1
|
van Groesen E, Mons E, Kotsogianni I, Arts M, Tehrani KHME, Wade N, Lysenko V, Stel FM, Zwerus JT, De Benedetti S, Bakker A, Chakraborty P, van der Stelt M, Scheffers DJ, Gooskens J, Smits WK, Holden K, Gilmour PS, Willemse J, Hitchcock CA, van Hasselt JGC, Schneider T, Martin NI. Semisynthetic guanidino lipoglycopeptides with potent in vitro and in vivo antibacterial activity. Sci Transl Med 2024; 16:eabo4736. [PMID: 39110780 DOI: 10.1126/scitranslmed.abo4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Gram-positive bacterial infections present a major clinical challenge, with methicillin- and vancomycin-resistant strains continuing to be a cause for concern. In recent years, semisynthetic vancomycin derivatives have been developed to overcome this problem as exemplified by the clinically used telavancin, which exhibits increased antibacterial potency but has also raised toxicity concerns. Thus, glycopeptide antibiotics with enhanced antibacterial activities and improved safety profiles are still necessary. We describe the development of a class of highly potent semisynthetic glycopeptide antibiotics, the guanidino lipoglycopeptides, which contain a positively charged guanidino moiety bearing a variable lipid group. These glycopeptides exhibited enhanced in vitro activity against a panel of Gram-positive bacteria including clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant strains, showed minimal toxicity toward eukaryotic cells, and had a low propensity for resistance selection. Mechanistically, guanidino lipoglycopeptides engaged with bacterial cell wall precursor lipid II with a higher binding affinity than vancomycin. Binding to both wild-type d-Ala-d-Ala lipid II and the vancomycin-resistant d-Ala-d-Lac variant was confirmed, providing insight into the enhanced activity of guanidino lipoglycopeptides against vancomycin-resistant isolates. The in vivo efficacy of guanidino lipoglycopeptide EVG7 was evaluated in a S. aureus murine thigh infection model and a 7-day sepsis survival study, both of which demonstrated superiority to vancomycin. Moreover, the minimal to mild kidney effects at supratherapeutic doses of EVG7 indicate an improved therapeutic safety profile compared with vancomycin. These findings position guanidino lipoglycopeptides as candidates for further development as antibacterial agents for the treatment of clinically relevant multidrug-resistant Gram-positive infections.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Elma Mons
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Nicola Wade
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Vladyslav Lysenko
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Florence M Stel
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Jordy T Zwerus
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Alexander Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Parichita Chakraborty
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Jairo Gooskens
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Wiep Klaas Smits
- Experimental Bacteriology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Kirsty Holden
- Evotec (U.K.) Ltd., Alderley Park, Macclesfield, Cheshire, SK10 4TG UK
| | | | - Joost Willemse
- Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | | | - J G Coen van Hasselt
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, Netherlands
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| |
Collapse
|
2
|
Yamamoto K, Sato T, Hao A, Asao K, Kaguchi R, Kusaka S, Ruddarraju RR, Kazamori D, Seo K, Takahashi S, Horiuchi M, Yokota SI, Lee SY, Ichikawa S. Development of a natural product optimization strategy for inhibitors against MraY, a promising antibacterial target. Nat Commun 2024; 15:5085. [PMID: 38877016 PMCID: PMC11178787 DOI: 10.1038/s41467-024-49484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
MraY (phospho-N-acetylmuramoyl-pentapeptide-transferase) inhibitory natural products are attractive molecules as candidates for a new class of antibacterial agents to combat antimicrobial-resistant bacteria. Structural optimization of these natural products is required to improve their drug-like properties for therapeutic use. However, chemical modifications of these natural products are painstaking tasks due to complex synthetic processes, which is a bottleneck in advancing natural products to the clinic. Here, we develop a strategy for a comprehensive in situ evaluation of the build-up library, which enables us to streamline the preparation of the analogue library and directly assess its biological activities. We apply this approach to a series of MraY inhibitory natural products. Through construction and evaluation of the 686-compound library, we identify promising analogues that exhibit potent and broad-spectrum antibacterial activity against highly drug-resistant strains in vitro as well as in vivo in an acute thigh infection model. Structures of the MraY-analogue complexes reveal distinct interaction patterns, suggesting that these analogues represent MraY inhibitors with unique binding modes. We further demonstrate the generality of our strategy by applying it to tubulin-binding natural products to modulate their tubulin polymerization activities.
