1
|
Panda L, Gk K, Sawant AR, Singh SK, Gupta M, C SD, Shashikala P, Prashanth K. Genomic insights into drug resistance and virulence determinants in rare pyomelanin-producing clinical isolates of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 2025; 44:533-547. [PMID: 39699780 DOI: 10.1007/s10096-024-05008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE Clinical isolates of multi-drug resistant Acinetobacter baumannii are a major cause of nosocomial infections, often attributed to the highly adaptable genome that helps it to thrive under environmental selection pressure. Here, we aim to provide genotypic-based surveys and comparative whole genome sequencing (WGS) analysis to explore the genomics of the rare pyomelanin-forming clinical isolates of A. baumannii from India. METHODS A total of 54 clinical isolates of A. baumannii obtained from two tertiary care hospitals were genotyped using repetitive sequence-based PCR (REP-PCR) for elucidating their molecular epidemiology, followed by their resistance profiling through the determination of minimum inhibitory concentration using the micro broth dilution method. The isolates' virulence and antibiotic-resistant determinants were detected by PCR screening, followed by biofilm quantification. Pyomelanin pigment produced by A. baumannii isolates was isolated and chemically characterized. Finally, WGS of three pigment-producing and one non-producing A. baumannii strains was performed to explore the factors contributing to their variability. RESULTS REP-PCR genotyping identified around 8 clusters, with all isolates being multidrug-resistant (MDR). Pyomelanin-producing isolates were strong biofilm formers, characterized by the concurrent presence of 'pgaB, BfmR, BfmS, ompA, and cusE' biofilm-related genes. These pigmented strains belonged to ST2Pas and co-harbored blaOXA-23, blaADC-25, aph (3')-VIa, armA, aph (6)-Id, tet(B) and msr(E) genes. Thirteen common IS elements and biosynthetic gene clusters of arylpolyene, NI-siderophore, and NRP-metallophore were identified. Notably, genomic islands containing aminoglycoside 3'-phosphotransferase, oxidative stress, two-component response regulators, efflux pump-related, toxin-antitoxin protein, and virulence-related genes were also mapped by WGS. CONCLUSION The pyomelanin-forming isolates were MDR and virulent. The elucidation of WGS analysis provided critical insights for understanding the epidemiology, virulome, and mobilome of rare pigment-producing A. baumannii strains.
Collapse
Affiliation(s)
- Lipsa Panda
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry, 605014, India
| | - Krishnapriya Gk
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry, 605014, India
| | - Ajit Ramesh Sawant
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry, 605014, India
| | | | - Minakshi Gupta
- Department of Microbiology, Manipal Tata Medical College, Jamshedpur, Jharkhand, India
| | - Sheela Devi C
- Department of Clinical Microbiology, Pondicherry Institute of Medical Sciences (PIMS), Pondicherry, 605014, India
| | - P Shashikala
- Department of Clinical Microbiology, Pondicherry Institute of Medical Sciences (PIMS), Pondicherry, 605014, India
| | - K Prashanth
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
2
|
Haripriyan J, Binu CR, Menon ND, Vanuopadath M, Hari MB, Namitha N, Binoy K, Kumar A, Nair BG, Nizet V, Kumar GB. Essential oils modulate virulence phenotypes in a multidrug-resistant pyomelanogenic Pseudomonas aeruginosa clinical isolate. Sci Rep 2025; 15:3738. [PMID: 39885214 PMCID: PMC11782693 DOI: 10.1038/s41598-025-86515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Pyomelanogenic P. aeruginosa, frequently isolated from patients with urinary tract infections and cystic fibrosis, possesses the ability to withstand oxidative stress, contributing to virulence and resulting in persistent infections. Whole genome sequence analysis of U804, a pyomelanogenic, multidrug-resistant, clinical isolate, demonstrates the mechanism underlying pyomelanin overproduction. Seven essential oils (EOs) were screened for pyomelanin inhibition. Garlic, cinnamon and thyme EOs were selected for further studies based on their significant anti-virulent properties, like inhibition of pyomelanin production and biofilm formation. Additionally, downregulation of the expression of virulence genes regulated by quorum sensing (QS) and a decrease in levels of the QS signaling molecule, C12-HSL, were also observed. The EO treatment inhibited the survival of U804 in human blood and increased survival of C. elegans, a whole animal model of pathogenesis. EO treatment also resulted in a significant reduction of efflux pump activity, indicative of their effect on antibiotic sensitization. Garlic oil enhanced the permeability of the bacterial membrane, resulting in decreased survival, when combined with sub-MIC concentrations of colistin. This study demonstrates that thyme, cinnamon and garlic EOs can attenuate pyomelanogenic P. aeruginosa virulence traits. Additionally, garlic potentiates drug sensitivity, suggesting its promising therapeutic use in combating pyomelanogenic MDR infections.
