1
|
Wang X, Xiong L, Wang Y, Yang K, Xiao T, Chi X, Chen T, Zhou Y, Lu P, Dilinuer D, Shen P, Chen Y, Xiao Y. Comparison of the inoculum effect of in vitro antibacterial activity of Imipenem/relebactam and Ceftazidime/avibactam against ESBL-, KPC- and AmpC-producing Escherichia coli and Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 2023; 22:107. [PMID: 38072972 PMCID: PMC10710711 DOI: 10.1186/s12941-023-00660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE To evaluate effect of inoculum size of extended-spectrum β-Lactamase (ESBL)-producing-, AmpC-producing-, and KPC-producing Escherichia coli and Klebsiella pneumoniae on the in vitro antibacterial effects of imipenem/relebactam (IMR) and ceftazidime/avibactam (CZA). METHODS We compared the impact of inoculum size on IMR and CZA of sixteen clinical isolates and three standard isolates through antimicrobial susceptibility tests, time-kill assays and in vitro PK/PD studies. RESULTS When inoculum size increased from 105 to 107 CFU/mL, an inoculum effect was observed for 26.3% (5/19) and 52.6% (10/19) of IMR and CZA, respectively; time-kill assays revealed that the concentration of CZA increased from ≥ 4 × MIC to 16 × MIC to reach 99.9% killing rate against K. pneumoniae ATCC-BAA 1705 (KPC-2-, OXA-9- and SHV-182-producing) and 60,700 (SHV-27- and DHA-1-producing). While for IMR, a concentration from 1 × MIC to 4 × MIC killed 99.9% of the four strains. When the inoculum size increased to 109 CFU/mL, neither IMR nor CZA showed a detectable antibacterial effect, even at a high concentration. An in vitro PK/PD study revealed a clear bactericidal effect when IMR administered as 1.25 g q6h when inoculum size increased. CONCLUSION An inoculum effect on CZA was observed more frequent than that on IMR. Among the β-lactamase-producing strains, the inoculum effect was most common for SHV-producing and KPC-producing strains.
Collapse
Affiliation(s)
- Xueting Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Luying Xiong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Yang
- Fuwai Yunnan Cardiovascular Hospital, Kunming, China
| | - Tingting Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanzi Zhou
- Department of Rheumatology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Ping Lu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dilimulati Dilinuer
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Pin Shen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Bradley JS, Makieieva N, Tøndel C, Roilides E, Kelly MS, Patel M, Vaddady P, Maniar A, Zhang Y, Paschke A, Chen LF. Pharmacokinetics, Safety, and Tolerability of Imipenem/Cilastatin/Relebactam in Children with Confirmed or Suspected Gram-Negative Bacterial Infections: A Phase 1b, Open-Label, Single-Dose Clinical Trial. J Clin Pharmacol 2023; 63:1387-1397. [PMID: 37562063 DOI: 10.1002/jcph.2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Imipenem/cilastatin/relebactam is approved for the treatment of serious gram-negative bacterial infections in adults. This study assessed the pharmacokinetics (PK), safety, and tolerability of a single dose of imipenem/cilastatin/relebactam (with a fixed 2:1 ratio of imipenem/cilastatin to relebactam, and with a maximum dose of 15 mg/kg imipenem and 15 mg/kg cilastatin [≤500 mg imipenem and ≤500 mg cilastatin] and 7.5 mg/kg relebactam [≤250 mg relebactam]) in children with confirmed/suspected gram-negative bacterial infections receiving standard-of-care antibacterial therapy. In this phase 1, noncomparative study (ClinicalTrials.gov identifier, NCT03230916), PK parameters from 46 children were analyzed using both population modeling and noncompartmental analysis. The PK/pharmacodynamic (PD) target for imipenem was percent time of the dosing interval that unbound plasma concentration exceeded the minimum inhibitory concentration (%fT>MIC) of ≥30% (MIC = 2 mcg/mL). For relebactam, the PK/PD target was a free drug area under the plasma concentration-time curve (AUC) normalized to MIC (at 2 mcg/mL) of ≥8.0 (equivalent to an AUC from time zero extrapolated to infinity of ≥20.52 mcg·h/mL). Safety was assessed up to 14 days after drug infusion. For imipenem, the ranges for the geometric mean %fT>MIC and maximum concentration (Cmax ) across age cohorts were 56.5%-93.7% and 32.2-38.2 mcg/mL, respectively. For relebactam, the ranges of the geometric mean Cmax and AUC from 0 to 6 hours across age cohorts were 16.9-21.3 mcg/mL and 26.1-55.3 mcg·h/mL, respectively. In total, 8/46 (17%) children experienced ≥1 adverse events (AEs) and 2/46 (4%) children experienced nonserious AEs that were deemed drug related by the investigator. Imipenem and relebactam exceeded plasma PK/PD targets; single doses of imipenem/cilastatin/relebactam were well tolerated with no significant safety concerns identified. These results informed imipenem/cilastatin/relebactam dose selection for further pediatric clinical evaluation.
Collapse
Affiliation(s)
- John S Bradley
- Department of Pediatrics, University of California San Diego School of Medicine and Rady Children's Hospital of San Diego, San Diego, CA, USA
| | - Nataliia Makieieva
- Department of Pediatrics, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Camilla Tøndel
- Department of Clinical Science, University of Bergen, and Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Emmanuel Roilides
- Third Department of Pediatrics, Infectious Diseases Unit, School of Medicine, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | - Matthew S Kelly
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Pavan Vaddady
- Merck & Co. Inc, Rahway, NJ, USA
- Daiichi Sankyo, Inc., Basking Ridge, NJ, USA
| | | | | | | | | |
Collapse
|
3
|
Barbier F, Hraiech S, Kernéis S, Veluppillai N, Pajot O, Poissy J, Roux D, Zahar JR. Rationale and evidence for the use of new beta-lactam/beta-lactamase inhibitor combinations and cefiderocol in critically ill patients. Ann Intensive Care 2023; 13:65. [PMID: 37462830 DOI: 10.1186/s13613-023-01153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Healthcare-associated infections involving Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) phenotype are associated with impaired patient-centered outcomes and poses daily therapeutic challenges in most of intensive care units worldwide. Over the recent years, four innovative β-lactam/β-lactamase inhibitor (BL/BLI) combinations (ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam and meropenem-vaborbactam) and a new siderophore cephalosporin (cefiderocol) have been approved for the treatment of certain DTR-GNB infections. The literature addressing their microbiological spectrum, pharmacokinetics, clinical efficacy and safety was exhaustively audited by our group to support the recent guidelines of the French Intensive Care Society on their utilization in critically ill patients. This narrative review summarizes the available evidence and unanswered questions on these issues. METHODS A systematic search for English-language publications in PUBMED and the Cochrane Library database from inception to November 15, 2022. RESULTS These drugs have demonstrated relevant clinical success rates and a reduced renal risk in most of severe infections for whom polymyxin- and/or aminoglycoside-based regimen were historically used as last-resort strategies-namely, ceftazidime-avibactam for infections due to Klebsiella pneumoniae carbapenemase (KPC)- or OXA-48-like-producing Enterobacterales, meropenem-vaborbactam for KPC-producing Enterobacterales, ceftazidime-avibactam/aztreonam combination or cefiderocol for metallo-β-lactamase (MBL)-producing Enterobacterales, and ceftolozane-tazobactam, ceftazidime-avibactam and imipenem-relebactam for non-MBL-producing DTR Pseudomonas aeruginosa. However, limited clinical evidence exists in critically ill patients. Extended-infusion scheme (except for imipenem-relebactam) may be indicated for DTR-GNB with high minimal inhibitory concentrations and/or in case of augmented renal clearance. The potential benefit of combining these agents with other antimicrobials remains under-investigated, notably for the most severe presentations. Other important knowledge gaps include pharmacokinetic information in particular situations (e.g., pneumonia, other deep-seated infections, and renal replacement therapy), the hazard of treatment-emergent resistance and possible preventive measures, the safety of high-dose regimen, the potential usefulness of rapid molecular diagnostic tools to rationalize their empirical utilization, and optimal treatment durations. Comparative clinical, ecological, and medico-economic data are needed for infections in whom two or more of these agents exhibit in vitro activity against the causative pathogen. CONCLUSIONS New BL/BLI combinations and cefiderocol represent long-awaited options for improving the management of DTR-GNB infections. Several research axes must be explored to better define the positioning and appropriate administration scheme of these drugs in critically ill patients.
Collapse
Affiliation(s)
- François Barbier
- Médecine Intensive Réanimation, Centre Hospitalier Régional d'Orléans, 14, Avenue de l'Hôpital, 45000, Orléans, France.
