science Park, Edinburgh, UK
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael P Barrett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
DNA binding site kinetics of a large antiviral polyamide. Biochimie 2021; 185:146-154. [PMID: 33794342 DOI: 10.1016/j.biochi.2021.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 01/17/2023]
Abstract
Polyamides (PAs) are powerful DNA ligands that can bind the minor groove of DNA with high affinity and specificity. While the characterization of PA-DNA behavior has focused principally on hairpin PAs 6-8 rings in size, there is increasing evidence that their behavior does not necessarily reflect the complexities that are emerging from studies of larger hairpin PAs, particularly concerning sequence mismatch tolerance and observed but unaddressed high PA-target site binding stoichiometries. To explore these complexities in more detail, kinetics studies of binding a large anti-HPV hairpin polyamide to an isolated DNA recognition site are described. Using a fluorescence assay, two distinct binding phases are observed for the first time in hairpin PA literature. PA14 concentration dependence analysis indicates that the faster binding event is diffusion-controlled; the apparent, second event is significantly slower (350-1500 fold). Both association phases are sampled in 1:1 complexes, consistent with cooperative binding of two PA molecules even under this condition. Fitting of the slow phase to a biexponential model yields two λon,app that differ by 4-5-fold, which is consistent with the high mismatch tolerance and binding site stoichiometry previously observed. A/T patterns in the recognition sequence do not affect these decay constants significantly. Dissociation decay constants are among the slowest reported for hairpin PAs (10-3 s-1), independent of A/T pattern, and may point to the efficacy of PA14 as an antiviral.
Collapse
|
13
|
Johansson NG, Turku A, Vidilaseris K, Dreano L, Khattab A, Ayuso Pérez D, Wilkinson A, Zhang Y, Tamminen M, Grazhdankin E, Kiriazis A, Fishwick CWG, Meri S, Yli-Kauhaluoma J, Goldman A, Boije af Gennäs G, Xhaard H. Discovery of Membrane-Bound Pyrophosphatase Inhibitors Derived from an Isoxazole Fragment. ACS Med Chem Lett 2020; 11:605-610. [PMID: 32292570 PMCID: PMC7153278 DOI: 10.1021/acsmedchemlett.9b00537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
![]()
Membrane-bound
pyrophosphatases (mPPases) regulate energy homeostasis
in pathogenic protozoan parasites and lack human homologues, which
makes them promising targets in e.g. malaria. Yet
only few nonphosphorus inhibitors have been reported so far. Here,
we explore an isoxazole fragment hit, leading to the discovery of
small mPPase inhibitors with 6–10 μM IC50 values
in the Thermotoga maritima test system. Promisingly,
the compounds retained activity against Plasmodium falciparum mPPase in membranes and inhibited parasite growth.
Collapse
Affiliation(s)
- Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Keni Vidilaseris
- Department of Biosciences, Division of Biochemistry, University of Helsinki, P.O. Box 56
(Viikinkaari 9), FI-00014 Helsinki, Finland
| | - Loïc Dreano
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Ayman Khattab
- Malaria Research Laboratory, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, P.O. Box 21
(Haartmaninkatu 3), FI-00014 Helsinki, Finland
| | - Daniel Ayuso Pérez
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Aaron Wilkinson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Yuezhou Zhang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Matti Tamminen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Evgeni Grazhdankin
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Colin W. G. Fishwick
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Seppo Meri
- Malaria Research Laboratory, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, P.O. Box 21
(Haartmaninkatu 3), FI-00014 Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Adrian Goldman
- Department of Biosciences, Division of Biochemistry, University of Helsinki, P.O. Box 56
(Viikinkaari 9), FI-00014 Helsinki, Finland
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| |
Collapse
|
14
|
Dickie EA, Giordani F, Gould MK, Mäser P, Burri C, Mottram JC, Rao SPS, Barrett MP. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop Med Infect Dis 2020; 5:tropicalmed5010029. [PMID: 32092897 PMCID: PMC7157223 DOI: 10.3390/tropicalmed5010029] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
The twentieth century ended with human African trypanosomiasis (HAT) epidemics raging across many parts of Africa. Resistance to existing drugs was emerging, and many programs aiming to contain the disease had ground to a halt, given previous success against HAT and the competing priorities associated with other medical crises ravaging the continent. A series of dedicated interventions and the introduction of innovative routes to develop drugs, involving Product Development Partnerships, has led to a dramatic turnaround in the fight against HAT caused by Trypanosoma brucei gambiense. The World Health Organization have been able to optimize the use of existing tools to monitor and intervene in the disease. A promising new oral medication for stage 1 HAT, pafuramidine maleate, ultimately failed due to unforeseen toxicity issues. However, the clinical trials for this compound demonstrated the possibility of conducting such trials in the resource-poor settings of rural Africa. The Drugs for Neglected Disease initiative (DNDi), founded in 2003, has developed the first all oral therapy for both stage 1 and stage 2 HAT in fexinidazole. DNDi has also brought forward another oral therapy, acoziborole, potentially capable of curing both stage 1 and stage 2 disease in a single dosing. In this review article, we describe the remarkable successes in combating HAT through the twenty first century, bringing the prospect of the elimination of this disease into sight.
Collapse
Affiliation(s)
- Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Matthew K. Gould
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
| | - Christian Burri
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
- University of Basel, Petersplatz 1, 4000 Basel, Switzerland
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK;
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA;
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
- Correspondence:
| |
Collapse
|
15
|
P De Koning H. The Drugs of Sleeping Sickness: Their Mechanisms of Action and Resistance, and a Brief History. Trop Med Infect Dis 2020; 5:E14. [PMID: 31963784 PMCID: PMC7157662 DOI: 10.3390/tropicalmed5010014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
With the incidence of sleeping sickness in decline and genuine progress being made towards the WHO goal of eliminating sleeping sickness as a major public health concern, this is a good moment to evaluate the drugs that 'got the job done': their development, their limitations and the resistance that the parasites developed against them. This retrospective looks back on the remarkable story of chemotherapy against trypanosomiasis, a story that goes back to the very origins and conception of chemotherapy in the first years of the 20 century and is still not finished today.
