1
|
Ding J, Hoglund RM, Tagbor H, Tinto H, Valéa I, Mwapasa V, Kalilani-Phiri L, Van Geertruyden JP, Nambozi M, Mulenga M, Hachizovu S, Ravinetto R, D'Alessandro U, Tarning J. Population pharmacokinetics of amodiaquine and piperaquine in African pregnant women with uncomplicated Plasmodium falciparum infections. CPT Pharmacometrics Syst Pharmacol 2024. [PMID: 39228131 DOI: 10.1002/psp4.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the first-line recommended treatment for uncomplicated malaria. Pharmacokinetic (PK) properties in pregnant women are often based on small studies and need to be confirmed and validated in larger pregnant patient populations. This study aimed to evaluate the PK properties of amodiaquine and its active metabolite, desethylamodiaquine, and piperaquine in women in their second and third trimester of pregnancy with uncomplicated P. falciparum infections. Eligible pregnant women received either artesunate-amodiaquine (200/540 mg daily, n = 771) or dihydroartemisinin-piperaquine (40/960 mg daily, n = 755) for 3 days (NCT00852423). Population PK properties were evaluated using nonlinear mixed-effects modeling, and effect of gestational age and trimester was evaluated as covariates. 1071 amodiaquine and 1087 desethylamodiaquine plasma concentrations, and 976 piperaquine plasma concentrations, were included in the population PK analysis. Amodiaquine concentrations were described accurately with a one-compartment disposition model followed by a two-compartment disposition model of desethylamodiaquine. The relative bioavailability of amodiaquine increased with gestational age (1.25% per week). The predicted exposure to desethylamodiaquine was 2.8%-32.2% higher in pregnant women than that reported in non-pregnant women, while day 7 concentrations were comparable. Piperaquine concentrations were adequately described by a three-compartment disposition model. Neither gestational age nor trimester had significant impact on the PK of piperaquine. The predicted exposure and day 7 concentrations of piperaquine were similar to that reported in non-pregnant women. In conclusion, the exposure to desethylamodiaquine and piperaquine was similar to that in non-pregnant women. Dose adjustment is not warranted for women in their second and their trimester of pregnancy.
Collapse
Affiliation(s)
- Junjie Ding
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Harry Tagbor
- University of Health and Allied Sciences, Ho, Ghana
| | | | | | - Victor Mwapasa
- Department of Community and Environmental Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Linda Kalilani-Phiri
- Department of Community and Environmental Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | | | | | - Raffaella Ravinetto
- Public Health Department, Institute of Tropical Medicine, Antwerp, Belgium
- School of Public Health, University of the Western Cape, Cape Town, South Africa
| | - Umberto D'Alessandro
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- The WorldWide Antimalarial Resistance Network, Oxford, UK
| |
Collapse
|
2
|
Unger HW, Acharya S, Arnold L, Wu C, van Eijk AM, Gore-Langton GR, Ter Kuile FO, Lufele E, Chico RM, Price RN, Moore BR, Thriemer K, Rogerson SJ. The effect and control of malaria in pregnancy and lactating women in the Asia-Pacific region. Lancet Glob Health 2023; 11:e1805-e1818. [PMID: 37858590 DOI: 10.1016/s2214-109x(23)00415-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Half of all pregnancies at risk of malaria worldwide occur in the Asia-Pacific region, where Plasmodium falciparum and Plasmodium vivax co-exist. Despite substantial reductions in transmission, malaria remains an important cause of adverse health outcomes for mothers and offspring, including pre-eclampsia. Malaria transmission is heterogeneous, and infections are commonly subpatent and asymptomatic. High-grade antimalarial resistance poses a formidable challenge to malaria control in pregnancy in the region. Intermittent preventive treatment in pregnancy reduces infection risk in meso-endemic New Guinea, whereas screen-and-treat strategies will require more sensitive point-of-care tests to control malaria in pregnancy. In the first trimester, artemether-lumefantrine is approved, and safety data are accumulating for other artemisinin-based combinations. Safety of novel antimalarials to treat artemisinin-resistant P falciparum during pregnancy, and of 8-aminoquinolines during lactation, needs to be established. A more systematic approach to the prevention of malaria in pregnancy in the Asia-Pacific is required.
Collapse
Affiliation(s)
- Holger W Unger
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Obstetrics and Gynaecology, Royal Darwin Hospital, Tiwi, NT, Australia; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Sanjaya Acharya
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Lachlan Arnold
- Royal Melbourne Hospital Clinical School, The University of Melbourne, Parkville, VIC, Australia
| | - Connie Wu
- Royal Melbourne Hospital Clinical School, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Maria van Eijk
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Georgia R Gore-Langton
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Feiko O Ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elvin Lufele
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - R Matthew Chico
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Brioni R Moore
- Curtin Medical School, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia; Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, University of Melbourne, The Doherty Institute, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, The Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Nakijoba R, Nakayiwa Kawuma A, Ojara FW, Tabwenda JC, Kyeyune J, Turyahabwe C, Asiimwe SP, Magoola J, Banda CG, Castelnuovo B, Buzibye A, Waitt C. -Pharmacokinetics of antimalarial drugs used to treat uncomplicated malaria in breastfeeding mother-infant pairs: An observational pharmacokinetic study. Wellcome Open Res 2023; 8:12. [PMID: 37744730 PMCID: PMC10514676 DOI: 10.12688/wellcomeopenres.18512.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Data surrounding the exposure of the breastfed infant to drugs and any associated risks are sparse. Drugs usually are transferred to milk in small quantities, and many have been used without obviously noticeable infant toxicity for many years - this lack of a 'safety signal' has further reduced the interest in studying mother-to-infant transfer of the drugs. In sub-Saharan Africa, pregnant women are at risk of Plasmodium falciparum infection, and one in four women have evidence of placental infection at the time of delivery. Artemisinin-based combination therapies (ACTs), primarily artemether-lumefantrine (AL), are the current first-line treatment for uncomplicated Plasmodium falciparum malaria, with the same dosing recommendations in breastfeeding women as those in the adult population. Dihydroartemisinin-piperaquine (DP) is routinely used as an alternative to AL in Uganda. However, lactation pharmacokinetics (PK) of ACTs are unknown. Pharmacokinetic characterization of anti-malarial transfer to breast milk and breastfed infants is crucial in understanding the potential consequences to the infant, in terms of therapeutic- and prophylactic effects as well as potential toxicity. Methods: This observational study will enroll 30 mother-infant pairs, and aims to characterize the breastmilk transfer of antimalarial medications (AL and DP) to infants when these ACTs are administered to mothers as part of treatment for uncomplicated malaria. In addition, we will assess the mental health of the breastfeeding mothers enrolled as well as the well-being of their children. PK samples of maternal blood, breastmilk and breastfeeding infant's blood will be obtained at specific times points. Pharmacokinetic data will be analyzed using a population pharmacokinetic approach. Conclusions: We anticipate that findings from this research will guide to develop a PK model describing lumefantrine and piperaquine disposition and will provide a framework to foster other lactation pharmacokinetic studies in different disease areas.