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France.
| | - Sami Hraiech
- Médecine Intensive Réanimation, Hôpital Nord, Assistance Publique - Hôpitaux de Marseille, and Centre d'Études et de Recherche sur les Services de Santé et la Qualité de Vie, Université Aix-Marseille, Marseille, France
| | - Solen Kernéis
- Équipe de Prévention du Risque Infectieux, Hôpital Bichat-Claude Bernard, Assistance Publique - Hôpitaux de Paris, and INSERM/IAME, Université Paris Cité, Paris, France
| | - Nathanaël Veluppillai
- Équipe de Prévention du Risque Infectieux, Hôpital Bichat-Claude Bernard, Assistance Publique - Hôpitaux de Paris, and INSERM/IAME, Université Paris Cité, Paris, France
| | - Olivier Pajot
- Réanimation Polyvalente, Hôpital Victor Dupouy, Argenteuil, France
| | - Julien Poissy
- Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Lille, Inserm U1285, Université de Lille, and CNRS/UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Damien Roux
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France
- DMU ESPRIT, Médecine Intensive Réanimation, Hôpital Louis Mourier, Assistance Publique - Hôpitaux de Paris, Colombes, and INSERM/CNRS, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Jean-Ralph Zahar
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France
- Département de Microbiologie Clinique, Hôpital Avicenne, Assistance Publique - Hôpitaux de Paris, Bobigny and INSERM/IAME, Université de Paris, Paris, France
| |
Collapse
|
4
|
Roberts JA, Nicolau DP, Martin-Loeches I, Deryke CA, Losada MC, Du J, Patel M, Rizk ML, Paschke A, Chen LF. Imipenem/cilastatin/relebactam efficacy, safety and probability of target attainment in adults with hospital-acquired or ventilator-associated bacterial pneumonia among patients with baseline renal impairment, normal renal function, and augmented renal clearance. JAC Antimicrob Resist 2023; 5:dlad011. [PMID: 36880088 PMCID: PMC9985325 DOI: 10.1093/jacamr/dlad011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 03/06/2023] Open
Abstract
Objectives To assess the relationship between renal function and efficacy/safety of imipenem/cilastatin/relebactam for the treatment of hospital-acquired/ventilator-associated pneumonia (HABP/VABP) from RESTORE-IMI 2 and determine the PTA. Methods Adults with HABP/VABP were randomized 1:1 to IV imipenem/cilastatin/relebactam 1.25 g or piperacillin/tazobactam 4.5 g every 6 h for 7-14 days. Initial doses were selected by CLCR and adjusted thereafter, as appropriate. Outcomes included Day 28 all-cause mortality (ACM), clinical response, microbiological response and adverse events. Population pharmacokinetic modelling and Monte Carlo simulations assessed PTA. Results The modified ITT population comprised those with normal renal function (n = 188), augmented renal clearance (ARC; n = 88), mild renal impairment (RI; n = 124), moderate RI (n = 109) and severe RI (n = 22). ACM rates were comparable between treatment arms among all baseline renal function categories. Clinical response rates were comparable between treatment arms for participants with RI and normal renal function but were higher (91.7% versus 44.4%) for imipenem/cilastatin/relebactam-treated versus piperacillin/tazobactam-treated participants with CLCR ≥250 mL/min (n = 21). Microbiologic response rates were comparable between treatment arms for participants with RI but higher among those treated with imipenem/cilastatin/relebactam in participants with CLCR ≥90 mL/min (86.6% versus 67.2%). Adverse events were comparable between treatment arms across renal function categories. Joint PTA was >98% for key pathogen MICs for susceptible pathogens (MIC ≤2 mg/L). Conclusions Prescribing information-defined dose adjustments in participants with baseline RI and full dosing of imipenem/cilastatin/relebactam 1.25 g every 6 h for participants with normal renal function or augmented renal clearance achieved sufficiently high drug exposures and favourable safety and efficacy profiles.
Collapse
Affiliation(s)
- Jason A Roberts
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - David P Nicolau
- Center for Anti-Infective Research & Development, Hartford Hospital, Hartford, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Imipenem (IMI)/cilastatin/relebactam (REL) (I/R) is a novel β-lactam/β-lactamase inhibitor combination with expanded microbiologic activity against carbapenem-resistant non-Morganellaceae Enterobacterales (CR-NME) and difficult-to-treat (DTR) Pseudomonas aeruginosa. Relebactam, a bicyclic diazabicyclooctane, has no direct antimicrobial activity but provides reliable inhibition of many Ambler class A and class C enzymes. It is currently approved for the treatment of adult patients with hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP) and those with complicated urinary tract infections (cUTIs) and complicated intra-abdominal infections (cIAIs) when limited or no alternative treatments are available. Given the number of recently approved β-lactams with expanded activity against highly resistant Gram-negative pathogens, this review summarizes the published literature on I/R, with a focus on its similar and distinguishing characteristics relative to those of other recently approved agents. Overall, available data support its use for the treatment of patients with HABP/VABP, cUTI, and cIAI due to CR-NME and DTR P. aeruginosa. Data indicate that I/R retains some activity against CR-NME and DTR P. aeruginosa isolates that are resistant to the newer β-lactams and vice versa, suggesting that susceptibility testing be performed for all the newer agents to determine optimal treatment options for patients with CR-NME and DTR P. aeruginosa infections. Further comparative PK/PD and clinical studies are warranted to determine the optimal role of I/R, alone and in combination, for the treatment of patients with highly resistant Gram-negative infections. Until further data are available, I/R is a potential treatment for patients with CR-NME and DTR P. aeruginosa infections when the benefits outweigh the risks.
Collapse
|
6
|
Klebsiella pneumoniae Susceptibility to Carbapenem/Relebactam Combinations: Influence of Inoculum Density and Carbapenem-to-Inhibitor Concentration Ratio. Biomedicines 2022; 10:biomedicines10061454. [PMID: 35740475 PMCID: PMC9221057 DOI: 10.3390/biomedicines10061454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
The inoculum effect (IE) is a well-known phenomenon with beta-lactams. At the same time, the IE has not been extensively studied with carbapenem/carbapenemase inhibitor combinations. The antibiotic-to-inhibitor concentration ratio used in susceptibility testing can influence the in vitro activity of the combination. To explore the role of these factors, imipenem/relebactam and doripenem/relebactam MICs were estimated against six Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae strains at standard inocula (SI) and high inocula (HI) by two methods: with a fixed relebactam concentration and with a fixed, pharmacokinetic-based carbapenem-to-relebactam concentration ratio. The combination MICs at HI, compared to SI, increased with most of the tested strains. However, the IE occurred with only two K. pneumoniae strains regardless of the MIC testing method. The relationship between the MICs at SI and the respective inoculum-induced MIC changes was observed when the MICs were estimated at pharmacokinetic-based carbapenem-to-relebactam concentration ratios. Thus, (1) IE was observed with both carbapenem/relebactam combinations regardless of the MIC testing method; however, IE was not observed frequently among tested K. pneumoniae strains. (2) At HI, carbapenem/relebactam combination MICs increased to levels associated with carbapenem resistance. (3) Combination MICs determined at pharmacokinetic-based carbapenem-to-inhibitor concentration ratios predict susceptibility elevations at HI in KPC-producing K. pneumoniae.
Collapse
|
7
|
O'Donnell JN, Putra V, Belfiore GM, Maring BL, Young K, Lodise TP. In vitro activity of imipenem/relebactam plus aztreonam against metallo-β-lactamase producing, OprD-deficient Pseudomonas aeruginosa with varying levels of Pseudomonas-derived cephalosporinase production. Int J Antimicrob Agents 2022; 59:106595. [PMID: 35483625 DOI: 10.1016/j.ijantimicag.2022.106595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/07/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Limited treatment options exist for metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa infections. Imipenem/relebactam plus aztreonam may be an option. METHODS Ten OprD(-) P. aeruginosa isolates (3 parent strains; 7 MBL-producers) were evaluated using checkerboard methodology and Fractional Inhibitory Concentration Index (FICI). Isolates exhibiting synergy in checkerboard studies (FICI ≤0.5) were evaluated using 24-hour static concentration time-kill. Bacteria in late log-phase growth were diluted to 1 × 106 cfu/mL and incubated at 37°C for 24 hours. Samples were drawn at 0, 2, 4, 6 and 24 hours. Physiologic fCmax, fCss,avg and fCmin of imipenem (26.7, 5.6, 0.5 mg/L), relebactam (13.1, 4, 0.8 mg/L) and aztreonam (62, 29, 8 mg/L) were used. Synergy in time-kill studies was defined as >2 log10 cfu/mL reduction compared to the most active individual agent. RESULTS Synergy was observed in five isolates in checkerboard studies, including three of seven MBL-producing isolates. Isolates which were OprD(-) and harboured inducible Pseudomonas-derived cephalosporinases (PDCs) did not show synergy as defined by FICI, however aztreonam MICs were significantly reduced with the combination. In time-kill studies, ATM alone was as active as combination regimens for MBL-producing isolates with deleted or inducible PDC production. For strains exhibiting constitutive PDC production, I/R plus ATM was synergistic at fCss,avg concentrations but exhibited similar activity to ATM at fCmin and fCmax concentrations. CONCLUSIONS Imipenem/relebactam plus aztreonam appears to exhibit synergy for some MBL-producing P. aeruginosa at physiologic concentrations. Further study of the effect of dynamic concentrations is needed to understand fully the utility of this combination.