Collapse
Affiliation(s)
| | - Christy Rose Binu
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Nitasha D Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | | | - Malavika B Hari
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - N Namitha
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Kesiya Binoy
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Victor Nizet
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Geetha B Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India.
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kollam, Kerala, 690525, India.
| |
Collapse
|
3
|
Mary AS, Kalangadan N, Prakash J, Sundaresan S, Govindarajan S, Rajaram K. Relative fitness of wild-type and phage-resistant pyomelanogenic P. aeruginosa and effects of combinatorial therapy on resistant formation. Heliyon 2024; 10:e40076. [PMID: 39559211 PMCID: PMC11570307 DOI: 10.1016/j.heliyon.2024.e40076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Bacteriophages, the natural predators of bacteria, are incredibly potent candidates to counteract antimicrobial resistance (AMR). However, the rapid development of phage-resistant mutants challenges the potential of phage therapy. Understanding the mechanisms of bacterial adaptations to phage predation is crucial for phage-based prognostic applications. Phage cocktails and combinatorial therapy, using optimized dosage patterns of antibiotics, can negate the development of phage-resistant mutations and prolong therapeutic efficacy. In this study, we describe the characterization of a novel bacteriophage and the physiology of phage-resistant mutant developed during infection. M12PA is a P. aeruginosa-infecting bacteriophage with Myoviridae morphology. We observed that prolonged exposure of P. aeruginosa to M12PA resulted in the selection of phage-resistant mutants. Among the resistant mutants, pyomelanin-producing mutants, named PA-M, were developed at a frequency of 1 in 16. Compared to the wild-type, we show that PA-M mutant is severely defective in virulence properties, with altered motility, biofilm formation, growth rate, and antibiotic resistance profile. The PA-M mutant exhibited reduced pathogenesis in an allantoic-infected chick embryo model system compared to the wild-type. Finally, we provide evidence that combinatory therapy, combining M12PA with antibiotics or other phages, significantly delayed the emergence of resistant mutants. In conclusion, our study highlights the potential of combinatory phage therapy to delay the development of phage-resistant mutants and enhance the efficacy of phage-based treatments against P. aeruginosa.
Collapse
Affiliation(s)
- Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Nashath Kalangadan
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - John Prakash
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Srivignesh Sundaresan
- Department of Horticulture, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sutharsan Govindarajan
- Department of Biological Sciences, SRM University, AP, Amaravati, 522240, Andhra Pradesh, India
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| |
Collapse
|
4
|
Gaborieau B, Delattre R, Adiba S, Clermont O, Denamur E, Ricard JD, Debarbieux L. Variable fitness effects of bacteriophage resistance mutations in Escherichia coli: implications for phage therapy. J Virol 2024; 98:e0111324. [PMID: 39213164 PMCID: PMC11495123 DOI: 10.1128/jvi.01113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Bacteria exposed to bactericidal treatment, such as antibiotics or bacteriophages (phages), often develop resistance. While phage therapy is proposed as a solution to the antibiotic resistance crisis, the bacterial resistance emerging during phage therapy remains poorly characterized. In this study, we examined a large population of phage-resistant extra-intestinal pathogenic Escherichia coli 536 clones that emerged from both in vitro (non-limited liquid medium) and in vivo (murine pneumonia) conditions. Genome sequencing uncovered a convergent mutational pattern in phage resistance mechanisms under both conditions, particularly targeting two cell-wall components, the K15 capsule and the lipopolysaccharide (LPS). This suggests that their identification in vivo could be predicted from in vitro assays. Phage-resistant clones exhibited a wide range of fitness according to in vitro tests, growth rate, and resistance to amoeba grazing, which could not distinguish between the K15 capsule and LPS mutants. In contrast, K15 capsule mutants retained virulence comparable to the wild-type strain, whereas LPS mutants showed significant attenuation in the murine pneumonia model. Additionally, we observed that resistance to the therapeutic phage through a nonspecific mechanism, such as capsule overproduction, did not systematically lead to co-resistance to other phages that were initially capable or incapable of infecting the wild-type strain. Our findings highlight the importance of incorporating a diverse range of phages in the design of therapeutic cocktails to target potential future phage-resistant clones effectively. IMPORTANCE This study isolated more than 50 phage-resistant mutants from both in vitro and in vivo conditions, exposing an extra-intestinal pathogenic Escherichia coli strain to a single virulent phage. The characterization of these clones revealed several key findings: (1) mutations occurring during phage treatment affect the same pathways as those identified in vitro; (2) the resistance mechanisms are associated with the modification of two cell-wall components, with one involving receptor deletion (phage-specific mechanism) and the other, less frequent, involving receptor masking (phage-nonspecific mechanism); (3) an in vivo virulence assay demonstrated that the absence of the receptor abolishes virulence while masking the receptor preserves it; and (4) clones with a resistance mechanism nonspecific to a particular phage can remain susceptible to other phages. This supports the idea of incorporating diverse phages into therapeutic cocktails designed to collectively target both wild-type and phage-resistant strains, including those with resistance mechanisms nonspecific to a phage.