Collapse
Affiliation(s)
- Harry P De Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
16
|
Liu L, Wang F, Tong Y, Li LF, Liu Y, Gao WQ. Pentamidine inhibits prostate cancer progression via selectively inducing mitochondrial DNA depletion and dysfunction. Cell Prolif 2019; 53:e12718. [PMID: 31721355 PMCID: PMC6985668 DOI: 10.1111/cpr.12718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 10/11/2019] [Indexed: 01/28/2023] Open
Abstract
Objectives We investigated the anti‐cancer activity of pentamidine, an anti‐protozoal cationic aromatic diamidine drug, in prostate cancer cells and aimed to provide valuable insights for improving the efficacy of prostate cancer treatment. Materials and methods Prostate cancer cell lines and epithelial RWPE‐1 cells were used in the study. Cell viability, wound‐healing, transwell and apoptosis assays were examined to evaluate the influences of pentamidine in vitro. RNA‐seq and qPCR were performed to analyse changes in gene transcription levels upon pentamidine treatment. Mitochondrial changes were assessed by measuring mitochondrial DNA content, morphology, membrane potential, cellular glucose uptake, ATP production and ROS generation. Nude mouse xenograft models were used to test anti‐tumour effects of pentamidine in vivo. Results Pentamidine exerted profound inhibitory effects on proliferation, colony formation, migration and invasion of prostate cancer cells. In addition, the drug suppressed growth of xenograft tumours without exhibiting any obvious toxicity in nude mice. Mechanistically, pentamidine caused mitochondrial DNA content reduction and induced mitochondrial morphological changes, mitochondrial membrane potential dissipation, ATP level reduction, ROS production elevation and apoptosis in prostate cancer cells. Conclusions Pentamidine can efficiently suppress prostate cancer progression and may serve as a novel mitochondria‐targeted therapeutic agent for prostate cancer.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Tong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Feng Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Popov AB, Stolić I, Krstulović L, Taylor MC, Kelly JM, Tomić S, Tumir L, Bajić M, Raić-Malić S. Novel symmetric bis-benzimidazoles: Synthesis, DNA/RNA binding and antitrypanosomal activity. Eur J Med Chem 2019; 173:63-75. [PMID: 30986572 DOI: 10.1016/j.ejmech.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The novel benzimidazol-2-yl-fur-5-yl-(1,2,3)-triazolyl dimeric series with aliphatic and aromatic central linkers was successfully prepared with the aim of assessing binding affinity to DNA/RNA and antitrypanosomal activity. UV-Visible spectroscopy, thermal denaturation showed interaction of heterocyclic bis-amidines with ctDNA. Circular dichroism studies indicated uniform orientation of heterocyclic bis-amidines along the chiral double helix axis, revealing minor groove binding as the dominant binding mode. The amidino fragment and 1,4-bis(oxymethylene)phenyl spacer were the main determinants of activity against Trypanosoma brucei. The bis-benzimidazole imidazoline 15c, which had antitrypanosomal potency in the submicromolar range and DNA interacting properties, emerged as a candidate for further structural optimization to obtain more effective agents to combat trypanosome infections.
Collapse
Affiliation(s)
- A Bistrović Popov
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR-10000, Zagreb, Croatia
| | - I Stolić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000, Zagreb, Croatia
| | - L Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000, Zagreb, Croatia
| | - M C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - J M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - S Tomić
- Division of Organic Chemistry and Biochemistry, Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - L Tumir
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - M Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000, Zagreb, Croatia
| | - S Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR-10000, Zagreb, Croatia.
| |
Collapse
|
18
|
A New Generation of Minor-Groove-Binding-Heterocyclic Diamidines That Recognize G·C Base Pairs in an AT Sequence Context. Molecules 2019; 24:molecules24050946. [PMID: 30866557 PMCID: PMC6429135 DOI: 10.3390/molecules24050946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
We review the preparation of new compounds with good solution and cell uptake properties that can selectively recognize mixed A·T and G·C bp sequences of DNA. Our underlying aim is to show that these new compounds provide important new biotechnology reagents as well as a new class of therapeutic candidates with better properties and development potential than other currently available agents. In this review, entirely different ways to recognize mixed sequences of DNA by modifying AT selective heterocyclic cations are described. To selectively recognize a G·C base pair an H-bond acceptor must be incorporated with AT recognizing groups as with netropsin. We have used pyridine, azabenzimidazole and thiophene-N-methylbenzimidazole GC recognition units in modules crafted with both rational design and empirical optimization. These modules can selectively and strongly recognize a single G·C base pair in an AT sequence context. In some cases, a relatively simple change in substituents can convert a heterocyclic module from AT to GC recognition selectivity. Synthesis and DNA interaction results for initial example lead modules are described for single G·C base pair recognition compounds. The review concludes with a description of the initial efforts to prepare larger compounds to recognize sequences of DNA with more than one G·C base pairs. The challenges and initial successes are described along with future directions.
Collapse
|
19
|
Ismail MA. An efficient synthesis of 5′-(4-cyanophenyl)-2,2′-bifuran-5-carbonitrile and analogues. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/030823406779173334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
5′-(4-Cyanophenyl)-2,2′-bifuran-5-carbonitrile (6a) was prepared by two approaches. The first approach involves four steps, employs Stille coupling conditions utilising 2-tributylstannylfuran and 5-bromofuran-2-carboxaldehyde to furnish 3a in excellent yield. Oxime formation of 3a followed by acetic anhdride induced-dehydration gives the carbonitrile 4a, which on treatment with N-bromosuccinimide furnished 5a. A subsequent Suzuki coupling of 5a with 4-cyanophenylboronic acid gave 6a in good yield. The second approach used to prepare 6a involves cyanation of bromo-compound 10a with Cu(I)CN in DMF. Oligo-chalcophenes 7a–d were obtained via hexabutylditin-mediated homocoupling of respective brominated precursors 5a–d. Nitro-containing bichalcophenes 14 and 15 were obtained from the 1,4-dicarbonyl compound 13.
Collapse
Affiliation(s)
- Mohamed A. Ismail
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
20
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
21
|
Field MC, Horn D, Fairlamb AH, Ferguson MAJ, Gray DW, Read KD, De Rycker M, Torrie LS, Wyatt PG, Wyllie S, Gilbert IH. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol 2017; 15:217-231. [PMID: 28239154 PMCID: PMC5582623 DOI: 10.1038/nrmicro.2016.193] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WHO recognizes human African trypanosomiasis, Chagas disease and the leishmaniases as neglected tropical diseases. These diseases are caused by parasitic trypanosomatids and range in severity from mild and self-curing to near invariably fatal. Public health advances have substantially decreased the effect of these diseases in recent decades but alone will not eliminate them. In this Review, we discuss why new drugs against trypanosomatids are required, approaches that are under investigation to develop new drugs and why the drug discovery pipeline remains essentially unfilled. In addition, we consider the important challenges to drug discovery strategies and the new technologies that can address them. The combination of new drugs, new technologies and public health initiatives is essential for the management, and hopefully eventual elimination, of trypanosomatid diseases from the human population.
Collapse
Affiliation(s)
- Mark C Field
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Alan H Fairlamb
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - David W Gray
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Kevin D Read
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Leah S Torrie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Paul G Wyatt
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
22
|
Synthesis, biological characterisation and structure activity relationships of aromatic bisamidines active against Plasmodium falciparum. Eur J Med Chem 2017; 127:22-40. [DOI: 10.1016/j.ejmech.2016.12.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/27/2023]
|
23
|
Antileishmanial Mechanism of Diamidines Involves Targeting Kinetoplasts. Antimicrob Agents Chemother 2016; 60:6828-6836. [PMID: 27600039 DOI: 10.1128/aac.01129-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/28/2016] [Indexed: 02/08/2023] Open
Abstract
Leishmaniasis is a disease caused by pathogenic Leishmania parasites; current treatments are toxic and expensive, and drug resistance has emerged. While pentamidine, a diamidine-type compound, is one of the treatments, its antileishmanial mechanism of action has not been investigated in depth. Here we tested several diamidines, including pentamidine and its analog DB75, against Leishmania donovani and elucidated their antileishmanial mechanisms. We identified three promising new antileishmanial diamidine compounds with 50% effective concentrations (EC50s) of 3.2, 3.4, and 4.5 μM, while pentamidine and DB75 exhibited EC50s of 1.46 and 20 μM, respectively. The most potent antileishmanial inhibitor, compound 1, showed strong DNA binding properties, with a shift in the melting temperature (ΔTm) of 24.2°C, whereas pentamidine had a ΔTm value of 2.1°C, and DB75 had a ΔTm value of 7.7°C. Additionally, DB75 localized in L. donovani kinetoplast DNA (kDNA) and mitochondria but not in nuclear DNA (nDNA). For 2 new diamidines, strong localization signals were observed in kDNA at 1 μM, and at higher concentrations, the signals also appeared in nuclei. All tested diamidines showed selective and dose-dependent inhibition of kDNA, but not nDNA, replication, likely by inhibiting L. donovani topoisomerase IB. Overall, these results suggest that diamidine antileishmanial compounds exert activity by accumulating toward and blocking replication of parasite kDNA.