Collapse
Affiliation(s)
- J Nicholas O'Donnell
- Assistant Professor of Pharmacy Practice, Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY, USA.
| | - Vibert Putra
- Graduate Research Assistant, Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Gina M Belfiore
- PharmD Candidate, Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Brittney L Maring
- Research Assistant, Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Katherine Young
- Senior Principal Scientist, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Thomas P Lodise
- Professor of Pharmacy Practice, Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
8
|
Aztreonam in Combination with Imipenem-Relebactam Against Clinical and Isogenic Strains of Serine and Metallo-β-Lactamase-Producing Enterobacterales. Diagn Microbiol Infect Dis 2022; 103:115674. [DOI: 10.1016/j.diagmicrobio.2022.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/28/2022]
|
9
|
Antimicrobial Treatment Options for Difficult-to-Treat Resistant Gram-Negative Bacteria Causing Cystitis, Pyelonephritis, and Prostatitis: A Narrative Review. Drugs 2022; 82:407-438. [PMID: 35286622 PMCID: PMC9057390 DOI: 10.1007/s40265-022-01676-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
Urinary tract infections, including cystitis, acute pyelonephritis, and prostatitis, are among the most common diagnoses prompting antibiotic prescribing. The rise in antimicrobial resistance over the past decades has led to the increasing challenge of urinary tract infections because of multidrug-resistant and "difficult-to-treat resistance" among Gram-negative bacteria. Recent advances in pharmacotherapy and medical microbiology are modernizing how these urinary tract infections are treated. Advances in pharmacotherapy have included not only the development and approval of novel antibiotics, such as ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, ceftolozane/tazobactam, cefiderocol, plazomicin, and glycylcyclines, but also the re-examination of the potential role of legacy antibiotics, including older aminoglycosides and tetracyclines. Recent advances in medical microbiology allow phenotypic and molecular mechanism of resistance testing, and thus antibiotic prescribing can be tailored to the mechanism of resistance in the infecting pathogen. Here, we provide a narrative review on the clinical and pre-clinical studies of drugs that can be used for difficult-to-treat resistant Gram-negative bacteria, with a particular focus on data relevant to the urinary tract. We also offer a pragmatic framework for antibiotic selection when encountering urinary tract infections due to difficult-to-treat resistant Gram-negative bacteria based on the organism and its mechanism of resistance.
Collapse
|
10
|
Predicting the Effects of Carbapenem/Carbapenemase Inhibitor Combinations against KPC-Producing Klebsiella pneumoniae in Time-Kill Experiments: Alternative versus Traditional Approaches to MIC Determination. Antibiotics (Basel) 2021; 10:antibiotics10121520. [PMID: 34943731 PMCID: PMC8698301 DOI: 10.3390/antibiotics10121520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022] Open
Abstract
Traditionally, the antibacterial activity of β-lactam antibiotics in the presence of β-lactamase inhibitors is determined at the fixed inhibitor concentration. This traditional approach does not consider the ratio of antibiotic-to-inhibitor concentrations achieved in humans. To explore whether an alternative pharmacokinetically based approach to estimate MICs in combinations is predictive of antimicrobial efficacy, the effects of imipenem and doripenem alone and in combination with relebactam were studied in time-kill experiments against carbapenemase-producing Klebsiella pneumoniae. The carbapenem-to-relebactam concentration ratios in time-kill assays were equal to the therapeutic 24-h area under the concentration-time curve (AUC) ratios of the drugs (1.5/1). The simulated levels of carbapenem and relebactam were equal to their concentrations achieved in humans. When effects of combined regimens were plotted against respective C/MICs, a sigmoid relationship was obtained only with MICs determined by pharmacokinetically based method. The effectiveness of both carbapenems in the presence of relebactam was comparable by the results of time-kill experiments. These findings suggest that (1) antibiotic/inhibitor MICs determined at a pharmacokinetically based concentration ratio allow an adequate assessment of carbapenem susceptibility in carbapenemase-producing K. pneumoniae strains and can be used to predict antibacterial effects; (2) in time-kill experiments, the effects of imipenem and doripenem in the presence of relebactam are comparable.
Collapse
|
11
|
Treatment of UTIs Due to Klebsiella pneumoniae Carbapenemase-Producers: How to Use New Antibiotic Drugs? A Narrative Review. Antibiotics (Basel) 2021; 10:antibiotics10111332. [PMID: 34827272 PMCID: PMC8615227 DOI: 10.3390/antibiotics10111332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Background: K. pneumoniae is one of the bacteria most frequently causing health care-associated urinary tract infections, and increasingly incriminating Klebsiella pneumoniae carbapenemase producers (KPCp). Most infections caused by KPCp are nosocomial and might cause serious issues, even leading to death in half of the reported cases. Our aim was to identify the best strategy, based on available scientific data, for the use of new antibiotic treatments to manage KPCp UTIs. Methods: this narrative review of the literature was performed according to the criteria of preferred reporting items for systematic review and meta-analyses statement (PRISMA) (2020). Results and Conclusions: KPCp-UTIs are a real challenge for physicians. While cefiderocol, meropenem-vaborbactam, ceftazidim-avibactam, and imipenem-relebactam represent a major step forward in the treatment of these UTIs, no guidelines are currently available, in view of choosing the most appropriate treatment, in each specific case.
Collapse
|
12
|
Sellarès-Nadal J, Eremiev S, Burgos J, Almirante B. An overview of cilastatin + imipenem + relebactam as a therapeutic option for hospital-acquired and ventilator-associated bacterial pneumonia: evidence to date. Expert Opin Pharmacother 2021; 22:1521-1531. [PMID: 34120547 DOI: 10.1080/14656566.2021.1939680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) are prevalent nosocomial infections with a worrisomely increasing prevalence of multidrug-resistant causative organisms, including those with resistance to carbapenems. The addition of relebactam, a β-lactamase inhibitor, to imipenem treatment restores the antimicrobial activity against the most of multidrug-resistant Gram-negative bacteria, including some carrying β-lactamase enzyme-type carbapenemases.Areas covered: The aim of this article is to summarize the current evidence regarding imipenem/relebactam for the treatment of HAP/VAP. The authors discuss its chemistry, pharmacokinetics/pharmacodynamics, microbiology, tolerance and clinical efficacy. The results of clinical trials have demonstrated an efficacy of imipenem/relebactam similar to that of its comparator for the treatment of patients with HAP/VAP. Different studies have also shown its good safety profile, which is better than that of the combination of other β-lactams with other antibiotics.Expert opinion: This drug should be incorporated as a new therapeutic option for the treatment of patients with HAP/VAP, especially as an alternative treatment in patients with confirmed infections caused by multidrug-resistant Gram-negatives.
Collapse
Affiliation(s)
- Júlia Sellarès-Nadal
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.,Spanish Network for the Study of Infectious Diseases (REIPI), Spain
| | - Simeón Eremiev
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.,Spanish Network for the Study of HIV (RIS), Spain
| | - Benito Almirante
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.,Spanish Network for the Study of Infectious Diseases (REIPI), Spain
| |
Collapse
|
13
|
Jorda A, Zeitlinger M. Pharmacological and clinical profile of cefiderocol, a siderophore cephalosporin against gram-negative pathogens. Expert Rev Clin Pharmacol 2021; 14:777-791. [PMID: 33849355 DOI: 10.1080/17512433.2021.1917375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Increasing resistance of gram-negative bacteria poses a serious threat to global health. Thus, efficacious and safe antibiotics against resistant pathogens are urgently needed. Cefiderocol, a siderophore cephalosporin, addresses this unmet need.Areas covered: For this article, we screened all preclinical and clinical studies on cefiderocol published by January 2021 on PubMed. Also, regulatory documents, recent conference contributions, and selected data of antibiotic competitors are reviewed. We provide a comprehensive overview of the mode of action, in vitro and in vivo activity, pharmacokinetics/pharmacodynamics, and human pharmacokinetics. Last, we discuss the efficacy and safety data from the pivotal trials.Expert opinion: Cefiderocol was in vitro potent against virtually all gram-negative pathogens and resistance was rare. The target site pharmacokinetics (i.e. urinary and lung penetration) have been well described in humans and important PK/PD targets were reached. In the clinical trials, cefiderocol was non-inferior to carbapenems in the treatment of complicated urinary tract infections and nosocomial pneumonia. Against carbapenem-resistant gram-negative pathogens, cefiderocol was similar to the best available therapy, which was mainly based on the backbone agent colistin. Overall, a substantial body of evidence supports the clinical use of cefiderocol in patients with gram-negative infections and limited treatment options.