Collapse
Affiliation(s)
- Baptiste Gaborieau
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
- APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Raphaëlle Delattre
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Sandrine Adiba
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure CNRS UMR8197, Paris, France
| | | | - Erick Denamur
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- APHP, Hôpital Bichat, Service de Génétique Moléculaire, Paris, France
| | - Jean-Damien Ricard
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| |
Collapse
|
5
|
Sithu Shein AM, Hongsing P, Khatib A, Phattharapornjaroen P, Miyanaga K, Cui L, Shibuya K, Amarasiri M, Monk PN, Kicic A, Chatsuwan T, Higgins PG, Abe S, Wannigama DL. Phage therapy could be key to conquering persistent bacterial lung infections in children. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:31. [PMID: 39843534 PMCID: PMC11721074 DOI: 10.1038/s44259-024-00045-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/29/2024] [Indexed: 01/24/2025]
Abstract
Persistent bacterial lung infections in children lead to significant morbidity and mortality due to antibiotic resistance. In this paper, we describe how phage therapy has shown remarkable efficacy in preclinical and clinical studies, demonstrating significant therapeutic benefits through various administration routes. Ongoing trials are evaluating its safety and effectiveness against different pathogens. Advancing phage therapy through systematic studies and international collaboration could provide a viable alternative to traditional antibiotics for persistent infections.
Collapse
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Aisha Khatib
- Department of Family & Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Phatthranit Phattharapornjaroen
- Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, Thailand
- HRH Princess Chulabhorn Disaster and Emergency Medicine Center, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kenji Shibuya
- Tokyo Foundation for Policy Research, Minato-ku, Tokyo, Japan
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Peter N Monk
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, 6009, WA, Australia.
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, WA, Australia.
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, WA, Australia.
- School of Population Health, Curtin University, Bentley, 6102, WA, Australia.
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935, Cologne, Germany.
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedland, WA, Australia.
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK.
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| |
Collapse
|
6
|
Martinet MG, Lohde M, Higazy D, Brandt C, Pletz MW, Middelboe M, Makarewicz O, Ciofu O. Diversification of Pseudomonas aeruginosa Biofilm Populations under Repeated Phage Exposures Decreases the Efficacy of the Treatment. Microorganisms 2024; 12:1880. [PMID: 39338555 PMCID: PMC11434582 DOI: 10.3390/microorganisms12091880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy has been proposed as a therapeutic alternative to antibiotics for the treatment of chronic, biofilm-related P. aeruginosa infections. To gain a deeper insight into the complex biofilm-phage interactions, we investigated in the present study the effect of three successive exposures to lytic phages of biofilms formed by the reference strains PAO1 and PA14 as well as of two sequential clinical P. aeruginosa isolates from the sputum of a patient with cystic fibrosis (CF). The Calgary device was employed as a biofilm model and the efficacy of phage treatment was evaluated by measurements of the biomass stained with crystal violet (CV) and of the cell density of the biofilm bacterial population (CFU/mL) after each of the three phage exposures. The genetic alterations of P. aeruginosa isolates from biofilms exposed to phages were investigated by whole-genome sequencing. We show here that the anti-biofilm efficacy of the phage treatment decreased rapidly with repeated applications of lytic phages on P. aeruginosa strains with different genetic backgrounds. Although we observed the maintenance of a small subpopulation of sensitive cells after repeated phage treatments, a fast recruitment of mechanisms involved in the persistence of biofilms to the phage attack occurred, mainly by mutations causing alterations of the phage receptors. However, mutations causing phage-tolerant phenotypes such as alginate-hyperproducing mutants were also observed. In conclusion, a decreased anti-biofilm effect occurred after repeated exposure to lytic phages of P. aeruginosa biofilms due to the recruitment of different resistance and tolerance mechanisms.