Collapse
Affiliation(s)
- Ritah Nakijoba
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
| | - Aida Nakayiwa Kawuma
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
| | - Francis Williams Ojara
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
- Department of Pharmacology and Therapeutics, Gulu University, Gulu, 256, Uganda
| | - Jovia C. Tabwenda
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
| | - Jacqueline Kyeyune
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
| | - Christine Turyahabwe
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
| | - Simon Peter Asiimwe
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
| | - Johnson Magoola
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
| | | | - Barbara Castelnuovo
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
| | - Allan Buzibye
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
| | - Catriona Waitt
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, 256, Uganda
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L69 7BE, UK
| |
Collapse
|
4
|
Moreira FDL, Benzi JRDL, Pinto L, Thomaz MDL, Duarte G, Lanchote VL. Optimizing Therapeutic Drug Monitoring in Pregnant Women: A Critical Literature Review. Ther Drug Monit 2023; 45:159-172. [PMID: 36127797 DOI: 10.1097/ftd.0000000000001039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/18/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND More than 90% of pregnant women take at least one drug during pregnancy. Drug dose adjustments during pregnancy are sometimes necessary due to various pregnancy-induced physiological alterations frequently associated with lower plasma concentrations. However, the clinical relevance or benefits of therapeutic drug monitoring (TDM) in pregnant women have not been specifically studied. Clinical pharmacokinetic studies in pregnant women are incredibly challenging for many reasons. Despite this, regulatory agencies have made efforts to encourage the inclusion of this population in clinical trials to achieve more information on the pharmacotherapy of pregnant women. This review aims to provide support for TDM recommendations and dose adjustments in pregnant women. METHODS The search was conducted after a predetermined strategy on PubMed and Scopus databases using the MeSH term "pregnancy" alongside other terms such as "Pregnancy and dose adjustment," "Pregnancy and therapeutic drug monitoring," "Pregnancy and PBPK," "Pregnancy and pharmacokinetics," and "Pregnancy and physiological changes." RESULTS The main information on TDM in pregnant women is available for antiepileptics, antipsychotics, antidepressants, antibiotics, antimalarials, and oncologic and immunosuppressive drugs. CONCLUSIONS More data are needed to support informed benefit-risk decision making for the administration of drugs to pregnant women. TDM and/or pharmacokinetic studies could ensure that pregnant women receive an adequate dosage of an active drug. Mechanistic modeling approaches potentially could increase our knowledge about the pharmacotherapy of this special population, and they could be used to better design dosage regimens.
Collapse
Affiliation(s)
- Fernanda de Lima Moreira
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Jhohann Richard de Lima Benzi
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Leonardo Pinto
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Matheus de Lucca Thomaz
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Geraldo Duarte
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vera Lucia Lanchote
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| |
Collapse
|
5
|
Lumefantrine plasma concentrations in uncontrolled conditions among patients treated with artemether-lumefantrine for uncomplicated plasmodium falciparum malaria in Mwanza, Tanzania. Int J Infect Dis 2022; 123:192-199. [PMID: 36064162 DOI: 10.1016/j.ijid.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Therapeutic efficacy of artemether-lumefantrine is highly dependent on adequate systemic exposure to the partner drug lumefantrine particularly day 7 lumefantrine plasma concentration. There has been contradicting findings on the role of the cut-off values in predicting treatment outcomes among malaria patients in malaria endemic regions. This study assesses the day 3 and 7 lumefantrine plasma concentrations including related determinant factors and their influence on treatment outcomes among treated Tanzanian children and adults in uncontrolled conditions (real life condition). METHODS Data was nested from an efficacy study employing the WHO protocol, 2015 for monitoring antimalarial drug efficacy. Lumefantrine plasma concentration was measured by high performance liquid chromatography with ultraviolet (HPLC-UV). RESULTS Lumefantrine plasma concentrations below 175ng/ml and 200ng/ml on day 3 and 7 did not affect adequate clinical and parasitological response (ACPR) and recurrence of infection (p = 0.428 and 0.239 respectively). Age and baseline parasitemia were not associated to day 3 median lumefantrine plasma concentrations (p = 0.08 and 0.31 respectively) and day 7 lumefantrine plasma concentrations (p = 0.07 and 0.41 respectively). However, the day 3 and day 7 lumefantrine plasma concentrations were significantly higher in males compared to females (p = 0.03 and 0.042 respectively). CONCLUSION Lumefantrine plasma concentrations below cut-off points (175ng/ml and 200ng/ml) on day 3 and 7 did not influence treatment outcomes.
Collapse
|
6
|
The effect of sickle cell genotype on the pharmacokinetic properties of artemether-lumefantrine in Tanzanian children. Int J Parasitol Drugs Drug Resist 2022; 19:31-39. [PMID: 35617818 PMCID: PMC9133758 DOI: 10.1016/j.ijpddr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Since there are inconsistent data relating to the effect of haemoglobinopathies on disposition of artemisinin antimalarial combination therapy, and none in sickle cell trait (SCT) or sickle cell disease (SCD), the aim of this study was to characterize the pharmacokinetic properties of artemether-lumefantrine (ARM-LUM) in children with SCD/SCT. Thirty-eight Tanzanian children aged 5–10 years with normal (haemoglobin AA; n = 12), heterozygous (haemoglobin AS; n = 14) or homozygous (haemoglobin SS; n = 12) sickle genotypes received six ARM-LUM doses (1.7 mg/kg plus 10 mg/kg, respectively) over 3 days. Sparse venous and mixed-capillary dried blood spot (DBS) samples were taken over 42 days. Plasma and DBS ARM and LUM, and their active metabolites dihydroartemisinin (DHA) and desbutyl-lumefantrine (DBL), were assayed using validated liquid chromatography-mass spectrometry. Multi-compartmental pharmacokinetic models were developed using a population approach. Plasma but not DBS concentrations of ARM/DHA were assessable. The majority (85%) of the 15 measurable values were within 95% prediction intervals from a published population pharmacokinetic ARM/DHA model in Papua New Guinean children of similar age without SCD/SCT who had uncomplicated malaria, and there was no clear sickle genotype clustering. Plasma (n = 38) and corrected DBS (n = 222) LUM concentrations were analysed using a two-compartment model. The median [inter-quartile range] LUM AUC0–∞ was 607,296 [426,480–860,773] μg.h/L, within the range in published studies involving different populations, age-groups and malaria status. DBS and plasma DBL concentrations correlated poorly and were not modelled. These data support use of the conventional ARM-LUM treatment regimen for uncomplicated malaria in children with SCT/SCD. Malaria remains a serious infection in children with sickle cell trait/disease. Artemether-lumefantrine (AL) is first-line therapy in this situation. There are no AL pharmacokinetic data in children with sickle cell disease/trait. AL disposition in Tanzanian children did not differ across sickle genotypes. Recommended AL treatment doses can be given regardless of sickle status.
Collapse
|
7
|
Sugiarto SR, Page-Sharp M, Drinkwater JJ, Davis WA, Salman S, Davis TME. Pharmacokinetic properties of the antimalarial combination therapy artemether-lumefantrine in normal-weight, overweight and obese healthy male adults. Int J Antimicrob Agents 2021; 59:106482. [PMID: 34818520 DOI: 10.1016/j.ijantimicag.2021.106482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022]
Abstract
The component drugs in the widely used antimalarial artemisinin combination therapy artemether-lumefantrine are lipophilic, with the possibility that recommended fixed doses in adults may lead to subtherapeutic concentrations and consequent treatment failure in overweight/obese individuals with malaria. The aim of this study was to investigate the pharmacokinetic properties of artemether, lumefantrine and their active metabolites dihydroartemisinin and desbutyl-lumefantrine in 16 normal-weight, overweight and obese healthy male volunteers [body mass index (BMI) categories ≤25 kg/m², >25-≤30 kg/m² and >30 kg/m², respectively; absolute range 19.3-37.2 kg/m²]. Participants received the conventional six doses of artemether-lumefantrine over 3 days, each dose comprising 80 mg artemether plus 480 mg lumefantrine administered with 6.7 g fat, and blood samples were collected at pre-specified time-points over 14 days. Plasma drug/metabolite concentrations were measured using liquid chromatography-mass spectrometry and included in multi-compartmental population pharmacokinetic models. There was a non-significant trend to a lower area under the plasma concentration-time curve with a higher body weight or BMI for dihydroartemisinin and especially artemether which was attenuated when normalized for mg/kg dose, but this relationship was not evident in the case of the more lipophilic lumefantrine and its metabolite desbutyl-lumefantrine. Simulated Day 7 plasma lumefantrine concentrations were >200 µg/L (the threshold at which Plasmodium falciparum recrudescences are minimized) in all participants. These results indicate that there is no need for artemether-lumefantrine dose modification in overweight and obese patients with malaria.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Madhu Page-Sharp
- Curtin University, School of Pharmacy and Biomedical Sciences, Bentley, Western Australia, Australia
| | - Jocelyn J Drinkwater
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Wendy A Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Sam Salman
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia; Clinical Pharmacology and Toxicology Unit, PathWest, Western Australia, Australia
| | - Timothy M E Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia.