Collapse
Affiliation(s)
- Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Luci G, Mattioli F, Falcone M, Di Paolo A. Pharmacokinetics of Non-β-Lactam β-Lactamase Inhibitors. Antibiotics (Basel) 2021; 10:769. [PMID: 34202609 PMCID: PMC8300739 DOI: 10.3390/antibiotics10070769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
The growing emergence of drug-resistant bacterial strains is an issue to treat severe infections, and many efforts have identified new pharmacological agents. The inhibitors of β-lactamases (BLI) have gained a prominent role in the safeguard of beta-lactams. In the last years, new β-lactam-BLI combinations have been registered or are still under clinical evaluation, demonstrating their effectiveness to treat complicated infections. It is also noteworthy that the pharmacokinetics of BLIs partly matches that of β-lactams companions, meaning that some clinical situations, as well as renal impairment and renal replacement therapies, may alter the disposition of both drugs. Common pharmacokinetic characteristics, linear pharmacokinetics across a wide range of doses, and known pharmacokinetic/pharmacodynamic parameters may guide modifications of dosing regimens for both β-lactams and BLIs. However, comorbidities (i.e., burns, diabetes, cancer) and severe changes in individual pathological conditions (i.e., acute renal impairment, sepsis) could make dose adaptation difficult, because the impact of those factors on BLI pharmacokinetics is partly known. Therapeutic drug monitoring protocols may overcome those issues and offer strategies to personalize drug doses in the intensive care setting. Further prospective clinical trials are warranted to improve the use of BLIs and their β-lactam companions in severe and complicated infections.
Collapse
Affiliation(s)
- Giacomo Luci
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| | - Francesca Mattioli
- Department of Internal Medicine, Pharmacology & Toxicology Unit, University of Genoa, 16100 Genoa, Italy;
| | - Marco Falcone
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| |
Collapse
|
15
|
Mansour H, Ouweini AEL, Chahine EB, Karaoui LR. Imipenem/cilastatin/relebactam: A new carbapenem β-lactamase inhibitor combination. Am J Health Syst Pharm 2021; 78:674-683. [PMID: 33580649 DOI: 10.1093/ajhp/zxab012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The pharmacology, pharmacokinetics, pharmacodynamics, antimicrobial activity, efficacy, safety, and current regulatory status of imipenem/cilastatin/relebactam are reviewed. SUMMARY Imipenem/cilastatin/relebactam is a newly approved anti-infective combination of a well-established β-lactam and a new β-lactamase inhibitor for the treatment of complicated urinary tract infections (cUTIs), including pyelonephritis, and complicated intra-abdominal infections (cIAIs) caused by susceptible gram-negative bacteria in patients 18 years of age or older with limited or no alternative treatment options. The antibiotic is also indicated for the treatment of hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP). The antibiotic is active in vitro against a wide range of pathogens, including multidrug-resistant (MDR) Pseudomonas aeruginosa and carbapenem-resistant Enterobacterales (CRE) such as Klebsiella pneumoniae carbapenemase. The addition of relebactam does not restore the activity of imipenem against metallo-β-lactamase (MBL)-producing Enterobacterales and carbapenem-resistant Acinetobacter baumannii. Two phase 3 clinical trials of imipenem/cilastatin/relebactam were conducted. In the RESTORE-IMI 1 trial, the efficacy and safety of imipenem/cilastatin/relebactam was found to be comparable to that of imipenem/cilastatin plus colistin for the treatment of infections caused by imipenem-nonsusceptible gram-negative bacteria in patients with HABP/VABP, cUTIs, and cIAIs, with a significantly lower incidence of nephrotoxicity reported with the new antibiotic. The RESTORE-IMI 2 trial demonstrated the noninferiority of imipenem/cilastatin/relebactam to piperacillin/tazobactam for the treatment of HABP/VABP. Commonly reported adverse events in clinical trials included anemia, elevated liver enzymes, electrolyte imbalances, nausea, vomiting, diarrhea, headache, fever, phlebitis and/or infusion-site reactions, and hypertension. CONCLUSION Imipenem/cilastatin/relebactam is a new β-lactam/β-lactamase inhibitor combination with activity against MDR gram-negative bacteria, including many CRE but excluding MBL-producing Enterobacterales and carbapenem-resistant Acinetobacter baumannii. It is approved for the treatment of cUTIs, cIAIs, and HABP/VABP.
Collapse
Affiliation(s)
- Hanine Mansour
- Department of Pharmacy Practice, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Ahmad E L Ouweini
- Lebanese American University Medical Center - Rizk Hospital, Beirut, Lebanon.,School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Elias B Chahine
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA
| | - Lamis R Karaoui
- Department of Pharmacy Practice, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
16
|
A Single- and Multiple-Dose Study To Characterize the Pharmacokinetics, Safety, and Tolerability of Imipenem and Relebactam in Healthy Chinese Participants. Antimicrob Agents Chemother 2021; 65:AAC.01391-20. [PMID: 33288637 DOI: 10.1128/aac.01391-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Relebactam/imipenem/cilastatin is approved in the United States to treat complicated urinary tract and intra-abdominal infections in patients who have limited or no alternative treatment options and hospital-acquired bacterial pneumonia (HABP)/ventilator-associated bacterial pneumonia (VABP). Initial pharmacokinetic, safety, and tolerability studies of relebactam with and without imipenem/cilastatin included mostly Caucasian participants. This study evaluated the pharmacokinetics, safety, and tolerability of relebactam/imipenem/cilastatin in 12 healthy Chinese participants after three single doses of increasing concentrations (relebactam at 125, 250, or 500 mg; cilastatin at 250, 500, or 1,000 mg; and imipenem at 250, 500, or 1,000 mg) and after multiple doses every 6 h of a single concentration (relebactam at 250 mg, cilastatin at 500 mg, and imipenem at 500 mg) for 14 days. After single doses, the area under the concentration-time curve (AUC) extrapolated to infinity (relebactam, 15.0 to 70.7 h · mg/liter; imipenem, 24.1 to 109.8 h · mg/liter; cilastatin, 18.4 to 95.3 h · mg/liter) and the AUC from 0 to 6 h (relebactam, 14.2 to 66.3 h · mg/liter; imipenem, 23.4 to 107.3 h · mg/liter; cilastatin, 18.3 to 94.4 h · mg/liter) increased in a dose-dependent manner; clearance (relebactam, 6.9 to 8.3 liters/h; imipenem, 8.6 to 10.4 liters/h; cilastatin, 10.5 to 13.6 liters/h) and half-life (relebactam, 1.4 to 1.6 h; imipenem, 1.0 to 1.2 h; cilastatin, 0.7 to 1.0 h) were consistent between doses. Pharmacokinetic parameters after multiple doses were similar to parameters after a single dose (geometric mean ratios of 0.8 to 1.0 for all three agents). Relebactam/imipenem/cilastatin was well tolerated; mild adverse events occurred during single dosing, and one participant experienced serious adverse events after multiple doses. Pharmacokinetics and safety data are comparable with data from participants of other ethnicities, supporting the use of relebactam/imipenem/cilastatin at the approved dose and schedule in Chinese patients.
Collapse
|
17
|
Abstract
Imipenem/cilastatin/relebactam (Recarbrio™) is an intravenously administered combination of the carbapenem imipenem, the renal dehydropeptidase-I inhibitor cilastatin, and the novel β-lactamase inhibitor relebactam. Relebactam is a potent inhibitor of class A and class C β-lactamases, conferring imipenem activity against many imipenem-nonsusceptible strains. Imipenem/cilastatin/relebactam is approved in the USA and EU for the treatment of hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) in adults and other gram-negative infections, including complicated urinary tract infections (cUTIs) [including pyelonephritis] and complicated intra-abdominal infections (cIAIs), in adults with limited or no alternative treatment options. In pivotal phase II and III trials, imipenem/cilastatin/relebactam was noninferior to piperacillin/tazobactam in patients with HABP/VABP and to imipenem/cilastatin in patients with cUTIs and cIAIs. It was also effective in imipenem-nonsusceptible infections. Imipenem/cilastatin/relebactam was generally well tolerated, with a safety profile consistent with that of imipenem/cilastatin. Available evidence indicates that imipenem/cilastatin/relebactam is an effective and generally well tolerated option for gram-negative infections in adults, including critically ill and/or high-risk patients, and a potential therapy for infections caused by carbapenem-resistant pathogens.