Collapse
|
24
|
Abstract
Pathogenic animal trypanosomes affecting livestock have represented a major constraint to agricultural development in Africa for centuries, and their negative economic impact is increasing in South America and Asia. Chemotherapy and chemoprophylaxis represent the main means of control. However, research into new trypanocides has remained inadequate for decades, leading to a situation where the few compounds available are losing efficacy due to the emergence of drug-resistant parasites. In this review, we provide a comprehensive overview of the current options available for the treatment and prophylaxis of the animal trypanosomiases, with a special focus on the problem of resistance. The key issues surrounding the main economically important animal trypanosome species and the diseases they cause are also presented. As new investment becomes available to develop improved tools to control the animal trypanosomiases, we stress that efforts should be directed towards a better understanding of the biology of the relevant parasite species and strains, to identify new drug targets and interrogate resistance mechanisms.
Collapse
|
25
|
Stephens DC, Kim HM, Kumar A, Farahat AA, Boykin DW, Poon GM. Pharmacologic efficacy of PU.1 inhibition by heterocyclic dications: a mechanistic analysis. Nucleic Acids Res 2016; 44:4005-13. [PMID: 27079976 PMCID: PMC4872103 DOI: 10.1093/nar/gkw229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/29/2016] [Indexed: 12/11/2022] Open
Abstract
Heterocyclic dications are receiving increasing attention as targeted inhibitors of transcription factors. While many dications act as purely competitive inhibitors, some fail to displace protein efficiently at drug concentrations expected to saturate their DNA target. To achieve a mechanistic understanding of these non-competitive effects, we used a combination of dications, which are intrinsically fluorescent and spectrally-separated fluorescently labeled DNA to dissect complex interactions in multi-component drug/DNA/protein systems. Specifically, we interrogated site-specific binding by the transcription factor PU.1 and its perturbation by DB270, a furan-bisbenzimidazole-diamidine that strongly targets PU.1 binding sites yet poorly inhibits PU.1/DNA complexes. By titrating DB270 and/or cyanine-labeled DNA with protein or unlabeled DNA, and following the changes in their fluorescence polarization, we found direct evidence that DB270 bound protein independently of their mutual affinities for sequence-specific DNA. Each of the three species competed for the other two, and this interplay of mutually dependent equilibria abrogated DB270's inhibitory activity, which was substantively restored under conditions that attenuated DB270/PU.1 binding. PU.1 binding was consistent with DB270's poor inhibitory efficacy of PU.1 in vivo, while its isosteric selenophene analog (DB1976), which did not bind PU.1 and strongly inhibited the PU.1/DNA complex in vitro, fully antagonized PU.1-dependent transactivation in vivo.
Collapse
Affiliation(s)
| | - Hye Mi Kim
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Gregory M Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
26
|
An evaluation of Minor Groove Binders as anti-Trypanosoma brucei brucei therapeutics. Eur J Med Chem 2016; 116:116-125. [PMID: 27060763 PMCID: PMC4872591 DOI: 10.1016/j.ejmech.2016.03.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022]
Abstract
A series of 32 structurally diverse MGBs, derived from the natural product distamycin, was evaluated for activity against Trypanosoma brucei brucei. Four compounds have been found to possess significant activity, in the nanomolar range, and represent hits for further optimisation towards novel treatments for Human and Animal African Trypanosomiases. Moreover, SAR indicates that the head group linking moiety is a significant modulator of biological activity.
Collapse
|
27
|
Yang G, Zhu W, Wang Y, Huang G, Byun S, Choi G, Li K, Huang Z, Docampo R, Oldfield E, No JH. In Vitro and in Vivo Activity of Multitarget Inhibitors against Trypanosoma brucei. ACS Infect Dis 2015; 1:388-98. [PMID: 26295062 PMCID: PMC4539249 DOI: 10.1021/acsinfecdis.5b00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We tested a series of amidine and related compounds against Trypanosoma brucei. The most active compound was a biphenyldiamidine that had an EC 50 of 7.7 nM against bloodstream-form parasites. There was little toxicity against two human cell lines with CC 50 > 100 μM. There was also good in vivo activity in a mouse model of infection with 100% survival at 3 mg/kg i.p. The most potent lead blocked replication of kinetoplast DNA (k-DNA), but not nuclear DNA, in the parasite. Some compounds also inhibited the enzyme farnesyl diphosphate synthase (FPPS), and some were uncouplers of oxidative phosphorylation. We developed a computational model for T. brucei cell growth inhibition (R (2) = 0.76) using DNA ΔT m values for inhibitor binding combined with T. brucei FPPS IC 50 values. Overall, the results suggest that it may be possible to develop multitarget drug leads against T. brucei that act by inhibiting both k-DNA replication and isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Gyongseon Yang
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
- Interdisciplinary Programs of Functional Genomics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Wei Zhu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yang Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Sooyoung Byun
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| | - Gahee Choi
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| | - Kai Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zhuoli Huang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joo Hwan No
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| |
Collapse
|
28
|
Kaiser M, Mäser P, Tadoori LP, Ioset JR, Brun R. Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning. PLoS One 2015; 10:e0135556. [PMID: 26270335 PMCID: PMC4535766 DOI: 10.1371/journal.pone.0135556] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
Neglected tropical diseases cause significant morbidity and mortality and are a source of poverty in endemic countries. Only a few drugs are available to treat diseases such as leishmaniasis, Chagas’ disease, human African trypanosomiasis and malaria. Since drug development is lengthy and expensive, a drug repurposing strategy offers an attractive fast-track approach to speed up the process. A set of 100 registered drugs with drug repositioning potential for neglected diseases was assembled and tested in vitro against four protozoan parasites associated with the aforementioned diseases. Several drugs and drug classes showed in vitro activity in those screening assays. The results are critically reviewed and discussed in the perspective of a follow-up drug repositioning strategy where R&D has to be addressed with limited resources.