| |
Collapse
|
8
|
Sugiarto SR, Singh B, Page-Sharp M, Davis WA, Salman S, Hii KC, Davis TME. The pharmacokinetic properties of artemether and lumefantrine in Malaysian patients with Plasmodium knowlesi malaria. Br J Clin Pharmacol 2021; 88:691-701. [PMID: 34296469 DOI: 10.1111/bcp.15001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS The aim of this study was to assess the pharmacokinetic properties of artemether, lumefantrine and their active metabolites in Plasmodium knowlesi malaria. METHODS Malaysian adults presenting with uncomplicated P. knowlesi infections received six doses of artemether (1.7 mg/kg) plus lumefantrine (10 mg/kg) over 3 days. Venous blood and dried blood spot (DBS) samples were taken at predetermined time-points over 28 days. Plasma and DBS artemether, dihydroartemisinin, lumefantrine and desbutyl-lumefantrine were measured using liquid chromatography-mass spectrometry. Multi-compartmental population pharmacokinetic models were developed using plasma with or without DBS drug concentrations. RESULTS Forty-one participants (mean age 45 years, 66% males) were recruited. Artemether-lumefantrine treatment was well tolerated and parasite clearance was prompt. Plasma and DBS lumefantrine concentrations were in close agreement and were used together in pharmacokinetic modelling, but only plasma concentrations of the other analytes were used because of poor correlation with DBS levels. The areas under the concentration-time curve (AUC0-∞ ) for artemether, dihydroartemisinin and lumefantrine (medians 1626, 1881 and 625 098 μg.h/L, respectively) were similar to those reported in previous pharmacokinetic studies in adults and children. There was evidence of auto-induction of artemether metabolism (mean increase in clearance relative to bioavailability 25.2% for each subsequent dose). The lumefantrine terminal elimination half-life (median 9.5 days) was longer than reported in healthy volunteers and adults with falciparum malaria. CONCLUSION The disposition of artemether, dihydroartemisinin and lumefantrine in knowlesi malaria largely parallels that in other human malarias. DBS lumefantrine concentrations can be used in pharmacokinetic studies but DBS technology is currently unreliable for the other analytes.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Balbir Singh
- Universiti Malaysia Sarawak (UNIMAS) Malaria Research Centre, Kota Samarahan, Sarawak, Malaysia
| | - Madhu Page-Sharp
- School of Pharmacy, Curtin University of Technology, Bentley, Australia
| | - Wendy A Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Sam Salman
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia.,Clinical Pharmacology and Toxicology, PathWest, Nedlands, Western Australia, Australia.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | | | - Timothy M E Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| |
Collapse
|
9
|
Saito M, Carrara VI, Gilder ME, Min AM, Tun NW, Pimanpanarak M, Viladpai-Nguen J, Paw MK, Haohankhunnatham W, Konghahong K, Phyo AP, Chu C, Turner C, Lee SJ, Duanguppama J, Imwong M, Bancone G, Proux S, Singhasivanon P, White NJ, Nosten F, McGready R. A randomized controlled trial of dihydroartemisinin-piperaquine, artesunate-mefloquine and extended artemether-lumefantrine treatments for malaria in pregnancy on the Thailand-Myanmar border. BMC Med 2021; 19:132. [PMID: 34107963 PMCID: PMC8191049 DOI: 10.1186/s12916-021-02002-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Artemisinin and artemisinin-based combination therapy (ACT) partner drug resistance in Plasmodium falciparum have spread across the Greater Mekong Subregion compromising antimalarial treatment. The current 3-day artemether-lumefantrine regimen has been associated with high treatment failure rates in pregnant women. Although ACTs are recommended for treating Plasmodium vivax malaria, no clinical trials in pregnancy have been reported. METHODS Pregnant women with uncomplicated malaria on the Thailand-Myanmar border participated in an open-label randomized controlled trial comparing dihydroartemisinin-piperaquine (DP), artesunate-mefloquine (ASMQ) and a 4-day artemether-lumefantrine regimen (AL+). The primary endpoint for P. falciparum infections was the PCR-corrected cure rate and for P. vivax infections was recurrent parasitaemia, before delivery or day 63, whichever was longer, assessed by Kaplan-Meier estimate. RESULTS Between February 2010 and August 2016, 511 pregnant women with malaria (353 P. vivax, 142 P. falciparum, 15 co-infections, 1 Plasmodium malariae) were randomized to either DP (n=170), ASMQ (n=169) or AL+ (n=172) treatments. Successful malaria elimination efforts in the region resulted in premature termination of the trial. The majority of women had recurrent malaria (mainly P. vivax relapses, which are not prevented by these treatments). Recurrence-free proportions (95% confidence interval [95% CI]) for vivax malaria were 20.6% (5.1-43.4) for DP (n=125), 46.0% (30.9-60.0) for ASMQ (n=117) and 28.7% (10.0-50.8) for AL+ (n=126). DP and ASMQ provided longer recurrence-free intervals. PCR-corrected cure rates (95% CI) for falciparum malaria were 93.7% (81.6-97.9) for DP (n=49), 79.6% (66.1-88.1) for AMSQ (n=55) and 87.5% (74.3-94.2) for AL+ (n=50). Overall 65% (85/130) of P. falciparum infections had Pfkelch13 propeller mutations which increased over time and recrudescence occurred almost exclusively in them; risk ratio 9.42 (95% CI 1.30-68.29). Among the women with falciparum malaria, 24.0% (95% CI 16.8-33.6) had P. vivax parasitaemia within 4 months. Nausea, vomiting, dizziness and sleep disturbance were more frequent with ASMQ. Miscarriage, small-for-gestational-age and preterm birth did not differ significantly among the treatment groups, including first trimester exposures (n=46). CONCLUSIONS DP was well tolerated and safe, and was the only drug providing satisfactory efficacy for P. falciparum-infected pregnant woman in this area of widespread artemisinin resistance. Vivax malaria recurrences are very common and warrant chloroquine prophylaxis after antimalarial treatment in this area. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT01054248 , registered on 22 January 2010.
Collapse
Affiliation(s)
- Makoto Saito
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Department of Family Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Aung Myat Min
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nay Win Tun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mupawjay Pimanpanarak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Jacher Viladpai-Nguen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Moo Kho Paw
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Warat Haohankhunnatham
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kamonchanok Konghahong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claudia Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sue J Lee
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jureeporn Duanguppama
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Volpe-Zanutto F, Ferreira LT, Permana AD, Kirkby M, Paredes AJ, Vora LK, P. Bonfanti A, Charlie-Silva I, Raposo C, Figueiredo MC, Sousa IM, Brisibe A, Costa FTM, Donnelly RF, Foglio MA. Artemether and lumefantrine dissolving microneedle patches with improved pharmacokinetic performance and antimalarial efficacy in mice infected with Plasmodium yoelii. J Control Release 2021; 333:298-315. [DOI: 10.1016/j.jconrel.2021.03.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
|
11
|
Hughes E, Wallender E, Mohamed Ali A, Jagannathan P, Savic RM. Malaria PK/PD and the Role Pharmacometrics Can Play in the Global Health Arena: Malaria Treatment Regimens for Vulnerable Populations. Clin Pharmacol Ther 2021; 110:926-940. [PMID: 33763871 PMCID: PMC8518425 DOI: 10.1002/cpt.2238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Malaria is an infectious disease which disproportionately effects children and pregnant women. These vulnerable populations are often excluded from clinical trials resulting in one‐size‐fits‐all treatment regimens based on those established for a nonpregnant adult population. Pharmacokinetic/pharmacodynamic (PK/PD) models can be used to optimize dose selection as they define the drug exposure‐response relationship. Additionally, these models are able to identify patient characteristics that cause alterations in the expected PK/PD profiles and through simulations can recommend changes to dosing which compensate for the differences. In this review, we examine how PK/PD models have been applied to optimize antimalarial dosing recommendations for young children, including those who are malnourished, pregnant women, and individuals receiving concomitant therapies such as those for HIV treatment. The malaria field has had great success in utilizing PK/PD models as a foundation to update treatment guidelines and propose the next generation of dosing regimens to investigate in clinical trials. We propose how the malaria field can continue to use modeling to improve therapies by further integrating PK data into clinical studies and including data on drug resistance and host immunity in PK/PD models. Finally, we suggest that other disease areas can achieve similar success in applying pharmacometrics to improve outcomes by implementing three key principals.