Collapse
Affiliation(s)
- Young-A Heo
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
18
|
Campanella TA, Gallagher JC. A Clinical Review and Critical Evaluation of Imipenem-Relebactam: Evidence to Date. Infect Drug Resist 2020; 13:4297-4308. [PMID: 33268997 PMCID: PMC7701153 DOI: 10.2147/idr.s224228] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Imipenem-relebactam (I-R) is a novel beta-lactam/beta-lactamase inhibitor combination given with cilastatin. It is indicated for the treatment of complicated urinary tract infections, complicated intra-abdominal infections, and hospital-acquired or ventilator-associated bacterial pneumonia. A literature search was completed to evaluate the evidence to date of I-R. I-R has in vitro activity against multidrug-resistant organisms including carbapenem-resistant Pseudomonas aeruginosa and extended-spectrum beta-lactamase and carbapenem-resistant Enterobacterales. It was granted FDA approval following the promising results of two phase II clinical trials in patients with complicated urinary tract infections and complicated intra-abdominal infections. The most common adverse drug events associated with I-R were nausea (6%), diarrhea (6%), and headache (4%). I-R is a new beta-lactam/beta-lactamase inhibitor combination that will be most likely used for patients with multidrug-resistant gram-negative infections in which there are limited or no available alternative treatment options.
Collapse
Affiliation(s)
- Toni A Campanella
- Department of Pharmacy, Jefferson Health Northeast, Philadelphia, PA, USA
| | - Jason C Gallagher
- Department of Pharmacy Practice, Temple University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Imipenem/Cilastatin/Relebactam Alone and in Combination against Pseudomonas aeruginosa in the In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother 2020; 64:AAC.01764-20. [PMID: 33139283 DOI: 10.1128/aac.01764-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Combination therapy may enhance imipenem/cilastatin/relebactam's (I/R) activity against Pseudomonas aeruginosa and suppress resistance development. Human-simulated unbound plasma concentrations of I/R at 1.25 g every 6 h (h), colistin at 360 mg daily, and amikacin at 25 mg/kg daily were reproduced alone and in combination against six imipenem-nonsusceptible P. aeruginosa isolates in an in vitro pharmacodynamic model over 24 h. For I/R alone, the mean reductions in CFU ± the standard errors by 24 h were -2.52 ± 0.49, -1.49 ± 0.49, -1.15 ± 0.67, and -0.61 ± 0.10 log10 CFU/ml against isolates with MICs of 1/4, 2/4, 4/4, and 8/4 μg/ml, respectively. Amikacin alone also resulted in 24 h CFU reductions consistent with its MIC, while colistin CFU reductions did not differ. Resistant subpopulations were observed after 24 h in 1, 4, and 3 I/R-, colistin-, and amikacin-exposed isolates, respectively. The combination of I/R and colistin resulted in synergistic (n = 1) or additive (n = 2) interactions against three isolates with 24-h CFU reductions ranging from -2.62 to -4.67 log10 CFU/ml. The combination of I/R and amikacin exhibited indifferent interactions against all isolates, with combined drugs achieving -0.51- to -3.33-log10 CFU/ml reductions. No resistant subpopulations were observed during I/R and colistin combination studies, and when added to amikacin, I/R prevented the emergence of amikacin resistance. Against these six multidrug-resistant P. aeruginosa, I/R alone achieved significant CFU reductions against I/R-susceptible isolates. Combinations of I/R plus colistin resulted in additivity or synergy against some P. aeruginosa, whereas the addition of amikacin did not provide further antibacterial efficacy against these isolates.
Collapse
|
20
|
Kuiper S, Leegwater E, Wilms E, van Nieuwkoop C. Evaluating imipenem + cilastatin + relebactam for the treatment of complicated urinary tract infections. Expert Opin Pharmacother 2020; 21:1805-1811. [DOI: 10.1080/14656566.2020.1790525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S.G. Kuiper
- Department of Internal Medicine, Haga Teaching Hospital, The Hague, Netherlands
| | - E. Leegwater
- Department of Hospital Pharmacy, Haga Teaching Hospital, The Hague, Netherlands
- Apotheek Haagse Ziekenhuizen, The Hague, Netherlands
| | - E.B. Wilms
- Department of Hospital Pharmacy, Haga Teaching Hospital, The Hague, Netherlands
- Apotheek Haagse Ziekenhuizen, The Hague, Netherlands
| | - C. van Nieuwkoop
- Department of Internal Medicine, Haga Teaching Hospital, The Hague, Netherlands
| |
Collapse
|
21
|
Bhagunde P, Colon‐Gonzalez F, Liu Y, Wu J, Xu SS, Garrett G, Jumes P, Lasseter K, Marbury T, Rizk ML, Lala M, Rhee EG, Butterton JR, Boundy K. Impact of renal impairment and human organic anion transporter inhibition on pharmacokinetics, safety and tolerability of relebactam combined with imipenem and cilastatin. Br J Clin Pharmacol 2020; 86:944-957. [PMID: 31856304 PMCID: PMC7163372 DOI: 10.1111/bcp.14204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 01/22/2023] Open
Abstract
AIMS Two phase 1, open-label studies were conducted to investigate the effect of renal impairment (RI) and organic anion transporter (OAT) inhibition on pharmacokinetics (PK) and safety of relebactam (REL) plus imipenem/cilastatin (IMI). METHODS Study PN005 evaluated the PK of REL (125 mg) plus IMI (250 mg) in participants with RI vs healthy controls. Study PN019 evaluated the PK of REL (250 mg) and imipenem (500 mg; dosed as IMI) with/without probenecid (1 g; OAT inhibitor) in healthy adults. RESULTS Geometric mean ratios (RI/healthy matched controls) of area under the concentration-time curve from time 0 to infinity (AUC0-∞ ; 90% confidence interval) for REL, imipenem and cilastatin increased as RI increased from mild (1.6 [1.1, 2.4], 1.4 [1.1, 1.8] and 1.6 [1.0, 2.5], respectively) to severe (4.9 [3.4, 7.0], 2.5 [1.9, 3.3] and 5.6 [3.6, 8.6], respectively). For all 3 analytes, plasma and renal clearance decreased and corresponding plasma apparent terminal half-life increased with increasing RI. Geometric mean ratios ([probenecid+IMI/REL]/[IMI/REL]) of plasma exposure for REL and imipenem were 1.24 (1.19, 1.28) and 1.16 (1.13, 1.20), respectively. The dose fraction excreted (fe) in the urine decreased progressively from mild to severe RI. Probenecid reduced renal clearance of REL and imipenem by 25 and 31%, respectively. Compared with IMI/REL, coadministration of IMI/REL with probenecid yielded lower fe for REL and imipenem. In both studies, treatment was well tolerated; there were no serious adverse events or discontinuations due to adverse events. CONCLUSION RI increased plasma exposure and similarly decreased clearance of REL, imipenem and cilastatin; IMI/REL dose adjustment (fixed-ratio) will be required for patients with RI. Probenecid had no clinically meaningful impact on the PK of REL or imipenem.