Collapse
Affiliation(s)
- Marcel Kaiser
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Pascal Mäser
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | - Reto Brun
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
de Macêdo JP, Schumann Burkard G, Niemann M, Barrett MP, Vial H, Mäser P, Roditi I, Schneider A, Bütikofer P. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei. PLoS Pathog 2015; 11:e1004875. [PMID: 25946070 PMCID: PMC4422618 DOI: 10.1371/journal.ppat.1004875] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 04/13/2015] [Indexed: 01/27/2023] Open
Abstract
Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug action or targeting. Human and animal trypanosomiases caused by Trypanosoma brucei parasites represent major burdens to human welfare and agricultural development in rural sub-Saharan Africa. Although the numbers of infected humans have decreased continuously during the last decades, emerging resistance and adverse side effects against commonly used drugs require an urgent need for the identification of novel drug targets and the development of new drugs. Using an unbiased genome-wide screen to search for genes involved in the mode of action of trypanocidal compounds, we identified a member of the mitochondrial carrier family, TbMCP14, as prime candidate to mediate the action of a group of anti-parasitic choline analogs against T. brucei. Ablation of TbMCP14 expression by RNA interference or gene deletion decreases the susceptibility of parasites towards the compounds while over-expression of the carrier shows the opposite effect. In addition, down-regulation of TbMCP14 protects mitochondria from drug-induced decrease in mitochondrial membrane potential and reduces proline-dependent ATP production. Together, the results demonstrate that TbMCP14 is involved in energy production in T. brucei, possibly by acting as a mitochondrial proline carrier, and reveal TbMCP14 as candidate protein for drug action or targeting.
Collapse
Affiliation(s)
- Juan P de Macêdo
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henri Vial
- Dynamique Moléculaire des Interactions Membranaires, CNRS UMR 5235, Université Montpellier II, Montpellier, France
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Coles JA, Myburgh E, Ritchie R, Hamilton A, Rodgers J, Mottram JC, Barrett MP, Brewer JM. Intravital imaging of a massive lymphocyte response in the cortical dura of mice after peripheral infection by trypanosomes. PLoS Negl Trop Dis 2015; 9:e0003714. [PMID: 25881126 PMCID: PMC4400075 DOI: 10.1371/journal.pntd.0003714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/19/2015] [Indexed: 11/23/2022] Open
Abstract
Peripheral infection by Trypanosoma brucei, the protozoan responsible for sleeping sickness, activates lymphocytes, and, at later stages, causes meningoencephalitis. We have videoed the cortical meninges and superficial parenchyma of C56BL/6 reporter mice infected with T.b.brucei. By use of a two-photon microscope to image through the thinned skull, the integrity of the tissues was maintained. We observed a 47-fold increase in CD2+ T cells in the meninges by 12 days post infection (dpi). CD11c+ dendritic cells also increased, and extravascular trypanosomes, made visible either by expression of a fluorescent protein, or by intravenous injection of furamidine, appeared. The likelihood that invasion will spread from the meninges to the parenchyma will depend strongly on whether the trypanosomes are below the arachnoid membrane, or above it, in the dura. Making use of optical signals from the skull bone, blood vessels and dural cells, we conclude that up to 40 dpi, the extravascular trypanosomes were essentially confined to the dura, as were the great majority of the T cells. Inhibition of T cell activation by intraperitoneal injection of abatacept reduced the numbers of meningeal T cells at 12 dpi and their mean speed fell from 11.64 ± 0.34 μm/min (mean ± SEM) to 5.2 ± 1.2 μm/min (p = 0.007). The T cells occasionally made contact lasting tens of minutes with dendritic cells, indicative of antigen presentation. The population and motility of the trypanosomes tended to decline after about 30 dpi. We suggest that the lymphocyte infiltration of the meninges may later contribute to encephalitis, but have no evidence that the dural trypanosomes invade the parenchyma. African trypanosomes are motile parasites that cause sleeping sickness. They multiply first in the blood then cause death mainly by effects on the brain: immune system cells, including T cells and dendritic cells, play major roles in this. Thinking we might see the attack on the brain, we infected mice with trypanosomes and used a two-photon microscope, which allowed us to image the superficial brain and the delicate tissue between the skull and the brain called the meninges without making a hole in the skull. The mice (which were anesthetized) had been genetically modified so that T cells and dendritic cells were fluorescent, as were the trypanosomes. We did not notice much happening in the brain itself, but in the meninges, in a compartment called the dura, huge numbers of T cells and dendritic cells appeared. Trypanosomes also moved from the blood into this compartment. Since T cells, dendritic cells and trypanosomes had not been videoed in the meninges before, we began by observing them carefully: their numbers, their movements and their interactions. The accumulation of lymphocytes is a sign of meningitis, a feature of infection by a wide range of pathogens and our results suggest interesting future work.
Collapse
Affiliation(s)
- Jonathan A. Coles
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alana Hamilton
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jean Rodgers
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
31
|
Probing the relationship between anti-Pneumocystis carinii activity and DNA binding of bisamidines by molecular dynamics simulations. Molecules 2015; 20:5942-64. [PMID: 25854757 PMCID: PMC6272165 DOI: 10.3390/molecules20045942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 11/17/2022] Open
Abstract
The anti-Pneumocystis carinii activity of 13 synthetic pentamidine analogs was analyzed. The experimental differences in melting points of DNA dodecamer 5'-(CGCGAATTCGCG)2-3' complexes (ΔTm), and in the biological activity measured using ATP bioluminescence assay (IC50) together with the theoretical free energy of DNA-ligand binding estimated by the proposed computational protocol, showed that the experimental activity of the tested pentamidines appeared to be due to the binding to the DNA minor groove with extended AT sequences. The effect of heteroatoms in the aliphatic linker, and the sulfonamide or methoxy substituents on the compound inducing changes in the interactions with the DNA minor groove was examined and was correlated with biological activity. In computational analysis, the explicit solvent approximation with the discrete water molecules was taken into account, and the role of water molecules in the DNA-ligand complexes was defined.
Collapse
|
32
|
Thuita JK, Wolf KK, Murilla GA, Bridges AS, Boykin DW, Mutuku JN, Liu Q, Jones SK, Gem CO, Ching S, Tidwell RR, Wang MZ, Paine MF, Brun R. Chemotherapy of second stage human African trypanosomiasis: comparison between the parenteral diamidine DB829 and its oral prodrug DB868 in vervet monkeys. PLoS Negl Trop Dis 2015; 9:e0003409. [PMID: 25654243 PMCID: PMC4318582 DOI: 10.1371/journal.pntd.0003409] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022] Open
Abstract
Human African trypanosomiasis (HAT, sleeping sickness) ranks among the most neglected tropical diseases based on limited availability of drugs that are safe and efficacious, particularly against the second stage (central nervous system [CNS]) of infection. In response to this largely unmet need for new treatments, the Consortium for Parasitic Drug Development developed novel parenteral diamidines and corresponding oral prodrugs that have shown cure of a murine model of second stage HAT. As a rationale for selection of one of these compounds for further development, the pharmacokinetics and efficacy of intramuscular (IM) active diamidine 2,5-bis(5-amidino-2-pyridyl)furan (DB829; CPD-0802) and oral prodrug2,5-bis[5-(N-methoxyamidino)-2-pyridyl]furan (DB868) were compared in the vervet monkey model of second stage HAT. Treatment was initiated 28 days post-infection of monkeys with T. b. rhodesiense KETRI 2537. Results showed that IM DB829 at 5 mg/kg/day for 5 consecutive days, 5 mg/kg/day every other day for 5 doses, or 2.5 mg/kg/day for 5 consecutive days cured all monkeys (5/5). Oral DB868 was less successful, with no cures (0/2) at 3 mg/kg/day for 10 days and cure rates of 1/4 at 10 mg/kg/day for 10 days and 20 mg/kg/day for 10 days; in total, only 2/10 monkeys were cured with DB868 dose regimens. The geometric mean plasma Cmax of IM DB829 at 5 mg/kg following the last of 5 doses was 25-fold greater than that after 10 daily oral doses of DB868 at 20 mg/kg. These data suggest that the active diamidine DB829, administered IM, should be considered for further development as a potential new treatment for second stage HAT. Treatment of human African trypanosomiasis (HAT, sleeping sickness) suffers from a shortage of medicines that are both effective, especially against the second (late) stage of the disease, and safe for patients. The development of new HAT medicines also has been significantly influenced by the perceived need for easily administered oral medicines to reduce the need for hospitalization of patients in resource-poor settings where HAT typically occurs. However, the clinical status of second stage patients is likely to dictate the need for their hospitalization, thus both oral and parenterally administered medicines would be utilised effectively. Therefore, in an effort to develop new medicines that meet efficacy and safety requirements, we evaluated a novel injectable diamidine 2,5-bis(5-amidino-2-pyridyl)furan (DB829; CPD-0802) and its oral prodrug formulation 2,5-bis[5-(N-methoxyamidino)-2-pyridyl]furan (DB868) in the vervet monkey model of second stage HAT. Treatment with either compound was initiated 28 days post-infection of monkeys with T. b. rhodesiense KETRI 2537. DB829 was dosed at 5 mg/kg/day for 5 consecutive days, 5 mg/kg/day every other day for 5 doses or 2.5 mg/kg/day for 5 consecutive days intramuscularly (IM) while DB868 was administered at 20, 10 or 3 mg/kg/day for 10 consecutive days orally. Clinical and parasitological monitoring was carried out for at least 300 days before the monkeys were declared cured. All IM DB829 and oral DB868 dose regimens were well tolerated. In addition, all monkeys (5/5) treated with IM DB829 were confirmed cured. In contrast, oral DB868 cured only 1/4 monkeys at either 10 or 20 mg/kg and did not cure any monkey when dosed at 3 mg/kg. These results indicate that IM DB829 is a suitable compound for further development as treatment for second stage HAT.