Collapse
Affiliation(s)
- Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Ali Mohamed Ali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | | | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Moore BR, Davis TM. Updated pharmacokinetic considerations for the use of antimalarial drugs in pregnant women. Expert Opin Drug Metab Toxicol 2020; 16:741-758. [PMID: 32729740 DOI: 10.1080/17425255.2020.1802425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The association between pregnancy and altered drug pharmacokinetic (PK) properties is acknowledged, as is its impact on drug plasma concentrations and thus therapeutic efficacy. However, there have been few robust PK studies of antimalarial use in pregnancy. Given that inadequate dosing for prevention or treatment of malaria in pregnancy can result in negative maternal/infant outcomes, along with the potential to select for parasite drug resistance, it is imperative that reliable pregnancy-specific dosing recommendations are established. AREAS COVERED PK studies of antimalarial drugs in pregnancy. The present review summarizes the efficacy and PK properties of WHO-recommended therapies used in pregnancy, with a focus on PK studies published since 2014. EXPERT OPINION Changes in antimalarial drug disposition in pregnancy are well described, yet pregnant women continue to receive treatment regimens optimized for non-pregnant adults. Contemporary in silico modeling has recently identified a series of alternative dosing regimens that are predicted to provide optimal therapeutic efficacy for pregnant women.
Collapse
Affiliation(s)
- Brioni R Moore
- School of Pharmacy and Biomedical Sciences, Curtin University , Bentley, Western Australia, Australia.,Medical School, University of Western Australia , Crawley, Western Australia, Australia
| | - Timothy M Davis
- Medical School, University of Western Australia , Crawley, Western Australia, Australia
| |
Collapse
|
13
|
Abdullahi ST, Soyinka JO, Olagunju A, Bolarinwa RA, Olarewaju OJ, Bakare‐Odunola MT, Winterberg M, Tarning J, Owen A, Khoo S. CYP2B6*6 Genotype Specific Differences in Artemether-Lumefantrine Disposition in Healthy Volunteers. J Clin Pharmacol 2020; 60:351-360. [PMID: 31549442 PMCID: PMC7028104 DOI: 10.1002/jcph.1527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of the antimalarial drugs artemether and lumefantrine. Here we investigated the effect of CYP2B6*6 on the plasma pharmacokinetics of artemether, lumefantrine, and their metabolites in healthy volunteers. Thirty healthy and previously genotyped adult volunteers-15 noncarriers (CYP2B6*1/*1) and 15 homozygote carriers (CYP2B6*6/*6)-selected from a cohort of 150 subjects from the Ilorin metropolitan area were administered the complete 3-day course of artemether and lumefantrine (80 and 480 mg twice daily, respectively). Intensive pharmacokinetic sampling was conducted at different time points before and after the last dose. Plasma concentrations of artemether, lumefantrine, dihydroartemisinin, and desbutyllumefantrine were quantified using validated liquid chromatography-mass spectrometric methods. Pharmacokinetic parameters were evaluated using noncompartmental analysis. Artemether clearance of CYP2B6*6/*6 volunteers was nonsignificantly lower by 26% (ratios of geometric mean [90% CI]; 0.74 [0.52-1.05]), and total exposure (the area under the plasma concentration-time curve from time 0 to infinity [AUC0-∞ ]) was greater by 35% (1.35 [0.95-1.93]) when compared with those of *1/*1 volunteers. Similarly, assuming complete bioconversion from artemether, the dihydroartemisinin AUC0-∞ was 22% lower. On the contrary, artemether-to-dihydroartemisinin AUC0-∞ ratio was 73% significantly higher (1.73 [1.27-2.37]). Comparison of lumefantrine exposure and lumefantrine-to-desbutyllumefantrine metabolic ratio of *6/*6 with corresponding data from *1/*1 volunteers showed no differences. The increased artemether-to-dihydroartemisinin metabolic ratio of *6/*6 volunteers is unlikely to result in differences in artemether-lumefantrine efficacy and treatment outcomes. This is the first study in humans to associate CYP2B6*6 genotype with artemether disposition.
Collapse
Affiliation(s)
- Sa'ad T. Abdullahi
- Department of Pharmaceutical ChemistryObafemi Awolowo UniversityIle‐IfeNigeria
- Department of Pharmaceutical & Medicinal ChemistryUniversity of IlorinIlorinNigeria
| | - Julius O. Soyinka
- Department of Pharmaceutical ChemistryObafemi Awolowo UniversityIle‐IfeNigeria
| | - Adeniyi Olagunju
- Department of Pharmaceutical ChemistryObafemi Awolowo UniversityIle‐IfeNigeria
- Department of Molecular & Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Rahman A. Bolarinwa
- Department of HaematologyObafemi Awolowo University Teaching Hospitals ComplexIle‐IfeNigeria
| | - Olusola J. Olarewaju
- Department of HaematologyObafemi Awolowo University Teaching Hospitals ComplexIle‐IfeNigeria
| | | | - Markus Winterberg
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
| | - Joel Tarning
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
| | - Andrew Owen
- Department of Molecular & Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Saye Khoo
- Department of Molecular & Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
14
|
Karbwang J, Na‐Bangchang K. The Role of Clinical Pharmacology in Chemotherapy of Multidrug‐Resistant
Plasmodium falciparum. J Clin Pharmacol 2020; 60:830-847. [DOI: 10.1002/jcph.1589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Juntra Karbwang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
- Department of Clinical Product developmentNagasaki Institute of Tropical MedicineNagasaki University Nagasaki Japan
| | - Kesara Na‐Bangchang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
| |
Collapse
|
15
|
Bretscher MT, Dahal P, Griffin J, Stepniewska K, Bassat Q, Baudin E, D'Alessandro U, Djimde AA, Dorsey G, Espié E, Fofana B, González R, Juma E, Karema C, Lasry E, Lell B, Lima N, Menéndez C, Mombo-Ngoma G, Moreira C, Nikiema F, Ouédraogo JB, Staedke SG, Tinto H, Valea I, Yeka A, Ghani AC, Guerin PJ, Okell LC. The duration of chemoprophylaxis against malaria after treatment with artesunate-amodiaquine and artemether-lumefantrine and the effects of pfmdr1 86Y and pfcrt 76T: a meta-analysis of individual patient data. BMC Med 2020; 18:47. [PMID: 32098634 PMCID: PMC7043031 DOI: 10.1186/s12916-020-1494-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/09/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The majority of Plasmodium falciparum malaria cases in Africa are treated with the artemisinin combination therapies artemether-lumefantrine (AL) and artesunate-amodiaquine (AS-AQ), with amodiaquine being also widely used as part of seasonal malaria chemoprevention programs combined with sulfadoxine-pyrimethamine. While artemisinin derivatives have a short half-life, lumefantrine and amodiaquine may give rise to differing durations of post-treatment prophylaxis, an important additional benefit to patients in higher transmission areas. METHODS We analyzed individual patient data from 8 clinical trials of AL versus AS-AQ in 12 sites in Africa (n = 4214 individuals). The time to PCR-confirmed reinfection after treatment was used to estimate the duration of post-treatment protection, accounting for variation in transmission intensity between settings using hidden semi-Markov models. Accelerated failure-time models were used to identify potential effects of covariates on the time to reinfection. The estimated duration of chemoprophylaxis was then used in a mathematical model of malaria transmission to determine the potential public health impact of each drug when used for first-line treatment. RESULTS We estimated a mean duration of post-treatment protection of 13.0 days (95% CI 10.7-15.7) for AL and 15.2 days (95% CI 12.8-18.4) for AS-AQ overall. However, the duration varied significantly between trial sites, from 8.7-18.6 days for AL and 10.2-18.7 days for AS-AQ. Significant predictors of time to reinfection in multivariable models were transmission intensity, age, drug, and parasite genotype. Where wild type pfmdr1 and pfcrt parasite genotypes predominated (<=20% 86Y and 76T mutants, respectively), AS-AQ provided ~ 2-fold longer protection than AL. Conversely, at a higher prevalence of 86Y and 76T mutant parasites (> 80%), AL provided up to 1.5-fold longer protection than AS-AQ. Our simulations found that these differences in the duration of protection could alter population-level clinical incidence of malaria by up to 14% in under-5-year-old children when the drugs were used as first-line treatments in areas with high, seasonal transmission. CONCLUSION Choosing a first-line treatment which provides optimal post-treatment prophylaxis given the local prevalence of resistance-associated markers could make a significant contribution to reducing malaria morbidity.