Collapse
Affiliation(s)
- Mark Grevsen Martinet
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany; (M.G.M.); (M.L.); (C.B.); (M.W.P.); (O.M.)
| | - Mara Lohde
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany; (M.G.M.); (M.L.); (C.B.); (M.W.P.); (O.M.)
| | - Doaa Higazy
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Christian Brandt
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany; (M.G.M.); (M.L.); (C.B.); (M.W.P.); (O.M.)
- Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany; (M.G.M.); (M.L.); (C.B.); (M.W.P.); (O.M.)
- Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark;
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany; (M.G.M.); (M.L.); (C.B.); (M.W.P.); (O.M.)
- Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
7
|
Cocorullo M, Stelitano G, Chiarelli LR. Phage Therapy: An Alternative Approach to Combating Multidrug-Resistant Bacterial Infections in Cystic Fibrosis. Int J Mol Sci 2024; 25:8321. [PMID: 39125890 PMCID: PMC11313351 DOI: 10.3390/ijms25158321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Patients with cystic fibrosis (CF) are prone to developing life-threatening lung infections with a variety of pathogens that are difficult to eradicate, such as Burkholderia cepacia complex (Bcc), Hemophilus influenzae, Mycobacterium abscessus (Mab), Pseudomonas aeruginosa, and Staphylococcus aureus. These infections still remain an important issue, despite the therapy for CF having considerably improved in recent years. Moreover, prolonged exposure to antibiotics in combination favors the development and spread of multi-resistant bacteria; thus, the development of alternative strategies is crucial to counter antimicrobial resistance. In this context, phage therapy, i.e., the use of phages, viruses that specifically infect bacteria, has become a promising strategy. In this review, we aim to address the current status of phage therapy in the management of multidrug-resistant infections, from compassionate use cases to ongoing clinical trials, as well as the challenges this approach presents in the particular context of CF patients.
Collapse
Affiliation(s)
| | | | - Laurent Robert Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy; (M.C.); (G.S.)
| |
Collapse
|
8
|
Moustafa DA, Wu L, Ivey M, Fankhauser SC, Goldberg JB. Mutation of hmgA, encoding homogentisate 1,2-dioxygenase, is responsible for pyomelanin production but does not impact the virulence of Burkholderia cenocepacia in a chronic granulomatous disease mouse lung infection. Microbiol Spectr 2024; 12:e0041024. [PMID: 38809005 PMCID: PMC11218447 DOI: 10.1128/spectrum.00410-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis (CF) and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals; pigment production has been reported to enable Bcc strains to overcome the host cell oxidative burst. In this work, we investigated the role of pyomelanin in resistance to oxidative stress and virulence in strains J2315 and K56-2, two epidemic CF isolates belonging to the Burkholderia cenocepacia ET-12 lineage. We previously reported that a single amino acid change from glycine to arginine at residue 378 in homogentisate 1,2-dioxygenase (HmgA) affects the pigment production phenotype: pigmented J2315 has an arginine at position 378, while non-pigmented K56-2 has a glycine at this position. Herein, we performed allelic exchange to generate isogenic non-pigmented and pigmented strains of J2315 and K56-2, respectively, and tested these to determine whether pyomelanin contributes to the protection against oxidative stress in vitro as well as in a respiratory infection in CGD mice in vivo. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist oxidative stress with H2O2 and NO in vitro and did not change the virulence and infection outcome in CGD mice in vivo suggesting that other factors besides pyomelanin are contributing to the pathophysiology of these strains.IMPORTANCEThe Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria that are often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals and overcoming the host cell oxidative burst. We investigated the role of pyomelanin in Burkholderia cenocepacia strains J2315 (pigmented) and K56-2 (non-pigmented) and performed allelic exchange to generate isogenic non-pigmented and pigmented strains, respectively. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist H2O2 or NO in vitro and did not alter the outcome of a respiratory infection in CGD mice in vivo. These results suggest that pyomelanin may not always constitute a virulence factor and suggest that other features are contributing to the pathophysiology of these strains.