Collapse
Affiliation(s)
- John K. Thuita
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
- * E-mail: ,
| | - Kristina K. Wolf
- University of North Carolina Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Grace A. Murilla
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Arlene S. Bridges
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David W. Boykin
- Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America
| | - James N. Mutuku
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Qiang Liu
- University of North Carolina Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Susan K. Jones
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles O. Gem
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Shelley Ching
- SVC Associates, Inc., Apex, North Carolina, United States of America
| | - Richard R. Tidwell
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael Z. Wang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Mary F. Paine
- University of North Carolina Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
33
|
Characterization of a melamino nitroheterocycle as a potential lead for the treatment of human african trypanosomiasis. Antimicrob Agents Chemother 2014; 58:5747-57. [PMID: 25022590 DOI: 10.1128/aac.01449-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper reports an evaluation of a melamino nitroheterocycle, a potential lead for further development as an agent against human African trypanosomiasis (HAT). Studies on its efficacy, physicochemical and biopharmaceutical properties, and potential for toxicity are described. The compound previously had been shown to possess exceptional activity against Trypanosoma brucei in in vitro assays comparable to that of melarsoprol. Here, we demonstrate that the compound also was curative in the stringent acute mouse model T. brucei rhodesiense STIB 900 when given intraperitoneally at 40 mg/kg of body weight. Nevertheless, activity was only moderate when the oral route was used, and no cure was obtained when the compound was tested in a stage 2 rodent model of infection. Genotoxic profiling revealed that the compound induces DNA damage by a mechanism apparently independent from nitroreduction and involving the introduction of base pair substitutions (Ames test), possibly caused by oxidative damage of the DNA (comet test). No significant genotoxicity was observed at the chromosome level (micronucleus assay). The lack of suitable properties for oral and central nervous system uptake and the genotoxic liabilities prevent the progression of this melamine nitroheterocycle as a drug candidate for HAT. Further modification of the compound is required to improve the pharmacokinetic properties of the molecule and to separate the trypanocidal activity from the toxic potential.
Collapse
|
34
|
Maciejewska D, Żabiński J, Kaźmierczak P, Wójciuk K, Kruszewski M, Kruszewska H. In vitro screening of pentamidine analogs against bacterial and fungal strains. Bioorg Med Chem Lett 2014; 24:2918-23. [PMID: 24830598 DOI: 10.1016/j.bmcl.2014.04.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 12/20/2022]
Abstract
A series of linear pentamidine analogs exhibiting low cytotoxicity, active against Pneumocystis carinii, were evaluated for in vitro activities against bacterial and fungal strains. The majority of the tested bis-amidines exhibited marked activities against Gram-positive strains. In view of the fact that the highest potency was found for 1,5-bis(4-amidinophenoxy)-3-thiapentane dihydrochloride 1j with the S atom in the middle of the aliphatic linker, four new pentamidines bearing S atoms were synthesized and also evaluated against MRSA strains. N,N'-Dialkylated pentamidines with S atoms in the linker are the promising lead structures for antimicrobials development.
Collapse
Affiliation(s)
- Dorota Maciejewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | - Jerzy Żabiński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Paweł Kaźmierczak
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Karolina Wójciuk
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Hanna Kruszewska
- National Medicines Institute, Department of Antibiotics and Microbiology, 30/34 Chełmska, 00-725 Warsaw, Poland
| |
Collapse
|
35
|
Yan L, Yan C, Qian K, Su H, Kofsky-Wofford SA, Lee WC, Zhao X, Ho MC, Ivanov I, Zheng YG. Diamidine compounds for selective inhibition of protein arginine methyltransferase 1. J Med Chem 2014; 57:2611-22. [PMID: 24564570 PMCID: PMC3983339 DOI: 10.1021/jm401884z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein arginine methylation is a posttranslational modification critical for a variety of biological processes. Misregulation of protein arginine methyltransferases (PRMTs) has been linked to many pathological conditions. Most current PRMT inhibitors display limited specificity and selectivity, indiscriminately targeting many methyltransferase enzymes that use S-adenosyl-l-methionine as a cofactor. Here we report diamidine compounds for specific inhibition of PRMT1, the primary type I enzyme. Docking, molecular dynamics, and MM/PBSA analysis together with biochemical assays were conducted to understand the binding modes of these inhibitors and the molecular basis of selective inhibition for PRMT1. Our data suggest that 2,5-bis(4-amidinophenyl)furan (1, furamidine, DB75), one leading inhibitor, targets the enzyme active site and is primarily competitive with the substrate and noncompetitive toward the cofactor. Furthermore, cellular studies revealed that 1 is cell membrane permeable and effectively inhibits intracellular PRMT1 activity and blocks cell proliferation in leukemia cell lines with different genetic lesions.
Collapse
Affiliation(s)
- Leilei Yan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia , Athens, Georgia 30602, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Independence from Kinetoplast DNA maintenance and expression is associated with multidrug resistance in Trypanosoma brucei in vitro. Antimicrob Agents Chemother 2014; 58:2925-8. [PMID: 24550326 PMCID: PMC3993240 DOI: 10.1128/aac.00122-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is well known that several antitrypanosomatid drugs accumulate in the parasite's mitochondrion, where they often bind to the organellar DNA, the kinetoplast. To what extent this property relates to the mode of action of these compounds has remained largely unquantified. Here we show that single point mutations that remove the dependence of laboratory strains of the sleeping sickness parasite Trypanosoma brucei on a functional kinetoplast result in significant resistance to the diamidine and phenanthridine drug classes.