Collapse
Affiliation(s)
- Michael T Bretscher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Prabin Dahal
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jamie Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Kasia Stepniewska
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Umberto D'Alessandro
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Abdoulaye A Djimde
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, USA
| | - Emmanuelle Espié
- Epicentre, Paris, France.,Clinical and Epidemiology Department, GSK Vaccines, R&D Center, Wavre, Belgium
| | - Bakary Fofana
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Raquel González
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Elizabeth Juma
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Corine Karema
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Bertrand Lell
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Centre de Recherches Medicales de Lambarene, Lambarene, Gabon
| | - Nines Lima
- Department of Paediatrics, University of Calabar, Calabar, Nigeria
| | - Clara Menéndez
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Medicales de Lambarene, Lambarene, Gabon.,Institute for Tropical Medicine, University of Tubingen, Tubingen, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Moreira
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frederic Nikiema
- Institut de Recherche en Science de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Jean B Ouédraogo
- Institut de Recherche en Science de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Sarah G Staedke
- Department of Clinical Research, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Halidou Tinto
- Institut de Recherche en Science de la Sante, Nanoro, Burkina Faso
| | - Innocent Valea
- Institut de Recherche en Science de la Sante, Nanoro, Burkina Faso
| | - Adoke Yeka
- Uganda Malaria Surveillance Project, Kampala, Uganda
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| |
Collapse
|
16
|
A Randomized Controlled Trial of Three- versus Five-Day Artemether-Lumefantrine Regimens for Treatment of Uncomplicated Plasmodium falciparum Malaria in Pregnancy in Africa. Antimicrob Agents Chemother 2020; 64:AAC.01140-19. [PMID: 31818818 PMCID: PMC7038309 DOI: 10.1128/aac.01140-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/24/2019] [Indexed: 01/09/2023] Open
Abstract
Artemether-lumefantrine antimalarial efficacy in pregnancy could be compromised by reduced drug exposure. Population-based simulations suggested that therapeutic efficacy would be improved if the treatment duration was increased. Artemether-lumefantrine antimalarial efficacy in pregnancy could be compromised by reduced drug exposure. Population-based simulations suggested that therapeutic efficacy would be improved if the treatment duration was increased. We assessed the efficacy, tolerability, and pharmacokinetics of an extended 5-day regimen of artemether-lumefantrine compared to the standard 3-day treatment in 48 pregnant women and 48 nonpregnant women with uncomplicated falciparum malaria in an open-label, randomized clinical trial. Babies were assessed at birth and 1, 3, 6, and 12 months. Nonlinear mixed-effects modeling was used to characterize the plasma concentration-time profiles of artemether and lumefantrine and their metabolites. Both regimens were highly efficacious (100% PCR-corrected cure rates) and well tolerated. Babies followed up to 1 year had normal development. Parasite clearance half-lives were longer in pregnant women (median [range], 3.30 h [1.39 to 7.83 h]) than in nonpregnant women (2.43 h [1.05 to 6.00 h]) (P=0.005). Pregnant women had lower exposures to artemether and dihydroartemisinin than nonpregnant women, resulting in 1.2% decreased exposure for each additional week of gestational age. By term, these exposures were reduced by 48% compared to nonpregnant patients. The overall exposure to lumefantrine was improved with the extended regimen, with no significant differences in exposures to lumefantrine or desbutyl-lumefantrine between pregnant and nonpregnant women. The extended artemether-lumefantrine regimen was well tolerated and safe and increased the overall antimalarial drug exposure and so could be a promising treatment option in pregnancy in areas with lower rates of malaria transmission and/or emerging drug resistance. (This study has been registered at ClinicalTrials.gov under identifier NCT01916954.)
Collapse
|
17
|
Differential Impact of Nevirapine on Artemether-Lumefantrine Pharmacokinetics in Individuals Stratified by CYP2B6 c.516G>T Genotypes. Antimicrob Agents Chemother 2020; 64:AAC.00947-19. [PMID: 31871092 PMCID: PMC7038275 DOI: 10.1128/aac.00947-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
There is an increased recognition of the need to identify and quantify the impact of genetic polymorphisms on drug-drug interactions. This study investigated the pharmacogenetics of the pharmacokinetic drug-drug interaction between nevirapine and artemether-lumefantrine in HIV-positive and HIV-negative adult Nigerian subjects. There is an increased recognition of the need to identify and quantify the impact of genetic polymorphisms on drug-drug interactions. This study investigated the pharmacogenetics of the pharmacokinetic drug-drug interaction between nevirapine and artemether-lumefantrine in HIV-positive and HIV-negative adult Nigerian subjects. Thirty each of HIV-infected patients on nevirapine-based antiretroviral therapy and HIV-negative volunteers without clinical malaria, but with predetermined CYP2B6 c.516GG and TT genotypes, were administered a complete treatment dose of 3 days of artemether-lumefantrine. Rich pharmacokinetic sampling prior to and following the last dose was conducted, and the plasma concentrations of artemether/dihydroartemisinin and lumefantrine/desbutyl-lumefantrine were quantified using tandem mass spectrometry. Pharmacokinetic parameters of artemether-lumefantrine and its metabolites in HIV-infected patients on nevirapine were compared to those in the absence of nevirapine in HIV-negative volunteers. Overall, nevirapine reduced exposure to artemether and desbutyl-lumefantrine by 39 and 34%, respectively. These reductions were significantly greater in GG versus TT subjects for artemether (ratio of geometric mean [90% confidence interval]: 0.42 [0.29 to 0.61] versus 0.81 [0.51 to 1.28]) and for desbutyl-lumefantrine (0.56 [0.43 to 0.74] versus 0.75 [0.56 to 1.00]). On the contrary, it increased exposure to dihydroartemisinin and lumefantrine by 47 and 30%, respectively. These increases were significantly higher in TT versus GG subjects for dihydroartemisinin (1.67 [1.20 to 2.34] versus 1.25 [0.88 to 1.78]) and for lumefantrine (1.51 [1.20 to 1.90] versus 1.08 [0.82 to 1.42]). This study underscores the importance of incorporating pharmacogenetics into all drug-drug interaction studies with potential for genetic polymorphisms to influence drug disposition.
Collapse
|
18
|
Chotsiri P, Denoeud‐Ndam L, Baudin E, Guindo O, Diawara H, Attaher O, Smit M, Guerin PJ, Doumbo OK, Wiesner L, Barnes KI, Hoglund RM, Dicko A, Etard J, Tarning J. Severe Acute Malnutrition Results in Lower Lumefantrine Exposure in Children Treated With Artemether-Lumefantrine for Uncomplicated Malaria. Clin Pharmacol Ther 2019; 106:1299-1309. [PMID: 31152555 PMCID: PMC6896236 DOI: 10.1002/cpt.1531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/08/2019] [Indexed: 01/28/2023]
Abstract
Severe acute malnutrition (SAM) has been reported to be associated with increased malaria morbidity in Sub-Saharan African children and may affect the pharmacology of antimalarial drugs. This population pharmacokinetic (PK)-pharmacodynamic study included 131 SAM and 266 non-SAM children administered artemether-lumefantrine twice daily for 3 days. Lumefantrine capillary plasma concentrations were adequately described by two transit-absorption compartments followed by two distribution compartments. Allometrically scaled body weight and an enzymatic maturation effect were included in the PK model. Mid-upper arm circumference was associated with decreased absorption of lumefantrine (25.4% decreased absorption per 1 cm reduction). Risk of recurrent malaria episodes (i.e., reinfection) were characterized by an interval-censored time-to-event model with a sigmoid maximum-effect model describing the effect of lumefantrine. SAM children were at risk of underexposure to lumefantrine and an increased risk of malaria reinfection compared with well-nourished children. Research on optimized regimens should be considered for malaria treatment in malnourished children.