Collapse
Grants
- 22K20704 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H03622 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP19K16648 MEXT | Japan Society for the Promotion of Science (JSPS)
- 19H03345 MEXT | Japan Society for the Promotion of Science (JSPS)
- 18H04599 MEXT | Japan Society for the Promotion of Science (JSPS)
- 20H04757 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP19ak0101118h0001 Japan Agency for Medical Research and Development (AMED)
- 21ak0101118h9903 Japan Agency for Medical Research and Development (AMED)
- JP18am0101093j0002 Japan Agency for Medical Research and Development (AMED)
- JP22ama121039 Japan Agency for Medical Research and Development (AMED)
- JP23gm1610012 Japan Agency for Medical Research and Development (AMED)
- JP23gm1610013 Japan Agency for Medical Research and Development (AMED)
- JST START Program: ST211004JO Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) from the Ministry of Education, Culture, Sport, Science, and Technology in Japan, MEXT for the Joint Research Program of the Research Center for Zoonosis Control, Hokkaido University
- the Duke Science Technology Scholar Fund
- Takeda Foundation, The Tokyo Biomedical Research Foundation and was partly supported by Hokkaido University, Global Facility Center (GFC), Pharma Science Open Unit (PSOU), funded by MEXT under "Support Program for Implementation of New Equipment Sharing System"
Collapse
Affiliation(s)
- Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Aili Hao
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kenta Asao
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Shintaro Kusaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | | | - Daichi Kazamori
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624, Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Kiki Seo
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624, Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Satoshi Takahashi
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Minami-1, Nishi-16, Chuo-ku, Sapporo, 060-8543, Japan
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Minami-1, Nishi-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami-1, Nishi-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Sapporo, Japan.
| |
Collapse
|
3
|
Dalton BR. What Is the Best Vancomycin Therapeutic Drug Monitoring Parameter to Assess Efficacy? A Critical Review of Experimental Data and Assessment of the Need for Individual Patient Minimum Inhibitory Concentration Value. Microorganisms 2023; 11:microorganisms11030567. [PMID: 36985141 PMCID: PMC10051726 DOI: 10.3390/microorganisms11030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Therapeutic drug monitoring is recommended for the use of vancomycin, but a recent widely publicized US medical society consensus statement has changed the suggested optimal method(s) of dose adjustment. Specifically, 24 h area under the curve (AUC24)-based monitoring is has been recommended for vancomycin in preference to monitoring of trough concentrations. One reason cited for this change is the claim that AUC24 is a superior correlate to efficacy than trough (Cmin). Evidence from a number of retrospective analyses have been critically reviewed and determined to have weaknesses. This narrative review focuses on the experimental studies performed in vivo in animal models of infection and in vitro to determine the extent to which these data may provide a compelling distinction between pharmacokinetic/pharmacodynamics (PKPD) parameters that may translate to clinical use in therapeutic drug monitoring. Animal in vivo studies have been presented at conferences, but no original peer reviewed studies could be found that compare various PKPD parameters. These conference proceeding findings were supportive but unconvincing, even though they were favorably presented subsequently in review articles and clinical practice guidelines. In vitro data are somewhat conflicting, but the range of concentrations may play a role in the discrepancies found. It has been suggested that MIC may be assumed to have a value of 1 mg/L; however, it can be demonstrated that this assumption may lead to considerable discrepancy from results with an actual MIC value. The AUC24 parameter has been weighed against the percentage of time above the MIC (%T > MIC) as a comparative PKPD parameter, yet this may be an inappropriate comparison for vancomycin since all clinically useful dosing provides 100% T > MIC. Regardless, there is a distinction between clinical TDM parameters and PKPD parameters, so, in practice, the change to AUC24:MIC based on animal experiments and in vitro evidence for vancomycin may be premature.