Collapse
|
37
|
Abstract
Light-emitting diode (LED) fluorescence microscopy offers potential benefits in the diagnosis of human African trypanosomiasis and in other aspects of diseases management, such as detection of drug-resistant strains. To advance such approaches, reliable and specific fluorescent markers to stain parasites in human fluids are needed. Here we describe a series of novel green fluorescent diamidines and their suitability as probes with which to stain trypanosomes.
Collapse
|
38
|
Abstract
Owing to the absence of antiparasitic vaccines and the constant threat of drug resistance, the development of novel antiparasitic chemotherapies remains of major importance for disease control. A better understanding of drug transport (uptake and efflux), drug metabolism and the identification of drug targets, and mechanisms of drug resistance would facilitate the development of more effective therapies. Here, we focus on malaria and African trypanosomiasis. We review existing drugs and drug development, emphasizing high-throughput genomic and genetic approaches, which hold great promise for elucidating antiparasitic mechanisms. We describe the approaches and technologies that have been influential for each parasite and develop new ideas for future research directions, including mode-of-action studies for drug target deconvolution.
Collapse
Affiliation(s)
- David Horn
- Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manoj T. Duraisingh
- Harvard School of Public Health, 665 Huntington Avenue, Building 1, Room 715, Boston, Massachusetts 02115, USA
| |
Collapse
|
39
|
Myburgh E, Coles JA, Ritchie R, Kennedy PGE, McLatchie AP, Rodgers J, Taylor MC, Barrett MP, Brewer JM, Mottram JC. In vivo imaging of trypanosome-brain interactions and development of a rapid screening test for drugs against CNS stage trypanosomiasis. PLoS Negl Trop Dis 2013; 7:e2384. [PMID: 23991236 PMCID: PMC3749981 DOI: 10.1371/journal.pntd.0002384] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/13/2013] [Indexed: 11/18/2022] Open
Abstract
HUMAN AFRICAN TRYPANOSOMIASIS (HAT) MANIFESTS IN TWO STAGES OF DISEASE: firstly, haemolymphatic, and secondly, an encephalitic phase involving the central nervous system (CNS). New drugs to treat the second-stage disease are urgently needed, yet testing of novel drug candidates is a slow process because the established animal model relies on detecting parasitemia in the blood as late as 180 days after treatment. To expedite compound screening, we have modified the GVR35 strain of Trypanosoma brucei brucei to express luciferase, and have monitored parasite distribution in infected mice following treatment with trypanocidal compounds using serial, non-invasive, bioluminescence imaging. Parasites were detected in the brains of infected mice following treatment with diminazene, a drug which cures stage 1 but not stage 2 disease. Intravital multi-photon microscopy revealed that trypanosomes enter the brain meninges as early as day 5 post-infection but can be killed by diminazene, whereas those that cross the blood-brain barrier and enter the parenchyma by day 21 survived treatment and later caused bloodstream recrudescence. In contrast, all bioluminescent parasites were permanently eliminated by treatment with melarsoprol and DB829, compounds known to cure stage 2 disease. We show that this use of imaging reduces by two thirds the time taken to assess drug efficacy and provides a dual-modal imaging platform for monitoring trypanosome infection in different areas of the brain.
Collapse
Affiliation(s)
- Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jonathan A. Coles
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter G. E. Kennedy
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alex P. McLatchie
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jean Rodgers
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martin C. Taylor
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - James M. Brewer
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Novel amidines and analogues as promising agents against intracellular parasites: a systematic review. Parasitology 2013; 140:929-51. [PMID: 23561006 DOI: 10.1017/s0031182013000292] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parasitic protozoa comprise diverse aetiological agents responsible for important diseases in humans and animals including sleeping sickness, Chagas disease, leishmaniasis, malaria, toxoplasmosis and others. They are major causes of mortality and morbidity in tropical and subtropical countries, and are also responsible for important economic losses. However, up to now, for most of these parasitic diseases, effective vaccines are lacking and the approved chemotherapeutic compounds present high toxicity, increasing resistance, limited efficacy and require long periods of treatment. Many of these parasitic illnesses predominantly affect low-income populations of developing countries for which new pharmaceutical alternatives are urgently needed. Thus, very low research funding is available. Amidine-containing compounds such as pentamidine are DNA minor groove binders with a broad spectrum of activities against human and veterinary pathogens. Due to their promising microbicidal activity but their rather poor bioavailability and high toxicity, many analogues and derivatives, including pro-drugs, have been synthesized and screened in vitro and in vivo in order to improve their selectivity and pharmacological properties. This review summarizes the knowledge on amidines and analogues with respect to their synthesis, pharmacological profile, mechanistic and biological effects upon a range of intracellular protozoan parasites. The bulk of these data may contribute to the future design and structure optimization of new aromatic dicationic compounds as novel antiparasitic drug candidates.
Collapse
|
41
|
Caffrey CR, Steverding D. Recent initiatives and strategies to developing new drugs for tropical parasitic diseases. Expert Opin Drug Discov 2013; 3:173-86. [PMID: 23480221 DOI: 10.1517/17460441.3.2.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Despite the toll of tropical parasitic diseases on human life in the developing world, present therapies still rely on drugs developed decades ago. In many cases, the clinical usefulness of these compounds is limited due to poor efficacy, toxicity and the constant attrition of drug resistance. The absence of a profit incentive regarding diseases afflicting the very poor has resulted in a lack of investment by the pharmaceutical industry in new chemotherapies. OBJECTIVE Given this background, this review addresses what alternative economic and scientific strategies have been implemented to procure novel drugs. METHODS The latest chemical, genetic and screening technologies to discover and develop drugs for tropical parasitic diseases are reviewed. In many cases these strategies are being implemented within the framework of public-private partnerships established to sustain dynamic drug development portfolios. Examples of public-private partnerships and their portfolios are discussed. Further, the contribution of dedicated academic screening centres to target discovery and preclinical prosecution of new small molecules is also highlighted. In every case, the latest scientific literature is cited, but also relevant press releases and website information to indicate the present vitality in the field. CONCLUSION The tools, institutions and consortia are now in place and evolving to deliver new pharmaceuticals. Short-term results have already been realised in the clinic, mainly through the provision of new formulations of existing drugs. Long-term and consistent investment will be required, however, to identify, develop and clinically validate new chemical entities.
Collapse
Affiliation(s)
- Conor R Caffrey
- University of California San Francisco, Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biosciences, Byers Hall 501E, 1700 4th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
42
|
Baker N, de Koning HP, Mäser P, Horn D. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol 2013; 29:110-8. [PMID: 23375541 PMCID: PMC3831158 DOI: 10.1016/j.pt.2012.12.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023]
Abstract
Melarsoprol and pentamidine represent the two main classes of drugs, the arsenicals and diamidines, historically used to treat the diseases caused by African trypanosomes: sleeping sickness in humans and Nagana in livestock. Cross-resistance to these drugs was first observed over 60 years ago and remains the only example of cross-resistance among sleeping sickness therapies. A Trypanosoma brucei adenosine transporter is well known for its role in the uptake of both drugs. More recently, aquaglyceroporin 2 (AQP2) loss of function was linked to melarsoprol-pentamidine cross-resistance. AQP2, a channel that appears to facilitate drug accumulation, may also be linked to clinical cases of resistance. Here, we review these findings and consider some new questions as well as future prospects for tackling the devastating diseases caused by these parasites.