Collapse
Affiliation(s)
| | | | - Yang Liu
- Merck & Co., Inc.KenilworthNJUSA
| | - Jin Wu
- Merck & Co., Inc.KenilworthNJUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Safety and Pharmacokinetic Characterization of Nacubactam, a Novel β-Lactamase Inhibitor, Alone and in Combination with Meropenem, in Healthy Volunteers. Antimicrob Agents Chemother 2020; 64:AAC.02229-19. [PMID: 32041717 PMCID: PMC7179653 DOI: 10.1128/aac.02229-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
Nacubactam is a novel β-lactamase inhibitor with dual mechanisms of action as an inhibitor of serine β-lactamases (classes A and C and some class D) and an inhibitor of penicillin binding protein 2 in Enterobacteriaceae. The safety, tolerability, and pharmacokinetics of intravenous nacubactam were evaluated in single- and multiple-ascending-dose, placebo-controlled studies. Healthy participants received single ascending doses of nacubactam of 50 to 8,000 mg, multiple ascending doses of nacubactam of 1,000 to 4,000 mg every 8 h (q8h) for up to 7 days, or nacubactam of 2,000 mg plus meropenem of 2,000 mg q8h for 6 days after a 3-day lead-in period. Nacubactam is a novel β-lactamase inhibitor with dual mechanisms of action as an inhibitor of serine β-lactamases (classes A and C and some class D) and an inhibitor of penicillin binding protein 2 in Enterobacteriaceae. The safety, tolerability, and pharmacokinetics of intravenous nacubactam were evaluated in single- and multiple-ascending-dose, placebo-controlled studies. Healthy participants received single ascending doses of nacubactam of 50 to 8,000 mg, multiple ascending doses of nacubactam of 1,000 to 4,000 mg every 8 h (q8h) for up to 7 days, or nacubactam of 2,000 mg plus meropenem of 2,000 mg q8h for 6 days after a 3-day lead-in period. Nacubactam was generally well tolerated, with the most frequently reported adverse events (AEs) being mild to moderate complications associated with intravenous access and headache. There was no apparent relationship between drug dose and the pattern, incidence, or severity of AEs. No clinically relevant dose-related trends were observed in laboratory safety test results. No serious AEs, dose-limiting AEs, or deaths were reported. After single or multiple doses, nacubactam pharmacokinetics appeared linear, and exposure increased in an approximately dose-proportional manner across the dose range investigated. Nacubactam was excreted largely unchanged into urine. Coadministration of nacubactam with meropenem did not significantly alter the pharmacokinetics of either drug. These findings support the continued clinical development of nacubactam and demonstrate the suitability of meropenem as a potential β-lactam partner for nacubactam.
(The studies described in this paper have been registered at ClinicalTrials.gov under NCT02134834 [single ascending dose study] and NCT02972255 [multiple ascending dose study].)
Collapse
|
23
|
Boundy K, Liu Y, Bhagunde P, O'Reilly TE, Colon-Gonzalez F, Friedman EJ, Lala M, Rhee EG, Rizk ML. Thorough QTc Study of a Single Supratherapeutic Dose of Relebactam in Healthy Participants. Clin Pharmacol Drug Dev 2020; 9:466-475. [PMID: 32212418 DOI: 10.1002/cpdd.786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/02/2020] [Indexed: 11/11/2022]
Abstract
The effects of supratherapeutic doses of intravenous (IV) relebactam on duration of ventricular depolarization and subsequent repolarization were assessed in a thorough QT/corrected QT study. This was a single-dose, double-blind (relebactam only), randomized, placebo- and positive-controlled, 3-period, balanced crossover study in healthy participants. Participants received in randomized order, and separated by a washout (≥4 days), a single dose of IV relebactam 1150 mg, oral moxifloxacin 400 mg (open-label positive control), and IV placebo. Least squares mean and 2-sided 90% confidence interval for change from baseline in population-derived corrected QT intervals for relebactam, moxifloxacin, and placebo were estimated for 24 hours. The upper limit of the 90% confidence interval of all least squares mean population-derived corrected QT treatment differences from placebo was not >10 milliseconds at any time point for 24 hours. Corrected QT assay sensitivity was confirmed with moxifloxacin treatment. Analysis of electrocardiogram parameters resulted in no additional cardiac safety concerns. Overall, a supratherapeutic dose of relebactam yielded no cardiac safety events; the 1150-mg supratherapeutic dose (4.6-fold above the 250-mg therapeutic dose) was not associated with QT prolongation or other abnormal cardiodynamic parameters. This study lends additional support to relebactam's use as a β-lactamase inhibitor in antimicrobial therapy.
Collapse
Affiliation(s)
| | - Yang Liu
- Merck & Co, Inc, Kenilworth, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Activity of Imipenem-Relebactam and Meropenem-Vaborbactam against Carbapenem-Resistant, SME-Producing Serratia marcescens. Antimicrob Agents Chemother 2020; 64:AAC.02255-19. [PMID: 31932381 DOI: 10.1128/aac.02255-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023] Open
Abstract
The Serratia marcescens enzyme (SME) is a chromosomally encoded carbapenemase with no known optimal treatment. Various β-lactam/β-lactamase inhibitors and comparators were evaluated against 8 SME producers via broth microdilution. Four isolates were subsequently tested via time-kill analyses. All isolates were resistant to imipenem, imipenem-relebactam, and meropenem but susceptible to ceftazidime, ceftazidime-avibactam, and meropenem-vaborbactam. Ceftazidime, imipenem-relebactam, and meropenem-vaborbactam were bactericidal against 3, 0, and 4 isolates, respectively. Meropenem-vaborbactam may be a potential option for severe SME-producing infections.
Collapse
|
25
|
Smith JR, Rybak JM, Claeys KC. Imipenem-Cilastatin-Relebactam: A Novel β-Lactam-β-Lactamase Inhibitor Combination for the Treatment of Multidrug-Resistant Gram-Negative Infections. Pharmacotherapy 2020; 40:343-356. [PMID: 32060929 DOI: 10.1002/phar.2378] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imipenem-cilastatin-relebactam (IMI-REL) is a novel β-lactam-β-lactamase inhibitor combination recently approved for the treatment of complicated urinary tract infections (cUTIs) and complicated intraabdominal infections (cIAIs). Relebactam is a β-lactamase inhibitor with the ability to inhibit a broad spectrum of β-lactamases such as class A and class C β-lactamases, including carbapenemases. The addition of relebactam to imipenem restores imipenem activity against several imipenem-resistant bacteria, including Enterobacteriaceae and Pseudomonas aeruginosa. Clinical data demonstrate that IMI-REL is well tolerated and effective in the treatment of cUTIs and cIAIs due to imipenem-resistant bacteria. In a phase III trial comparing IMI-REL with imipenem plus colistin, favorable clinical response was achieved in 71% and 70% of patients, respectively. Available clinical and pharmacokinetic data support the approved dosage of a 30-minute infusion of imipenem 500 mg-cilastatin 500 mg-relebactam 250 mg every 6 hours, along with dosage adjustments based on renal function. In this review, we describe the chemistry, mechanism of action, spectrum of activity, pharmacokinetics and pharmacodynamics, and clinical efficacy, and safety and tolerability of this new agent. The approval of IMI-REL represents another important step in the ongoing fight against multidrug-resistant gram-negative pathogens.
Collapse
Affiliation(s)
- Jordan R Smith
- Department of Clinical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina.,Cone Health, Greensboro, North Carolina
| | - Jeffrey M Rybak
- Department of Clinical Pharmacy and Translational Science, University of Tennessee College of Pharmacy, Memphis, Tennessee
| | | |
Collapse
|
26
|
Charlier C, Dang J, Woerther PL. In-hospital management of acute complicated urinary tract infections. Nephrol Ther 2019; 15 Suppl 1:S27-S32. [PMID: 30981392 DOI: 10.1016/j.nephro.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Upper tract urinary tract infections that require hospitalization have been the focus of national recommendations in 2018 by the French society of infectious diseases (Spilf). We here propose to discuss several complex-challenging situations: severe infection with sepsis, pyelonephritis in the pregnant woman, management of infections involving multiresistant bacteria and infection in polycystic kidney disease.
Collapse
Affiliation(s)
- Caroline Charlier
- Université de Paris, 12, rue de l'École-de-Médecine, 75270 Paris cedex 06, France; Service de maladies infectieuses et tropicales, centre hospitalier universitaire Necker-Enfants-Malades, Assistance publique-Hôpitaux de Paris, 149, rue de Sèvres, 75015 Paris, France; Institut Imagine, 24, boulevard de Montparnasse, 75015 Paris, France; Centre national de référence, centre collaborateur OMS Listeria, Institut Pasteur, 25-28, rue du Docteur- Roux, 75724 Paris, France; Inserm U1117, unité de biologie des infections, 28, rue du Docteur-Roux, 75724 Paris cedex 15, France.