Collapse
Affiliation(s)
- Bruce R Dalton
- Pharmacy Department, Alberta Health Services, Calgary, AB T2N 2T9, Canada
| |
Collapse
|
4
|
Choi HY, Kim BM, Kim YR, Yang T, Ahn S, Yong D, Kwak JH, Kim WG. Antibacterial Activity against Clinical Isolates and In Vivo Efficacy of Coralmycins. Antibiotics (Basel) 2022; 11:antibiotics11070902. [PMID: 35884156 PMCID: PMC9311539 DOI: 10.3390/antibiotics11070902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Coralmycins, such as coralmycin A and DH-coralmycin A, have novel molecular skeletons and have been reported to exhibit potent antibacterial activity against standard Gram-positive bacterial strains. Here, the in vitro antibacterial activity against an extensive clinical isolate collection, time-kill kinetics, pharmacokinetics (PK), and in vivo efficacy of coralmycins were studied. Coralmycin A showed potent antibacterial activity with an MIC90 of 1 mg/L against 73 clinical methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci isolates, which was 2–8 times higher than the corresponding activities of DH-coralmycin A, vancomycin, daptomycin, and linezolid, and against 73 vancomycin-resistant Enterococcus and Streptococcus pneumoniae isolates, which was 4–16 times higher than the corresponding activities of DH-coralmycin A, daptomycin, and linezolid. Pharmacokinetic analysis after i.v. injection showed that coralmycins have a moderate volume of distribution and moderate-to-high clearance in mice. The coralmycin A and DH-coralmycin A bioavailability values were 61.3% and 11.7%, respectively, after s.c. administration. In a mouse respiratory tract infection model, coralmycin A showed bacteriostatic and bactericidal in vivo efficacies at an s.c. administration of 4 and 100 mg/kg bid, respectively; these efficacies were similar to those of vancomycin at 4 and 20 mg/kg bid, respectively. The present findings indicate that coralmycin A has great potential as a new class of antibiotic for treating infections caused by multidrug-resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Ha-Young Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon 34141, Korea; (H.-Y.C.); (B.-M.K.); (T.Y.)
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Yusong, Daejeon 34141, Korea
| | - Bo-Min Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon 34141, Korea; (H.-Y.C.); (B.-M.K.); (T.Y.)
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Yusong, Daejeon 34141, Korea
| | - Young-Rok Kim
- School of Life Science, Handong Global University, Pohang 37554, Korea; (Y.-R.K.); (J.-H.K.)
| | - Taehui Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon 34141, Korea; (H.-Y.C.); (B.-M.K.); (T.Y.)
| | - Sunjoo Ahn
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yusong, Daejeon 34114, Korea;
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Jin-Hwan Kwak
- School of Life Science, Handong Global University, Pohang 37554, Korea; (Y.-R.K.); (J.-H.K.)
| | - Won-Gon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon 34141, Korea; (H.-Y.C.); (B.-M.K.); (T.Y.)
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Yusong, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
5
|
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022; 183:114171. [PMID: 35189264 PMCID: PMC10019944 DOI: 10.1016/j.addr.2022.114171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
6
|
Gharibian KN, Lewis SJ, Heung M, Segal JH, Salama NN, Mueller BA. Telavancin pharmacokinetics in patients with chronic kidney disease receiving haemodialysis. J Antimicrob Chemother 2021; 77:174-180. [PMID: 34613416 DOI: 10.1093/jac/dkab370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/12/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Telavancin is a lipoglycopeptide antibiotic with limited pharmacokinetic data to guide drug dosing in patients receiving haemodialysis. OBJECTIVES This study characterized telavancin pharmacokinetics in patients receiving haemodialysis. PATIENTS AND METHODS This was a Phase IV, prospective, open-label, single-centre, crossover pharmacokinetic study (ClinicalTrials.gov: NCT02392208). Eight subjects with end-stage kidney disease requiring maintenance haemodialysis (mean ± SD: 47 ± 20 years, 69.5 ± 17.1 kg) received 5 mg/kg telavancin IV 3 h before starting a 3.5 hour haemodialysis treatment with a high-permeability haemodialyser (haemodialysis period). After a 14 day washout period, a second 5 mg/kg dose was administered post-haemodialysis (control period). Telavancin plasma concentrations were measured over a 2 day period after each dose and non-compartmental pharmacokinetic analyses were performed. RESULTS The geometric mean (GM) of telavancin overall clearance was 11.2 mL/h/kg (intrinsic clearance and dialytic clearance) in the haemodialysis period and 5.9 mL/h/kg (off-haemodialysis clearance) in the control period [GM ratio (GMR) = 1.89; 90% CI: 1.70-2.10; P < 0.01]. The GM t½ was 13.1 h when haemodialysis occurred 3 h post-dosing in the haemodialysis period but extended to 20.9 h with post-haemodialysis dosing in the control period (GMR = 0.63; 90% CI: 0.54-0.73; P < 0.01). The GM of telavancin plasma concentrations removed by haemodialysis was 27.7%. The GMR of peak plasma concentration and volume of distribution of the haemodialysis period and the control period were 0.88 (90% CI: 0.79-0.98; P = 0.08) and 1.17 (90% CI: 1.05-1.30; P = 0.048), respectively. CONCLUSIONS Haemodialysis with high-permeability haemodialysers removes telavancin considerably (∼⅓ of body load). Telavancin 5 mg/kg every 48 h post-haemodialysis dosing is recommended, but dose adjustments may be warranted if haemodialysis starts within 3 h of telavancin administration.