Collapse
Affiliation(s)
- Nicola Baker
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Harry P. de Koning
- University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, Scotland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstr. 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - David Horn
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
43
|
Bowling T, Mercer L, Don R, Jacobs R, Nare B. Application of a resazurin-based high-throughput screening assay for the identification and progression of new treatments for human African trypanosomiasis. Int J Parasitol Drugs Drug Resist 2012; 2:262-70. [PMID: 24533287 PMCID: PMC3862424 DOI: 10.1016/j.ijpddr.2012.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human African trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei, and the disease is fatal if untreated. There is an urgent need to develop new, safe and effective treatments for HAT because current drugs have extremely poor safety profiles and are difficult to administer. Here we report the development and application of a cell-based resazurin reduction assay for high throughput screening and identification of new inhibitors of T. b. brucei as starting points for the development of new treatments for human HAT. Active compounds identified in primary screening of ∼48,000 compounds representing ∼25 chemical classes were titrated to obtain IC50 values. Cytotoxicity against a mammalian cell line was determined to provide indications of parasite versus host cell selectivity. Examples from hit series that showed selectivity and evidence of preliminary SAR were re-synthesized to confirm trypanocidal activity prior to initiating hit-to-lead expansion efforts. Additional assays such as serum shift, time to kill and reversibility of compound effect were developed and applied to provide further criteria for advancing compounds through the hit-to-lead phase of the project. From this initial effort, six distinct chemical series were selected and hit-to-lead chemistry was initiated to synthesize several key analogs for evaluation of trypanocidal activity in the resazurin-reduction assay for parasite viability. From the hit-to-lead efforts, a series was identified that demonstrated efficacy in a mouse model for T. b. brucei infection and was progressed into the lead optimization stage. In summary, the present study demonstrates the successful and effective use of resazurin-reduction based assays as tools for primary and secondary screening of a new compound series to identify leads for the treatment of HAT.
Collapse
Affiliation(s)
- Tana Bowling
- SCYNEXIS Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, United States
| | - Luke Mercer
- SCYNEXIS Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, United States
| | - Robert Don
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Robert Jacobs
- SCYNEXIS Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, United States
| | - Bakela Nare
- SCYNEXIS Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, United States
| |
Collapse
|
44
|
Thuita JK, Wang MZ, Kagira JM, Denton CL, Paine MF, Mdachi RE, Murilla GA, Ching S, Boykin DW, Tidwell RR, Hall JE, Brun R. Pharmacology of DB844, an orally active aza analogue of pafuramidine, in a monkey model of second stage human African trypanosomiasis. PLoS Negl Trop Dis 2012; 6:e1734. [PMID: 22848769 PMCID: PMC3404106 DOI: 10.1371/journal.pntd.0001734] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
Novel drugs to treat human African trypanosomiasis (HAT) are still urgently needed despite the recent addition of nifurtimox-eflornithine combination therapy (NECT) to WHO Model Lists of Essential Medicines against second stage HAT, where parasites have invaded the central nervous system (CNS). The pharmacology of a potential orally available lead compound, N-methoxy-6-{5-[4-(N-methoxyamidino) phenyl]-furan-2-yl}-nicotinamidine (DB844), was evaluated in a vervet monkey model of second stage HAT, following promising results in mice. DB844 was administered orally to vervet monkeys, beginning 28 days post infection (DPI) with Trypanosoma brucei rhodesiense KETRI 2537. DB844 was absorbed and converted to the active metabolite 6-[5-(4-phenylamidinophenyl)-furanyl-2-yl]-nicotinamide (DB820), exhibiting plasma C(max) values of 430 and 190 nM for DB844 and DB820, respectively, after the 14th dose at 6 mg/kg qd. A 100-fold reduction in blood trypanosome counts was observed within 24 h of the third dose and, at the end of treatment evaluation performed four days post the last drug dose, trypanosomes were not detected in the blood or cerebrospinal fluid of any monkey. However, some animals relapsed during the 300 days of post treatment monitoring, resulting in a cure rate of 3/8 (37.5%) and 3/7 (42.9%) for the 5 mg/kg×10 days and the 6 mg/kg×14 days dose regimens respectively. These DB844 efficacy data were an improvement compared with pentamidine and pafuramidine both of which were previously shown to be non-curative in this model of CNS stage HAT. These data show that synthesis of novel diamidines with improved activity against CNS-stage HAT was possible.
Collapse
Affiliation(s)
- John K. Thuita
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Michael Z. Wang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - John M. Kagira
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Cathrine L. Denton
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mary F. Paine
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raymond E. Mdachi
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Grace A. Murilla
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Shelley Ching
- SVC Associates, Inc., Apex, North Carolina, United States of America
| | - David W. Boykin
- Chemistry Department, Georgia State University, Atlanta, Georgia, United States of America
| | - Richard R. Tidwell
- Pathology Department, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - James E. Hall
- Pathology Department, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Reto Brun
- Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Wickramasekara Rajapakshage BK, Yamasaki M, Hwang SJ, Sasaki N, Murakami M, Tamura Y, Lim SY, Nakamura K, Ohta H, Takiguchi M. Involvement of mitochondrial genes of Babesia gibsoni in resistance to diminazene aceturate. J Vet Med Sci 2012; 74:1139-48. [PMID: 22673639 DOI: 10.1292/jvms.12-0056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The stability of the characteristics of the diminazene aceturate (DA)-resistant B. gibsoni isolate was initially determined in vitro. Part of the DA-resistant B. gibsoni isolate was cultured without DA for 4 weeks, and then newly exposed to 200 ng/ml DA. As a result, this isolate could proliferate the same as the DA-resistant isolate, indicating that the characteristic of DA resistance was stable in the DA-resistant isolate. Additionally, the level of parasitemia in the DA-resistant isolate was comparatively lower than in the wild-type, suggesting that the proliferation potential of the DA-resistant isolate would be lower than that of the wild-type. Subsequently, to investigate the involvement of mitochondrial DNA (mtDNA) in DA resistance in B. gibsoni, the nucleotide sequences and deduced amino acid sequences of mitochondrial genes such as COXI, COXIII, and CYTb genes of the DA-resistant isolate, were compared with those of the wild-type. As a result, these three genes were not altered in the DA-resistant B. gibsoni isolate. Moreover, the transcription levels of COXI, COXIII, and CYTb genes were observed by semi-quantitative RT-PCR. As a result, the gene transcription of those genes in the DA-resistant isolate was not significantly altered. These results indicated that DA did not affect mtDNA directly in DA-resistant B. gibsoni. Thus, it is suggested that mtDNA should not be deeply involved in DA resistance in B. gibsoni.