Collapse
Affiliation(s)
- Dina A Moustafa
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Linda Wu
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Melissa Ivey
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah C Fankhauser
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biology, Oxford College of Emory University, Oxford, Georgia, USA
| | - Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Van Nieuwenhuyse B, Merabishvili M, Goeders N, Vanneste K, Bogaerts B, de Jode M, Ravau J, Wagemans J, Belkhir L, Van der Linden D. Phage-Mediated Digestive Decolonization in a Gut-On-A-Chip Model: A Tale of Gut-Specific Bacterial Prosperity. Viruses 2024; 16:1047. [PMID: 39066209 PMCID: PMC11281504 DOI: 10.3390/v16071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Infections due to antimicrobial-resistant bacteria have become a major threat to global health. Some patients may carry resistant bacteria in their gut microbiota. Specific risk factors may trigger the conversion of these carriages into infections in hospitalized patients. Preventively eradicating these carriages has been postulated as a promising preventive intervention. However, previous attempts at such eradication using oral antibiotics or probiotics have led to discouraging results. Phage therapy, the therapeutic use of bacteriophage viruses, might represent a worthy alternative in this context. Taking inspiration from this clinical challenge, we built Gut-On-A-Chip (GOAC) models, which are tridimensional cell culture models mimicking a simplified gut section. These were used to better understand bacterial dynamics under phage pressure using two relevant species: Pseudomonas aeruginosa and Escherichia coli. Model mucus secretion was documented by ELISA assays. Bacterial dynamics assays were performed in GOAC triplicates monitored for 72 h under numerous conditions, such as pre-, per-, or post-bacterial timing of phage introduction, punctual versus continuous phage administration, and phage expression of mucus-binding properties. The potential genomic basis of bacterial phage resistance acquired in the model was investigated by variant sequencing. The bacterial "escape growth" rates under phage pressure were compared to static in vitro conditions. Our results suggest that there is specific bacterial prosperity in this model compared to other in vitro conditions. In E. coli assays, the introduction of a phage harboring unique mucus-binding properties could not shift this balance of power, contradicting previous findings in an in vivo mouse model and highlighting the key differences between these models. Genomic modifications were correlated with bacterial phage resistance acquisition in some but not all instances, suggesting that alternate ways are needed to evade phage predation, which warrants further investigation.
Collapse
Affiliation(s)
- Brieuc Van Nieuwenhuyse
- Institute of Experimental and Clinical Research, Pediatric Department (IREC/PEDI), Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Nathalie Goeders
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium (B.B.)
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium (B.B.)
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium (B.B.)