Collapse
Affiliation(s)
| | - Susan J Lewis
- Department of Pharmacy Practice, University of Findlay College of Pharmacy, Findlay, OH, USA.,Department of Pharmacy, Mercy Health St. Anne Hospital, Toledo, OH, USA
| | - Michael Heung
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jonathan H Segal
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Noha N Salama
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University Faculty of Pharmacy, Cairo, Egypt.,Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy at the University of Health Sciences and Pharmacy, St. Louis, MO, USA
| | - Bruce A Mueller
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Asempa TE, DeRosa NA, Cassino C, Lehoux D, Schuch R, Nicolau DP. Efficacy assessment of lysin CF-296 in addition to daptomycin or vancomycin against Staphylococcus aureus in the murine thigh infection model. J Antimicrob Chemother 2021; 76:2622-2628. [PMID: 34223628 DOI: 10.1093/jac/dkab206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES CF-296 is a lysin in pre-clinical development for the treatment of MSSA and MRSA infections, used in addition to standard-of-care (SOC) antibiotics. We evaluated the efficacy of CF-296 alone and in addition to daptomycin or vancomycin against Staphylococcus aureus in the neutropenic mouse thigh infection model. METHODS Eight isolates (one MSSA and seven MRSA) were studied. Mice were administered five CF-296 monotherapy doses ranging from 0.5 to 50 mg/kg intravenously. To assess adjunctive therapy, mice received sub-therapeutic daptomycin alone, sub-therapeutic vancomycin alone, or the five CF-296 doses in addition to either daptomycin or vancomycin. RESULTS Relative to starting inoculum (5.80 ± 0.31 log10 cfu/thigh), bacterial density in vehicle controls increased by +2.49 ± 0.98 across all eight strains. Relative to 24 h controls, a dose-response in bacterial killing (range -0.22 ± 0.87 to -2.01 ± 1.71 log10 cfu/thigh) was observed with increasing CF-296 monotherapy against the eight isolates. Daptomycin and vancomycin resulted in -1.36 ± 0.77 and -1.37 ± 1.01 log10 cfu/thigh bacteria reduction, respectively, relative to 24 h controls. Escalating CF-296 exposures (0.5-50 mg/kg) in addition to daptomycin resulted in an enhanced dose-response, ranging from bacterial killing of -0.69 to -2.13 log10 cfu/thigh, relative to daptomycin alone. Similarly, in addition to vancomycin, escalating CF-296 exposures resulted in bacterial reduction ranging from -1.37 to -2.29 log10 cfu/thigh, relative to vancomycin alone. CONCLUSIONS Relative to SOC antibiotics (daptomycin or vancomycin), addition of CF-296 resulted in robust and enhanced antibacterial dose-response, achieving ≥1 log10 cfu/thigh decrease across most doses, highlighting a potential role for CF-296 adjunctive therapy against MSSA and MRSA isolates.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Nicole A DeRosa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | | | | | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
8
|
Development and Preclinical Evaluation of New Inhaled Lipoglycopeptides for the Treatment of Persistent Pulmonary Methicillin-Resistant Staphylococcus aureus Infections. Antimicrob Agents Chemother 2021; 65:e0031621. [PMID: 33941518 PMCID: PMC8373216 DOI: 10.1128/aac.00316-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic pulmonary methicillin-resistant Staphylococcus aureus (MRSA) disease in cystic fibrosis (CF) has a high probability of recurrence following treatment with standard-of-care antibiotics and represents an area of unmet need associated with reduced life expectancy. We developed a lipoglycopeptide therapy customized for pulmonary delivery that not only demonstrates potent activity against planktonic MRSA, but also against protected colonies of MRSA in biofilms and within cells, the latter of which have been linked to clinical antibiotic failure. A library of next-generation potent lipoglycopeptides was synthesized with an emphasis on attaining superior pharmacokinetics (PK) and pharmacodynamics