Collapse
Affiliation(s)
- Bandula Kumara Wickramasekara Rajapakshage
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The present study aimed to determine the in vitro biological efficacy and selectivity of 7 novel AIAs upon bloodstream trypomastigotes and intracellular amastigotes of Trypanosoma cruzi. The biological activity of these aromatic compounds was assayed for 48 and 24 h against intracellular parasites and bloodstream forms of T. cruzi (Y strain), respectively. Additional assays were also performed to determine their potential use in blood banks by treating the bloodstream parasites with the compounds diluted in mouse blood for 24 h at 4°C. Toxicity against mammalian cells was evaluated using primary cultures of cardiac cells incubated for 24 and 48 h with the AIAs and then cellular death rates were determined by MTT colorimetric assays. Our data demonstrated the outstanding trypanocidal effect of AIAs against T. cruzi, especially DB1853, DB1862, DB1867 and DB1868, giving IC50 values ranging between 16 and 70 nanomolar against both parasite forms. All AIAs presented superior efficacy to benznidazole and some, such as DB1868, also demonstrated promising activity as a candidate agent for blood prophylaxis. The excellent anti-trypanosomal efficacy of these novel AIAs against T. cruzi stimulates further in vivo studies and justifies the screening of new analogues with the goal of establishing a useful alternative therapy for Chagas disease.
Collapse
|
47
|
Fuchs JE, Spitzer GM, Javed A, Biela A, Kreutz C, Wellenzohn B, Liedl KR. Minor groove binders and drugs targeting proteins cover complementary regions in chemical shape space. J Chem Inf Model 2011; 51:2223-32. [PMID: 21819135 DOI: 10.1021/ci200237c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA minor groove binders (MGBs) are known to influence gene expression and are therefore widely studied to explore their therapeutic potential. We identified shape-based virtual screening with ROCS as a highly effective computational approach to enrich known MGBs in top-ranked molecules. Discovery of ten previously unknown MGBs by shape-based screening further confirmed the relevance of ligand shape for minor groove affinity. Based on experimental testing we propose three simple rules (at least two positive charges, four nitrogen atoms, and one aromatic ring) as filters to reach even better enrichment of true positives in ROCS hit lists. Interestingly, shape-based ranking of MGBs versus FDA-approved drugs again leads to high enrichment rates, indicating complementary coverage of chemical shape space and indicating minor groove affinity to be unfavorable for approval of drugs targeting proteins.
Collapse
Affiliation(s)
- Julian E Fuchs
- Faculty of Chemistry and Pharmacy, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
48
|
Paliwal SK, Verma AN, Paliwal S. Neglected disease - african sleeping sickness: recent synthetic and modeling advances. Sci Pharm 2011; 79:389-428. [PMID: 21886894 PMCID: PMC3163371 DOI: 10.3797/scipharm.1012-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/10/2011] [Indexed: 01/21/2023] Open
Abstract
Human African Trypanosomiasis (HAT) also called sleeping sickness is caused by subspecies of the parasitic hemoflagellate Trypanosoma brucei that mostly occurs in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which have been developed more than 30 years ago, have undesirable toxic side effects and most of them show drug-resistance. Though development of new anti-trypanosomal drugs seems to be a priority area research in this area has lagged far behind. The given review mainly focus upon the recent synthetic and computer based approaches made by various research groups for the development of newer anti-trypanosomal analogues which may have improved efficacy and oral bioavailability than the present ones. The given paper also attempts to investigate the relationship between the various physiochemical parameters and anti-trypanosomal activity that may be helpful in development of potent anti-trypanosomal agents against sleeping sickness.
Collapse
|
49
|
de Castro SL, Batista DGJ, Batista MM, Batista W, Daliry A, de Souza EM, Menna-Barreto RFS, Oliveira GM, Salomão K, Silva CF, Silva PB, Soeiro MDNC. Experimental Chemotherapy for Chagas Disease: A Morphological, Biochemical, and Proteomic Overview of Potential Trypanosoma cruzi Targets of Amidines Derivatives and Naphthoquinones. Mol Biol Int 2011; 2011:306928. [PMID: 22091400 PMCID: PMC3195292 DOI: 10.4061/2011/306928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/25/2011] [Accepted: 03/21/2011] [Indexed: 01/31/2023] Open
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately eight million individuals in Latin America and is emerging in nonendemic areas due to the globalisation of immigration and nonvectorial transmission routes. Although CD represents an important public health problem, resulting in high morbidity and considerable mortality rates, few investments have been allocated towards developing novel anti-T. cruzi agents. The available therapy for CD is based on two nitro derivatives (benznidazole (Bz) and nifurtimox (Nf)) developed more than four decades ago. Both are far from ideal due to substantial secondary side effects, limited efficacy against different parasite isolates, long-term therapy, and their well-known poor activity in the late chronic phase. These drawbacks justify the urgent need to identify better drugs to treat chagasic patients. Although several classes of natural and synthetic compounds have been reported to act in vitro and in vivo on T. cruzi, since the introduction of Bz and Nf, only a few drugs, such as allopurinol and a few sterol inhibitors, have moved to clinical trials. This reflects, at least in part, the absence of well-established universal protocols to screen and compare drug activity. In addition, a large number of in vitro studies have been conducted using only epimastigotes and trypomastigotes instead of evaluating compounds' activities against intracellular amastigotes, which are the reproductive forms in the vertebrate host and are thus an important determinant in the selection and identification of effective compounds for further in vivo analysis. In addition, due to pharmacokinetics and absorption, distribution, metabolism, and excretion characteristics, several compounds that were promising in vitro have not been as effective as Nf or Bz in animal models of T. cruzi infection. In the last two decades, our team has collaborated with different medicinal chemistry groups to develop preclinical studies for CD and investigate the in vitro and in vivo efficacy, toxicity, selectivity, and parasite targets of different classes of natural and synthetic compounds. Some of these results will be briefly presented, focusing primarily on diamidines and related compounds and naphthoquinone derivatives that showed the most promising efficacy against T. cruzi.
Collapse
Affiliation(s)
- Solange L. de Castro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Denise G. J. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marcos M. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Wanderson Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Elen M. de Souza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Rubem F. S. Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Gabriel M. Oliveira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Cristiane F. Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Patricia B. Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maria de Nazaré C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
50
|
Brun R, Don R, Jacobs RT, Wang MZ, Barrett MP. Development of novel drugs for human African trypanosomiasis. Future Microbiol 2011; 6:677-91. [DOI: 10.2217/fmb.11.44] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human African trypanosomiasis (HAT) or ‘sleeping sickness’ is a neglected tropical disease caused by the parasite Trypanosoma brucei. Novel models for funding pharmaceutical development against HAT are beginning to yield results. The Drugs for Neglected Diseases initiative (DNDi) rediscovered a nitroimidazole, fexinidazole, which is currently in Phase I clinical trials. Novel benzoxaboroles, discovered by Anacor, Scynexis and DNDi, have good pharmacokinetic properties in plasma and in the brain and are curative in a murine model of stage two HAT with brain infection. The Consortium for Parasitic Drug Development (CPDD) has identified a series of dicationic compounds that can cure a monkey model of stage two HAT. With other screening programs yielding hits, the pipeline for new HAT drugs might finally begin to fill.
Collapse
Affiliation(s)
- Reto Brun
- Department Medical Parasitology & Infection Biology, Swiss Tropical & Public Health Institute, and, University of Basel, CH-4002 Basel, Switzerland
| | - Robert Don
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Robert T Jacobs
- Department of Chemistry, SCYNEXIS, Inc., PO Box 12878, Research Triangle Park, NC, 27709-2878, USA
| | - Michael Zhuo Wang
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, Scotland
| |
Collapse
|