| | - Mathieu de Jode
- Bacterial Diseases, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Joachim Ravau
- Institute of Experimental and Clinical Research, Pediatric Department (IREC/PEDI), Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, KU Leuven, 3000 Leuven, Belgium;
| | - Leïla Belkhir
- Division of Internal Medicine and Infectious Disease, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research (IREC/LTAP), Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
| | - Dimitri Van der Linden
- Institute of Experimental and Clinical Research, Pediatric Department (IREC/PEDI), Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
- Pediatric Infectious Diseases, General Pediatrics Department, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain—UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
10
|
Fujiki J, Nakamura K, Ishiguro Y, Iwano H. Using phage to drive selections toward restoring antibiotic sensitivity in Pseudomonas aeruginosa via chromosomal deletions. Front Microbiol 2024; 15:1401234. [PMID: 38812675 PMCID: PMC11133617 DOI: 10.3389/fmicb.2024.1401234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Phage therapy has re-emerged in modern medicine as a robust antimicrobial strategy in response to the increasing prevalence of antimicrobial-resistant bacteria. However, bacterial resistance to phages can also arise via a variety of molecular mechanisms. In fact, several clinical studies on phage therapy have reported the occurrence of phage-resistant variants, representing a significant concern for the successful development of phage-based therapies. In this context, the fitness trade-offs between phage and antibiotic resistance have revealed new avenues in the field of phage therapy as a countermeasure against phage resistance. This strategy forces to restore the antibiotic susceptibility of antimicrobial-resistant bacteria as compensation for the development of phage resistance. Here, we present the key achievements of these fitness trade-offs, notably focusing on the enhancement of antibiotic sensitivity through the induction of large chromosomal deletions by bacteriophage infection. We also describe the challenges of this strategy that need to be overcome to promote favorable therapeutic outcomes and discuss future directions. The insights gained from the trade-offs between phage and antibiotic sensitivity will help maximize the potential of phage therapy for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Jumpei Fujiki
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Keisuke Nakamura
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yuko Ishiguro
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hidetomo Iwano
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
- Phage Therapy Institute, Waseda University, Tokyo, Japan
| |
Collapse
|
11
|
Eiselt VA, Bereswill S, Heimesaat MM. Phage therapy in lung infections caused by multidrug-resistant Pseudomonas aeruginosa - A literature review. Eur J Microbiol Immunol (Bp) 2024; 14:1-12. [PMID: 38261031 PMCID: PMC10895363 DOI: 10.1556/1886.2023.00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Pulmonary infections of patients with cystic fibrosis (CF) or in intensive care units are frequently caused by the Gram-negative opportunistic pathogen Pseudomonas aeruginosa. Since these bacteria are commonly inherently multidrug-resistant (MDR) and hence, antibiotic treatment options are limited, bacteriophages may provide alternative therapeutic and prophylactic measures in the combat of pneumonia caused by P. aeruginosa. This prompted us to perform a comprehensive literature survey of current knowledge regarding effects of phages applied against pulmonary P. aeruginosa infections. The included 23 studies revealed that P. aeruginosa specific phages lyse and eliminate the bacteria even in case of biofilm production in vitro, whereas application to mice and men resulted in mitigated P. aeruginosa induced clinical signs and enhanced survival. Besides distinct host immune responses, no major adverse effects limiting therapeutic and/or prophylactic phage application were noted. However, the immune system and antibiotics generate synergies with phages due to the mutable sensitivity of P. aeruginosa. In conclusion, results summarized in this review provide evidence that phages constitute promising alternative treatment options for lung infections caused by MDR P. aeruginosa. Further studies are needed, however, to underscore the efficacy and safety aspects of phages application to infected patients including immune-compromised individuals.
Collapse
Affiliation(s)
- Vincent A Eiselt
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Fujiki J, Nakamura K, Nakamura T, Iwano H. Fitness Trade-Offs between Phage and Antibiotic Sensitivity in Phage-Resistant Variants: Molecular Action and Insights into Clinical Applications for Phage Therapy. Int J Mol Sci 2023; 24:15628. [PMID: 37958612 PMCID: PMC10650657 DOI: 10.3390/ijms242115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In recent decades, phage therapy has been overshadowed by the widespread use of antibiotics in Western countries. However, it has been revitalized as a powerful approach due to the increasing prevalence of antimicrobial-resistant bacteria. Although bacterial resistance to phages has been reported in clinical cases, recent studies on the fitness trade-offs between phage and antibiotic resistance have revealed new avenues in the field of phage therapy. This strategy aims to restore the antibiotic susceptibility of antimicrobial-resistant bacteria, even if phage-resistant variants develop. Here, we summarize the basic virological properties of phages and their applications within the context of antimicrobial resistance. In addition, we review the occurrence of phage resistance in clinical cases, and examine fitness trade-offs between phage and antibiotic sensitivity, exploring the potential of an evolutionary fitness cost as a countermeasure against phage resistance in therapy. Finally, we discuss future strategies and directions for phage-based therapy from the aspect of fitness trade-offs. This approach is expected to provide robust options when combined with antibiotics in this era of phage 're'-discovery.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keisuke Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Tomohiro Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Phage Therapy Institute, Waseda University, Tokyo 169-8050, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