| | - Julien Dang
- Institut Imagine, 24, boulevard de Montparnasse, 75015 Paris, France; Service de néphrologie, centre hospitalier universitaire Necker-Enfants-Malades, 149, rue de Sèvres, 75015 Paris, France
| | - Paul-Louis Woerther
- Unité de bactériologie, groupe hospitalier Henri-Mondor, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil cedex, France; Université Paris-Est-Créteil-Val-de-Marne, avenue du Général-de-Gaulle, 94010 Créteil cedex, France
| |
Collapse
|
27
|
Bhagunde P, Patel P, Lala M, Watson K, Copalu W, Xu M, Kulkarni P, Young K, Rizk ML. Population Pharmacokinetic Analysis for Imipenem-Relebactam in Healthy Volunteers and Patients With Bacterial Infections. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:748-758. [PMID: 31508899 PMCID: PMC6813166 DOI: 10.1002/psp4.12462] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/10/2019] [Indexed: 12/21/2022]
Abstract
Relebactam is a small‐molecule β‐lactamase inhibitor developed as a fixed‐dose combination with imipenem/cilastatin. The pharmacokinetics of relebactam and imipenem across 10 clinical studies were analyzed using data from adult healthy volunteers and patients with bacterial infections. Renal function estimated by creatinine clearance significantly affected the clearance of both compounds, whereas weight and health status were of less clinical significance. Simulations were used to calculate probability of joint target attainment (ratio of free drug area under the curve from 0 to 24 hours to minimum inhibitory concentration (MIC) for relebactam and percentage of time the free drug concentration exceeded the MIC for imipenem) for the proposed imipenem/relebactam dose of 500/250 mg, with adjustments for patients with renal impairment, administered as a 30‐minute intravenous infusion four times daily. These dosing regimens provide sufficient antibacterial coverage (MIC ≤ 4 μg/mL) for all renal groups.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Xu
- Merck& Co., Inc., Kenilworth, New Jersey, USA
| | | | | | | |
Collapse
|
28
|
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019; 32:32/4/e00031-19. [PMID: 31462403 PMCID: PMC6730496 DOI: 10.1128/cmr.00031-19] [Citation(s) in RCA: 498] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.
Collapse
Affiliation(s)
- Juan P Horcajada
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Milagro Montero
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Antonio Oliver
- Service of Microbiology, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Sorlí
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Sònia Luque
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Natividad Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Bhagunde P, Zhang Z, Racine F, Carr D, Wu J, Young K, Rizk ML. A translational pharmacokinetic/pharmacodynamic model to characterize bacterial kill in the presence of imipenem-relebactam. Int J Infect Dis 2019; 89:55-61. [PMID: 31479762 DOI: 10.1016/j.ijid.2019.08.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES Relebactam is a small molecule β-lactamase inhibitor under clinical investigation for use as a fixed-dose combination with imipenem/cilastatin. Here we present a translational pharmacokinetic/pharmacodynamic mathematical model to support optimal dose selection of relebactam. METHODS Data derived from in vitro checkerboard and hollow fiber infection studies of imipenem-resistant strains of Pseudomonas aeruginosa were incorporated into the model. The model integrates the effect of relebactam concentration on imipenem susceptibility in a semi-mechanistic manner using the checkerboard data and characterizes the bacterial time-kill profiles from the hollow fiber infection model data. RESULTS Simulations demonstrated that the ratio of the area under the concentration-time curve for free drug to the minimum inhibitory concentration (fAUC/MIC) was the pharmacokinetic driver for relebactam, with a target fAUC/MIC=7.5 associated with 2-log kill. At a clinical dose of 250mg relebactam, greater than 2-log reductions in bacterial load are projected for imipenem-resistant strains with an imipenem/relebactam MIC≤4μg/mL. CONCLUSIONS The study confirms that the pharmacokinetic/pharmacodynamic driver for relebactam is fAUC/MIC, that an fAUC/MIC ratio of 7.5 is associated with 2-log kill in vitro, and that a 250mg clinical dose of relebactam achieves this target value when delivered in combination with imipenem/cilastatin.
Collapse
Affiliation(s)
| | - Zufei Zhang
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Fred Racine
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Donna Carr
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Jin Wu
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Katherine Young
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Matthew L Rizk
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA.
| |
Collapse
|
30
|
In Vitro Activity of Imipenem-Relebactam Alone or in Combination with Amikacin or Colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.00997-19. [PMID: 31262769 DOI: 10.1128/aac.00997-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Relebactam is a novel class A/C β-lactamase inhibitor that restores imipenem in vitro activity against multidrug-resistant and carbapenem-nonsusceptible Pseudomonas aeruginosa Time-kill analyses were performed to evaluate the potential role of imipenem-relebactam in combination with amikacin or colistin against P. aeruginosa Ten clinical P. aeruginosa isolates (9 imipenem nonsusceptible) with imipenem-relebactam MICs ranging from 1/4 to 8/4 μg/ml were included. The isolates had varied susceptibilities to imipenem (1 to 32 μg/ml), amikacin (4 to 128 μg/ml), and colistin (0.5 to 1 μg/ml). Duplicate 24-h time-kill studies were conducted using the average steady-state concentrations (Cssavg) observed after the administration of imipenem-relebactam at 500 mg/250 mg every 6 hours (q6h) alone and in combination with the Cssavg of 25 mg/kg of body weight/day amikacin and 360 mg/day colistin in humans. Imipenem-relebactam alone resulted in 24-h bacterial densities of -2.93 ± 0.38, -1.67 ± 0.29, +0.38 ± 0.96, and +0.15 ± 0.65 log10 CFU/ml at imipenem-relebactam MICs of 1/4, 2/4, 4/4, and 8/4 μg/ml, respectively. No synergy was demonstrated against the single imipenem-susceptible isolate. Against the imipenem-nonsusceptible isolates (n = 9), imipenem-relebactam combined with amikacin resulted in synergy (-2.61 ± 1.50 log10 CFU/ml) against all amikacin-susceptible isolates and in two of three amikacin-intermediate (i.e., MIC, 32 μg/ml) isolates (-2.06 ± 0.19 log10 CFU/ml). Synergy with amikacin was not observed when the amikacin MIC was >32 μg/ml. Imipenem-relebactam combined with colistin demonstrated synergy in eight out of the nine imipenem-resistant isolates (-3.17 ± 1.00 log10 CFU/ml). Against these 10 P. aeruginosa isolates, imipenem-relebactam combined with either amikacin or colistin resulted in synergistic activity against the majority of strains. Further studies evaluating combination therapy with imipenem-relebactam are warranted.
Collapse
|
31
|
Monogue ML, Nicolau DP. Pharmacokinetics-pharmacodynamics of β-lactamase inhibitors: are we missing the target? Expert Rev Anti Infect Ther 2019; 17:571-582. [PMID: 31340665 DOI: 10.1080/14787210.2019.1647781] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: β-lactamase production in Gram-negative bacteria is a leading cause of antimicrobial resistance. β-lactamase inhibitors are therapeutic agents used in combination with a partner antimicrobial to overcome the production of these enzymes and restore antimicrobial activity. To address the ongoing threat of multi-drug resistant bacteria, a recent wave of β-lactamase inhibitor development has occurred. Emphasis on the pharmacokinetics and pharmacodynamics of these agents is needed to optimize their clinical impact. Areas covered: This review will describe methods currently used to define the pharmacokinetics/pharmacodynamics of β-lactamase inhibitors. Minimal focus will be on the structure and mechanism of β-lactamase inhibitors. Emphasis will be placed on the use of specific thresholds to normalize β-lactamase inhibitor exposure. In vitro and in vivo pharmacokinetic/pharmacodynamic data specific to FDA approved and pipeline β-lactamase inhibitors will be explored. Expert opinion: Describing the exposure-response relationship of β-lactamase inhibitors is an ongoing challenge due to the dynamic relationship of the β-lactamase inhibitor with the active partner compound. Pharmacokinetic/pharmacodynamic indices and target exposures lack generalizability, as they are often specific to the infecting organism and/or β-lactamase, rather than β-lactamase inhibitor class. Selected dosage regimens of new agents should be validated via the use of population target attainment analyses.
Collapse
Affiliation(s)
- Marguerite L Monogue
- a Center for Anti-infective Research and Development, Hartford Hospital , Hartford , CT , USA.,b Department of Pharmacy, University of Texas Southwestern , Dallas , TX , USA
| | - David P Nicolau
- a Center for Anti-infective Research and Development, Hartford Hospital , Hartford , CT , USA.,c Division of Infectious Diseases, Hartford Hospital , Hartford , CT , USA
| |
Collapse
|
32
|
Reck F, Bermingham A, Blais J, Casarez A, Colvin R, Dean CR, Furegati M, Gamboa L, Growcott E, Li C, Lopez S, Metzger L, Nocito S, Ossola F, Phizackerley K, Rasper D, Shaul J, Shen X, Simmons RL, Tang D, Tashiro K, Yue Q. IID572: A New Potentially Best-In-Class β-Lactamase Inhibitor. ACS Infect Dis 2019; 5:1045-1051. [PMID: 30861342 DOI: 10.1021/acsinfecdis.9b00031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resistance in Gram-negative bacteria to β-lactam drugs is mediated primarily by the expression of β-lactamases, and co-dosing of β-lactams with a β-lactamase inhibitor (BLI) is a clinically proven strategy to address resistance. New β-lactamases that are not impacted by existing BLIs are spreading and creating the need for development of novel broader spectrum BLIs. IID572 is a novel broad spectrum BLI of the diazabicyclooctane (DBO) class that is able to restore the antibacterial activity of piperacillin against piperacillin/tazobactam-resistant clinical isolates. IID572 is differentiated from other DBOs by its broad inhibition of β-lactamases and the lack of intrinsic antibacterial activity.