Collapse
Affiliation(s)
- Palang Chotsiri
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | | | | | | | - Halimatou Diawara
- Malaria Research and Training CentreFaculty of Medicine Pharmacy and DentistryUniversity of BamakoBamakoMali
| | - Oumar Attaher
- Malaria Research and Training CentreFaculty of Medicine Pharmacy and DentistryUniversity of BamakoBamakoMali
| | - Michiel Smit
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Philippe J. Guerin
- WorldWide Antimalarial Resistance Network (WWARN)OxfordUK
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| | - Ogobara K. Doumbo
- Malaria Research and Training CenterFaculté de Médecine et d'Odonto‐stomatologie et Faculté de PharmacieUniversité des Sciences Techniques et Technologies de BamakoBamakoMali
| | - Lubbe Wiesner
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Karen I. Barnes
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
- WorldWide Antimalarial Resistance Network (WWARN)OxfordUK
| | - Richard M. Hoglund
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| | - Alassane Dicko
- Malaria Research and Training CenterFaculté de Médecine et d'Odonto‐stomatologie et Faculté de PharmacieUniversité des Sciences Techniques et Technologies de BamakoBamakoMali
| | - Jean‐Francois Etard
- EpicentreParisFrance
- TransVIHMI UMI 233Institut de recherche pour le développement (IRD)Inserm U 1175Montpellier 1 UniversityMontpellierFrance
| | - Joel Tarning
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- WorldWide Antimalarial Resistance Network (WWARN)OxfordUK
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| |
Collapse
|
19
|
Saito M, Gilder ME, McGready R, Nosten F. Antimalarial drugs for treating and preventing malaria in pregnant and lactating women. Expert Opin Drug Saf 2018; 17:1129-1144. [PMID: 30351243 DOI: 10.1080/14740338.2018.1535593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Malaria in pregnancy and postpartum cause maternal mortality and adverse fetal outcomes. Efficacious and safe antimalarials are needed to treat and prevent such serious consequences. However, because of the lack of evidence on fetal safety, quinine, an old and less efficacious drug has long been recommended for pregnant women. Uncertainty about safety in relation to breastfeeding leads to withholding of efficacious treatments postpartum or cessation of breastfeeding. Areas covered: A search identified literature on humans in three databases (MEDLINE, Embase and Global health) using pregnancy or lactation, and the names of antimalarial drugs as search terms. Adverse reactions to the mother, fetus or breastfed infant were summarized together with efficacies. Expert opinion: Artemisinins are more efficacious and well-tolerated than quinine in pregnancy. Furthermore, the risks of miscarriage, stillbirth or congenital abnormality were not higher in pregnancies exposed to artemisinin derivatives for treatment of malaria than in pregnancies exposed to quinine or in the comparable background population unexposed to any antimalarials, and this was true for treatment in any trimester. Assessment of safety and efficacy of antimalarials including dose optimization for pregnant women is incomplete. Resistance to sulfadoxine-pyrimethamine in Plasmodium falciparum and long unprotected intervals between intermittent treatment doses begs reconsideration of current preventative recommendations in pregnancy. Data remain limited on antimalarials during breastfeeding; while most first-line drugs appear safe, further research is needed.
Collapse
Affiliation(s)
- Makoto Saito
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK.,c WorldWide Antimalarial Resistance Network (WWARN) , Oxford , UK
| | - Mary Ellen Gilder
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand
| | - Rose McGready
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - François Nosten
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
20
|
Volpe Zanutto F, McAlister E, Marucci Pereira Tangerina M, Fonseca-Santos B, Costa Salles TH, Oliveira Souza IM, Brisibe A, Vilegas W, Chorilli M, Akira d'Ávila M, Donnelly RF, Foglio MA. Semisynthetic Derivative of Artemisia annua-Loaded Transdermal Bioadhesive for the Treatment of Uncomplicated Malaria Caused by Plasmodium falciparum in Children. J Pharm Sci 2018; 108:1177-1188. [PMID: 30336154 DOI: 10.1016/j.xphs.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
According to the most recent World Health Organization statistics, malaria infected approximately 219 million people in 2017, with an estimate of 435,000 deaths (World Health Organization, 2018). Communities isolated from cities are the most deprived of access to the necessary hospital facilities. Herein we report the development of a transdermal bioadhesive containing artemether (ART), an alternative, potentially lifesaving, treatment regimen for malaria in low-resource settings. Bioadhesives were prepared from an aqueous blend of hydroxyethylcellulose (4.5% w/w), ART, propoxylated-ethoxylated-cetyl-alcohol, polysorbate 80, propyleneglycol, glycerine, mineral oil, and oleic acid. In this study, the average pore size of bioadhesive 5.5b was 52.6 ± 15.31 μm. Differential scanning calorimetry and thermogravimetric analyses confirm the thermal stability of ART bioadhesives at room temperature. Tensile tests indicated good mechanical properties for bioadhesive 5.5b, when compared to 5.5a, where 5.5b showed elastic modulus 0.19 MPa, elongation at break 204%, tensile stress 0.31 MPa, tensile strength at break 0.23 MPa. Bioadhesion assays suggested that formulations containing surfactants had higher detachment forces. Permeation studies demonstrated that the best outcome was achieved with a bioadhesive containing 25 mg ART (5.5b) that after 24 h released 6971 ± 125 μg, which represents approximately 28% of drug permeation. Data reported presents a promising candidate for a new antimalarial transdermal formulation.
Collapse
Affiliation(s)
- Fabiana Volpe Zanutto
- Graduate School of Bioscience and Technology of Bioactive Products, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil; School of Pharmacy, Queen's University Belfast, Belfast, UK; Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, São Paulo, Brazil
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Bruno Fonseca-Santos
- UNESP-Univ Estadual Paulista, Faculdade de Ciências Farmacêuticas, Araraquara, São Paulo, Brazil
| | | | | | | | - Wagner Vilegas
- UNESP-Univ Estadual Paulista, Instituto de Biociências, São Vicente, São Paulo, Brazil
| | - Marlus Chorilli
- UNESP-Univ Estadual Paulista, Faculdade de Ciências Farmacêuticas, Araraquara, São Paulo, Brazil
| | - Marcos Akira d'Ávila
- School of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Mary Ann Foglio
- Faculty of Pharmaceutical Science, University at Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
21
|
Population Pharmacokinetics of Artemether, Dihydroartemisinin, and Lumefantrine in Rwandese Pregnant Women Treated for Uncomplicated Plasmodium falciparum Malaria. Antimicrob Agents Chemother 2018; 62:AAC.00518-18. [PMID: 30061282 PMCID: PMC6153812 DOI: 10.1128/aac.00518-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The artemisinin-based combination therapy artemether-lumefantrine is commonly used in pregnant malaria patients. However, the effect of pregnancy-related changes on exposure is unclear, and pregnancy has been associated with decreased efficacy in previous studies. This study aimed to characterize the population pharmacokinetics of artemether, its active metabolite dihydroartemisinin, and lumefantrine in 22 Rwandese pregnant women in their second (n = 11) or third (n = 11) trimester with uncomplicated Plasmodium falciparum malaria. These patients were enrolled from Rwamagana district hospital and received the standard fixed oral dose combination of 80 mg of artemether and 480 mg of lumefantrine twice daily for 3 days. Venous plasma concentrations were quantified for all three analytes using liquid chromatography coupled with tandem mass spectroscopy, and data were analyzed using nonlinear mixed-effects modeling. Lumefantrine pharmacokinetics was described by a flexible but highly variable absorption, with a mean absorption time of 4.04 h, followed by a biphasic disposition model. The median area under the concentration-time curve from 0 h to infinity (AUC0-∞) for lumefantrine was 641 h · mg/liter. Model-based simulations indicated that 11.7% of the study population did not attain the target day 7 plasma concentration (280 ng/ml), a threshold associated with increased risk of recrudescence. The pharmacokinetics of artemether was time dependent, and the autoinduction of its clearance was described using an enzyme turnover model. The turnover half-life was predicted to be 30.4 h. The typical oral clearance, which started at 467 liters/h, increased 1.43-fold at the end of treatment. Simulations suggested that lumefantrine pharmacokinetic target attainment appeared to be reassuring in Rwandese pregnant women, particularly compared to target attainment in Southeast Asia. Larger cohorts will be required to confirm this finding.