- Department of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Phage Therapy Institute, Waseda University, Tokyo 169-8050, Japan
| |
Collapse
|
13
|
Naknaen A, Samernate T, Wannasrichan W, Surachat K, Nonejuie P, Chaikeeratisak V. Combination of genetically diverse Pseudomonas phages enhances the cocktail efficiency against bacteria. Sci Rep 2023; 13:8921. [PMID: 37264114 DOI: 10.1038/s41598-023-36034-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023] Open
Abstract
Phage treatment has been used as an alternative to antibiotics since the early 1900s. However, bacteria may acquire phage resistance quickly, limiting the use of phage treatment. The combination of genetically diverse phages displaying distinct replication machinery in phage cocktails has therefore become a novel strategy to improve therapeutic outcomes. Here, we isolated and studied lytic phages (SPA01 and SPA05) that infect a wide range of clinical Pseudomonas aeruginosa isolates. These relatively small myophages have around 93 kbp genomes with no undesirable genes, have a 30-min latent period, and reproduce a relatively high number of progenies, ranging from 218 to 240 PFU per infected cell. Even though both phages lyse their hosts within 4 h, phage-resistant bacteria emerge during the treatment. Considering SPA01-resistant bacteria cross-resist phage SPA05 and vice versa, combining SPA01 and SPA05 for a cocktail would be ineffective. According to the decreased adsorption rate of the phages in the resistant isolates, one of the anti-phage mechanisms may occur through modification of phage receptors on the target cells. All resistant isolates, however, are susceptible to nucleus-forming jumbophages (PhiKZ and PhiPA3), which are genetically distinct from phages SPA01 and SPA05, suggesting that the jumbophages recognize a different receptor during phage entry. The combination of these phages with the jumbophage PhiKZ outperforms other tested combinations in terms of bactericidal activity and effectively suppresses the emergence of phage resistance. This finding reveals the effectiveness of the diverse phage-composed cocktail for reducing bacterial growth and prolonging the evolution of phage resistance.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Wichanan Wannasrichan
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Cell and Biomolecular Imaging Research Unit (CBIRU), Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Wannasrichan W, Htoo HH, Suwansaeng R, Pogliano J, Nonejuie P, Chaikeeratisak V. Phage-resistant Pseudomonas aeruginosa against a novel lytic phage JJ01 exhibits hypersensitivity to colistin and reduces biofilm production. Front Microbiol 2022; 13:1004733. [PMID: 36274728 PMCID: PMC9583000 DOI: 10.3389/fmicb.2022.1004733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa, a major cause of nosocomial infections, has been categorized by World Health Organization as a critical pathogen urgently in need of effective therapies. Bacteriophages or phages, which are viruses that specifically kill bacteria, have been considered as alternative agents for the treatment of bacterial infections. Here, we discovered a lytic phage targeting P. aeruginosa, designated as JJ01, which was classified as a member of the Myoviridae family due to the presence of an icosahedral capsid and a contractile tail under TEM. Phage JJ01 requires at least 10 min for 90% of its particles to be adsorbed to the host cells and has a latent period of 30 min inside the host cell for its replication. JJ01 has a relatively large burst size, which releases approximately 109 particles/cell at the end of its lytic life cycle. The phage can withstand a wide range of pH values (3–10) and temperatures (4–60°C). Genome analysis showed that JJ01 possesses a complete genome of 66,346 base pairs with 55.7% of GC content, phylogenetically belonging to the genus Pbunavirus. Genome annotation further revealed that the genome encodes 92 open reading frames (ORFs) with 38 functionally predictable genes, and it contains neither tRNA nor toxin genes, such as drug-resistant or lysogenic-associated genes. Phage JJ01 is highly effective in suppressing bacterial cell growth for 12 h and eradicating biofilms established by the bacteria. Even though JJ01-resistant bacteria have emerged, the ability of phage resistance comes with the expense of the bacterial fitness cost. Some resistant strains were found to produce less biofilm and grow slower than the wild-type strain. Among the resistant isolates, the resistant strain W10 which notably loses its physiological fitness becomes eight times more susceptible to colistin and has its cell membrane compromised, compared to the wild type. Altogether, our data revealed the potential of phage JJ01 as a candidate for phage therapy against P. aeruginosa and further supports that even though the use of phages would subsequently lead to the emergence of phage-resistant bacteria, an evolutionary trade-off would make them more sensitive to antibiotics.
Collapse
Affiliation(s)
- Wichanan Wannasrichan
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Rubsadej Suwansaeng
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Vorrapon Chaikeeratisak,
| |
Collapse
|