Collapse
Affiliation(s)
- Folkert Reck
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Alun Bermingham
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Johanne Blais
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Anthony Casarez
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Richard Colvin
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charles R. Dean
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Markus Furegati
- Synthesis and Technologies Group, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, Basel 4057, Switzerland
| | - Luis Gamboa
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Ellena Growcott
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Cindy Li
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Sara Lopez
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Louis Metzger
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Sandro Nocito
- Synthesis and Technologies Group, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, Basel 4057, Switzerland
| | - Flavio Ossola
- Synthesis and Technologies Group, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, Basel 4057, Switzerland
| | - Kaci Phizackerley
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Dita Rasper
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Jacob Shaul
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Xiaoyu Shen
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Robert L. Simmons
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Dazhi Tang
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Kyuto Tashiro
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Qin Yue
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
33
|
Voulgaris GL, Voulgari ML, Falagas ME. Developments on antibiotics for multidrug resistant bacterial Gram-negative infections. Expert Rev Anti Infect Ther 2019; 17:387-401. [PMID: 31006284 DOI: 10.1080/14787210.2019.1610392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Introduction: The constantly increasing spread of severe infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB) is a critical threat to the global medical community. After a long period of antibiotic pipeline pause, new antibiotic compounds are commercially available or are at late stages of clinical evaluation, promising to augment the therapeutic armamentarium of clinicians against deadly pathogens. Areas covered: This review summarizes available data regarding agents with potent activity against critical MDR Gram-negative pathogens, which urgently require new efficient antibiotics. Recently approved antibiotic formulations; and agents in advanced stages of development, including combinations of β-lactam/β-lactamase inhibitor, novel cephalosporins (cefiderocol), tetracyclines (eravacycline), aminoglycosides (plazomicin), quinolones (delafloxacin and finafloxacin) and pleuromutilins (lefamulin) are discussed in this review. Expert opinion: The recent introduction of new antibiotics into clinical practice is an encouraging step after a long period of pipeline stagnation. New formulations will be a useful option for clinicians to treat serious infections caused by several MDR Gram-negative pathogens. However, most of the new compounds are based on modifications of traditional antibiotic structures challenging their longevity as therapeutic options. More investment is needed for the discovery and clinical development of truly innovative and effective antibiotics without cross-resistance to currently used antibiotics.
Collapse
Affiliation(s)
- Georgios L Voulgaris
- a Alfa Institute of Biomedical Sciences , Athens , Greece.,b Laboratory of Pharmacokinetics and Toxicology , Department of Pharmacy, 401 General Military Hospital , Athens , Greece
| | - Maria L Voulgari
- a Alfa Institute of Biomedical Sciences , Athens , Greece.,c Department of Internal Medicine , Hospital Neuwittelsbach of the Sisters of Mercy , Munich , Germany
| | - Matthew E Falagas
- a Alfa Institute of Biomedical Sciences , Athens , Greece.,d Department of Medicine , Henry Dunant Hospital Center , Athens , Greece.,e Department of Medicine , Tufts University School of Medicine , Boston , MA , USA
| |
Collapse
|
34
|
In Vitro Activity of the New β-Lactamase Inhibitors Relebactam and Vaborbactam in Combination with β-Lactams against Mycobacterium abscessus Complex Clinical Isolates. Antimicrob Agents Chemother 2019; 63:AAC.02623-18. [PMID: 30642943 DOI: 10.1128/aac.02623-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022] Open
Abstract
Pulmonary disease due to infection with Mycobacterium abscessus complex (MABC) is notoriously difficult to treat, in large part due to the intrinsic resistance of MABC strains to most antibiotics, including β-lactams. MABC organisms express a broad-spectrum β-lactamase that is resistant to traditional β-lactam-based β-lactamase inhibitors but inhibited by a newer non-β-lactam-based β-lactamase inhibitor, avibactam. Consequently, the susceptibility of MABC members to some β-lactams is increased in the presence of avibactam. Therefore, we hypothesized that two new non-β-lactam-based β-lactamase inhibitors, relebactam and vaborbactam, would also increase the susceptibility of MABC organisms to β-lactams. The objective of the present study was to evaluate the in vitro activity of various marketed β-lactams alone and in combination with either relebactam or vaborbactam against multidrug-resistant MABC clinical isolates. Our data demonstrate that both β-lactamase inhibitors significantly improved the anti-MABC activity of many carbapenems (including imipenem and meropenem) and cephalosporins (including cefepime, ceftaroline, and cefuroxime). As a meropenem-vaborbactam combination is now marketed and an imipenem-relebactam combination is currently in phase III trials, these fixed combinations may become the β-lactams of choice for the treatment of MABC infections. Furthermore, given the evolving interest in dual β-lactam regimens, our results identify select cephalosporins, such as cefuroxime, with superior activity in the presence of a β-lactamase inhibitor that are deserving of further evaluation in combination with these carbapenem-β-lactamase inhibitor products.
Collapse
|
35
|
Karaiskos I, Galani I, Souli M, Giamarellou H. Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin Drug Metab Toxicol 2019; 15:133-149. [PMID: 30626244 DOI: 10.1080/17425255.2019.1563071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The burden of antimicrobial resistance among Gram-negative bacteria is increasing and growing into a major threat of public health. Treatment options for carbapenem-resistant Enterobacteriaceae are limited and resistance rates to existing compounds are mounting. The pipeline includes only a small number of novel anti-infective agents in development or in the market with promising results against multidrug-resistant (MDR) Gram-negative. Areas covered: Herein the authors present the modern available knowledge regarding novel β-lactam-β-lactamase inhibitors, i.e. mechanisms of action, in vitro activity, current PK/PDs, clinical trials and clinical efficacy against MDR and XDR Gram-negatives, as well as toxicity issues. Expert opinion: Ceftazidime-avibactam and meropenem-vaborbactam are promising therapeutic options as both are active against Enterobacteriaceae producing ESBL, AmpC, and KPC, whereas only avibactam inhibits certain class D β-lactamases, mainly OXA-48. New drugs active against Gram-negative MDR isolates including imipenem/cilastatin with relebactam and avibactam combined with aztreonam or ceftaroline are in different stages of development. However, the disadvantage to be seriously considered by the clinician is that β-lactam/β-lactamase inhibitors are ineffective against metallo-β-lactamases (with the exception of aztreonam-avibactam) as well as Acinetobacter baumannii.
Collapse
Affiliation(s)
- Ilias Karaiskos
- a 1st Department of Internal Medicine-Infectious Diseases , Hygeia General Hospital , Athens , Greece
| | - Irene Galani
- b 4th Department of Internal Medicine , University General Hospital ATTIKON, National and Kapodistrian University of Athens , Athens , Greece
| | - Maria Souli
- b 4th Department of Internal Medicine , University General Hospital ATTIKON, National and Kapodistrian University of Athens , Athens , Greece
| | - Helen Giamarellou
- a 1st Department of Internal Medicine-Infectious Diseases , Hygeia General Hospital , Athens , Greece
| |
Collapse
|
36
|
Lala M, Brown M, Kantesaria B, Walker B, Paschke A, Rizk ML. Simplification of Imipenem Dosing by Removal of Weight-Based Adjustments. J Clin Pharmacol 2018; 59:646-653. [PMID: 30536420 DOI: 10.1002/jcph.1356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/14/2018] [Indexed: 11/06/2022]
Abstract
In patients with renal insufficiency, dose adjustments based on creatinine clearance and body weight have been a component of imipenem dosage instructions. The objective of the current analysis was to provide revised dosing recommendations by evaluating the impact of creatinine clearance and body weight on the pharmacokinetics of imipenem. A population pharmacokinetics model was developed with data from 465 patients and 3300 pharmacokinetic samples. Simulations provided data to support revision of the dosing recommendations to remove body weight-adjusted dosing, and the analysis formed the basis for updates that are reflected on the current imipenem label for both the United States and Europe. The optimized regimen provided an advantage in terms of improved target attainment at breakpoint minimum inhibitory concentration values of 1 and 2 μg/mL, as low-body-weight patients maintained >90% probability of target attainment compared to <90% probability of target attainment achieved with the previously approved regimen. It was concluded that additional dose adjustments for body weight were not necessary and the new scheme would simplify dosing while maintaining patient safety and efficacy.
Collapse
|