Collapse
|
22
|
Kloprogge F, Workman L, Borrmann S, Tékété M, Lefèvre G, Hamed K, Piola P, Ursing J, Kofoed PE, Mårtensson A, Ngasala B, Björkman A, Ashton M, Friberg Hietala S, Aweeka F, Parikh S, Mwai L, Davis TME, Karunajeewa H, Salman S, Checchi F, Fogg C, Newton PN, Mayxay M, Deloron P, Faucher JF, Nosten F, Ashley EA, McGready R, van Vugt M, Proux S, Price RN, Karbwang J, Ezzet F, Bakshi R, Stepniewska K, White NJ, Guerin PJ, Barnes KI, Tarning J. Artemether-lumefantrine dosing for malaria treatment in young children and pregnant women: A pharmacokinetic-pharmacodynamic meta-analysis. PLoS Med 2018; 15:e1002579. [PMID: 29894518 PMCID: PMC5997317 DOI: 10.1371/journal.pmed.1002579] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/04/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The fixed dose combination of artemether-lumefantrine (AL) is the most widely used treatment for uncomplicated Plasmodium falciparum malaria. Relatively lower cure rates and lumefantrine levels have been reported in young children and in pregnant women during their second and third trimester. The aim of this study was to investigate the pharmacokinetic and pharmacodynamic properties of lumefantrine and the pharmacokinetic properties of its metabolite, desbutyl-lumefantrine, in order to inform optimal dosing regimens in all patient populations. METHODS AND FINDINGS A search in PubMed, Embase, ClinicalTrials.gov, Google Scholar, conference proceedings, and the WorldWide Antimalarial Resistance Network (WWARN) pharmacology database identified 31 relevant clinical studies published between 1 January 1990 and 31 December 2012, with 4,546 patients in whom lumefantrine concentrations were measured. Under the auspices of WWARN, relevant individual concentration-time data, clinical covariates, and outcome data from 4,122 patients were made available and pooled for the meta-analysis. The developed lumefantrine population pharmacokinetic model was used for dose optimisation through in silico simulations. Venous plasma lumefantrine concentrations 7 days after starting standard AL treatment were 24.2% and 13.4% lower in children weighing <15 kg and 15-25 kg, respectively, and 20.2% lower in pregnant women compared with non-pregnant adults. Lumefantrine exposure decreased with increasing pre-treatment parasitaemia, and the dose limitation on absorption of lumefantrine was substantial. Simulations using the lumefantrine pharmacokinetic model suggest that, in young children and pregnant women beyond the first trimester, lengthening the dose regimen (twice daily for 5 days) and, to a lesser extent, intensifying the frequency of dosing (3 times daily for 3 days) would be more efficacious than using higher individual doses in the current standard treatment regimen (twice daily for 3 days). The model was developed using venous plasma data from patients receiving intact tablets with fat, and evaluations of alternative dosing regimens were consequently only representative for venous plasma after administration of intact tablets with fat. The absence of artemether-dihydroartemisinin data limited the prediction of parasite killing rates and recrudescent infections. Thus, the suggested optimised dosing schedule was based on the pharmacokinetic endpoint of lumefantrine plasma exposure at day 7. CONCLUSIONS Our findings suggest that revised AL dosing regimens for young children and pregnant women would improve drug exposure but would require longer or more complex schedules. These dosing regimens should be evaluated in prospective clinical studies to determine whether they would improve cure rates, demonstrate adequate safety, and thereby prolong the useful therapeutic life of this valuable antimalarial treatment.
Collapse
Affiliation(s)
- Frank Kloprogge
- WorldWide Antimalarial Resistance Network, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Institute for Global Health, University College London, London, United Kingdom
| | - Lesley Workman
- WorldWide Antimalarial Resistance Network, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Steffen Borrmann
- Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Mamadou Tékété
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Kamal Hamed
- Novartis Pharmaceuticals, East Hanover, New Jersey, United States of America
| | | | - Johan Ursing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Danderyds Hospital, Stockholm, Sweden
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Poul Erik Kofoed
- Bandim Health Project, Bissau, Guinea-Bissau
- Department of Paediatrics, Kolding Hospital, Kolding, Denmark
| | - Andreas Mårtensson
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Billy Ngasala
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Michael Ashton
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Friberg Hietala
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
- Pharmetheus, Uppsala, Sweden
| | - Francesca Aweeka
- UCSF School of Pharmacy, San Francisco, California, United States of America
| | - Sunil Parikh
- Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Leah Mwai
- Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Tropical Medicine and Joanna Briggs Institute Affiliate Centre for Evidence Based Health Care Evidence Synthesis and Translation Unit, Afya Research Africa, Nairobi, Kenya
- International Development Research Centre, Ottawa, Ontario, Canada
| | - Timothy M. E. Davis
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Harin Karunajeewa
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Sam Salman
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Francesco Checchi
- Epicentre, Paris, France
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Carole Fogg
- Epicentre, Paris, France
- Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Paul N. Newton
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Lao–Oxford–Mahosot Hospital–Wellcome Trust Research Unit, Vientiane, Laos
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Lao–Oxford–Mahosot Hospital–Wellcome Trust Research Unit, Vientiane, Laos
- Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Laos
| | - Philippe Deloron
- UMR216 Institut de Recherche pour le Développement, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | | | - François Nosten
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Rose McGready
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Michele van Vugt
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Stephane Proux
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Ric N. Price
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Darwin, Northern Territory, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - Juntra Karbwang
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Farkad Ezzet
- Novartis Pharmaceuticals, East Hanover, New Jersey, United States of America
| | | | - Kasia Stepniewska
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Philippe J. Guerin
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
| | - Karen I. Barnes
- WorldWide Antimalarial Resistance Network, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Joel Tarning
- WorldWide Antimalarial Resistance Network, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Sugiarto SR, Davis TME, Salman S. Pharmacokinetic considerations for use of artemisinin-based combination therapies against falciparum malaria in different ethnic populations. Expert Opin Drug Metab Toxicol 2017; 13:1115-1133. [PMID: 29027504 DOI: 10.1080/17425255.2017.1391212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapy (ACT) is used extensively as first-line treatment for uncomplicated falciparum malaria. There has been no rigorous assessment of the potential for racial/ethnic differences in the pharmacokinetic properties of ACTs that might influence their efficacy. Areas covered: A comprehensive literature search was performed that identified 72 publications in which the geographical origin of the patients could be ascertained and the key pharmacokinetic parameters maximum drug concentration (Cmax), area under the plasma concentration-time curve (AUC) and elimination half-life (t½β) were available for one or more of the five WHO-recommended ACTs (artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, dihydroartemisinin-piperaquine and artesunate-sulfadoxine-pyrimethamine). Comparisons of each of the three pharmacokinetic parameters of interest were made by drug (artemisinin derivative and long half-life partner), race/ethnicity (African, Asian, Caucasian, Melanesian, South American) and patient categories based on age and pregnancy status. Expert opinion: The review identified no evidence of a clinically significant influence of race/ethnicity on the pharmacokinetic properties of the nine component drugs in the five ACTs currently recommended by WHO for first-line treatment of uncomplicated falciparum malaria. This provides reassurance for health workers in malaria-endemic regions that ACTs can be given in recommended doses with the expectation of adequate blood concentrations regardless of race/ethnicity.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| | - Timothy M E Davis
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| | - Sam Salman
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| |
Collapse
|
24
|
Tchaparian E, Sambol NC, Arinaitwe E, McCormack SA, Bigira V, Wanzira H, Muhindo M, Creek DJ, Sukumar N, Blessborn D, Tappero JW, Kakuru A, Bergqvist Y, Aweeka FT, Parikh S. Population Pharmacokinetics and Pharmacodynamics of Lumefantrine in Young Ugandan Children Treated With Artemether-Lumefantrine for Uncomplicated Malaria. J Infect Dis 2016; 214:1243-51. [PMID: 27471317 PMCID: PMC5034953 DOI: 10.1093/infdis/jiw338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/23/2016] [Indexed: 12/21/2022] Open
Abstract
Background. The pharmacokinetics and pharmacodynamics of lumefantrine, a component of the most widely used treatment for malaria, artemether-lumefantrine, has not been adequately characterized in young children. Methods. Capillary whole-blood lumefantrine concentration and treatment outcomes were determined in 105 Ugandan children, ages 6 months to 2 years, who were treated for 249 episodes of Plasmodium falciparum malaria with artemether-lumefantrine. Results. Population pharmacokinetics for lumefantrine used a 2-compartment open model with first-order absorption. Age had a significant positive correlation with bioavailability in a model that included allometric scaling. Children not receiving trimethoprim-sulfamethoxazole with capillary whole blood concentrations <200 ng/mL had a 3-fold higher hazard of 28-day recurrent parasitemia, compared with those with concentrations >200 ng/mL (P = .0007). However, for children receiving trimethoprim-sulfamethoxazole, the risk of recurrent parasitemia did not differ significantly on the basis of this threshold. Day 3 concentrations were a stronger predictor of 28-day recurrence than day 7 concentrations. Conclusions. We demonstrate that age, in addition to weight, is a determinant of lumefantrine exposure, and in the absence of trimethoprim-sulfamethoxazole, lumefantrine exposure is a determinant of recurrent parasitemia. Exposure levels in children aged 6 months to 2 years was generally lower than levels published for older children and adults. Further refinement of artemether-lumefantrine dosing to improve exposure in infants and very young children may be warranted.
Collapse
Affiliation(s)
- Eskouhie Tchaparian
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Nancy C Sambol
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | | | - Shelley A McCormack
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Victor Bigira
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Mary Muhindo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Nitin Sukumar
- Yale School of Public Health, New Haven, Connecticut
| | | | - Jordan W Tappero
- Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Sunil Parikh
- Yale School of Public Health, New Haven, Connecticut
| |
Collapse
|
25
|
Mutagonda RF, Kamuhabwa AAR, Minzi OMS, Massawe SN, Maganda BA, Aklillu E. Malaria prevalence, severity and treatment outcome in relation to day 7 lumefantrine plasma concentration in pregnant women. Malar J 2016; 15:278. [PMID: 27177586 PMCID: PMC4866074 DOI: 10.1186/s12936-016-1327-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/04/2016] [Indexed: 12/28/2022] Open
Abstract
Background Day 7 plasma concentrations of lumefantrine (LF) can serve as a marker to predict malaria treatment outcome in different study populations. Two main cut-off points (175 and 280 ng/ml) are used to indicate plasma concentrations of LF, below which treatment failure is anticipated. However, there is limited data on the cumulative risk of recurrent parasitaemia (RP) in relation to day 7 LF plasma concentrations in pregnant women. This study describes the prevalence, severity, factors influencing treatment outcome of malaria in pregnancy and day 7 LF plasma concentration therapeutic cut-off points that predicts treatment outcome in pregnant women. Methods This was a one-arm prospective cohort study whereby 89 pregnant women with uncomplicated Plasmodium falciparum malaria receiving artemether-lumefantrine (ALu) participated in pharmacokinetics and pharmacodynamics study. Blood samples were collected on days 0, 2, 7, 14, 21 and 28 for malaria parasite quantification. LF plasma concentrations were determined on day 7. The primary outcome measure was an adequate clinical and parasitological response (ACPR) after treatment with ALu. Results The prevalence of malaria in pregnant women was 8.1 % (95 % CI 6.85–9.35) of whom 3.4 % (95 % CI 1.49–8.51) had severe malaria. The overall PCR-uncorrected treatment failure rate was 11.7 % (95 % CI 0.54–13.46 %). Low baseline hemoglobin (<10 g/dl) and day 7 LF concentration <600 ng/ml were significant predictors of RP. The median day 7 LF concentration was significantly lower in pregnant women with RP (270 ng/ml) than those with ACPR (705 ng/ml) (p = 0.016). The relative risk of RP was 4.8 folds higher (p = 0.034) when cut-off of <280 ng/ml was compared to ≥280 ng/ml and 7.8-folds higher (p = 0.022) when cut-off of <600 ng/ml was compared to ≥600 ng/ml. The cut-off value of 175 ng/ml was not associated with the risk of RP (p = 0.399). Conclusions Pregnant women with day 7 LF concentration <600 ng/ml are at high risk of RP than those with ≥600 ng/ml. To achieve effective therapeutic outcome, higher day 7 venous plasma LF concentration ≥600 ng/ml is required for pregnant patients than the previously suggested cut-off value of 175 or 280 ng/ml for non-pregnant adult patients.
Collapse
Affiliation(s)
- Ritah F Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania.
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Omary M S Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Siriel N Massawe
- Department of Obstetrics and Gynaecology, School of Medicine, Muhimbili University of Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Betty A Maganda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Department of Laboratory of Medicine, Division of Clinical Pharmacology, Karolinska Institutet, 141 86, Stockholm, Sweden
| |
Collapse
|
26
|
Artemether-Lumefantrine Pharmacokinetics and Clinical Response Are Minimally Altered in Pregnant Ugandan Women Treated for Uncomplicated Falciparum Malaria. Antimicrob Agents Chemother 2015; 60:1274-82. [PMID: 26666942 PMCID: PMC4775973 DOI: 10.1128/aac.01605-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/13/2015] [Indexed: 12/03/2022] Open
Abstract
Artemether-lumefantrine is a first-line regimen for the treatment of uncomplicated malaria during the second and third trimesters of pregnancy. Previous studies have reported changes in the pharmacokinetics and clinical outcomes following treatment with artemether-lumefantrine in pregnant women compared to nonpregnant adults; however, the results are inconclusive. We conducted a study in rural Uganda to compare the pharmacokinetics of artemether-lumefantrine and the treatment responses between 30 pregnant women and 30 nonpregnant adults with uncomplicated Plasmodium falciparum malaria. All participants were uninfected with HIV, treated with a six-dose regimen of artemether-lumefantrine, and monitored clinically for 42 days. The pharmacokinetics of artemether, its metabolite dihydroartemisinin, and lumefantrine were evaluated for 21 days following treatment. We found no significant differences in the overall pharmacokinetics of artemether, dihydroartemisinin, or lumefantrine in a direct comparison of pregnant women to nonpregnant adults, except for a statistically significant but small difference in the terminal elimination half-lives of both dihydroartemisinin and lumefantrine. There were seven PCR-confirmed reinfections (5 pregnant and 2 nonpregnant participants). The observation of a shorter terminal half-life for lumefantrine may have contributed to a higher frequency of reinfection or a shorter posttreatment prophylactic period in pregnant women than in nonpregnant adults. While the comparable overall pharmacokinetic exposure is reassuring, studies are needed to further optimize antimalarial efficacy in pregnant women, particularly in high-transmission settings and because of emerging drug resistance. (This study is registered at ClinicalTrials.gov under registration no. NCT01717885.)
Collapse
|