to similar compounds of their class. Our strategy focused on hydrophobic modification of vancomycin, where ester and amide functionality were included with carbonyl configuration and alkyl length as key variables. Candidates representative of each carbonyl attachment chemistry demonstrated potent activity in vitro, with several compounds being 30 to 60 times more potent than vancomycin. Selected compounds were advanced into in vivo nose-only inhalation PK evaluations in rats, where RV94, a potent lipoglycopeptide that utilizes an inverted amide linker to attach a 10-carbon chain to vancomycin, demonstrated the most favorable lung residence time after inhalation. Further in vitro evaluation of RV94 showed superior activity to vancomycin against an expanded panel of Gram-positive organisms, cellular accumulation and efficacy against intracellular MRSA, and MRSA biofilm killing. Moreover, in vivo efficacy of inhaled nebulized RV94 in a 48 h acute model of pulmonary MRSA (USA300) infection in neutropenic rats demonstrated statistically significant antibacterial activity that was superior to inhaled vancomycin.
Collapse
|
9
|
Cristinacce A, Wright JG, Macpherson M, Iaconis J, Das S. Comparing probability of target attainment against Staphylococcus aureus for ceftaroline fosamil, vancomycin, daptomycin, linezolid, and ceftriaxone in complicated skin and soft tissue infection using pharmacokinetic/pharmacodynamic models. Diagn Microbiol Infect Dis 2021; 99:115292. [PMID: 33360809 DOI: 10.1016/j.diagmicrobio.2020.115292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/31/2019] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
For recently licensed antibiotics, such as the cephalosporin ceftaroline fosamil, probability of target attainment (PTA) curves, showing the percentage of patients reaching a predefined pharmacokinetic (PK)/pharmacodynamic (PD) target at different bacterial minimum inhibitory concentrations (MICs), have been used to support and justify dose recommendations across patient populations. However, information on PTA for older antibiotics is limited. A retrospective analysis was conducted to construct PTA curves for 4 antibiotics against Staphylococcus aureus in patients with complicated skin and soft tissue infections (cSSTIs). PK models for vancomycin, linezolid, daptomycin, and ceftriaxone were selected from the literature based on large numbers of subjects with covariates representative of patients in Europe and/or the United States. An existing model was available for ceftaroline fosamil. Standard and high-dosage regimens were used to compare the PTA of each antibiotic at MIC values 0.03 to 64 mg/L for a simulated set of patients with cSSTI caused by S. aureus. These were compared to proportions of S. aureus isolates at each MIC from global surveillance data. Ceftaroline achieved PTAs >99.9% for bacteriostatic and bactericidal targets at the MIC90 (1 mg/L), whereas the comparators failed to achieve PTAs >90%, at bacteriostatic or bactericidal targets, even when clinical doses were increased beyond those recommended. PTA analysis can be used to compare different drugs with the same simulated patient dataset, subject to availability of an appropriate PK model and robust exposure targets. This analysis shows that some antibiotics commonly used to treat cSSTIs may fail to reach high PTAs relative to contemporary MIC90 estimates.
Collapse
Affiliation(s)
| | | | | | | | - Shampa Das
- Clinical Pharmacology, AstraZeneca, Macclesfield, UK.
| |
Collapse
|
10
|
In Vivo Targeting of Escherichia coli with Vancomycin-Arginine. Antimicrob Agents Chemother 2021; 65:AAC.02416-20. [PMID: 33468474 PMCID: PMC8097466 DOI: 10.1128/aac.02416-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The ability of vancomycin-arginine (V-r) to extend the spectrum of activity of glycopeptides to Gram-negative bacteria was investigated. Its MIC toward Escherichia coli, including β-lactamase expressing Ambler classes A, B, and D, was 8 to 16 μg/ml. The ability of vancomycin-arginine (V-r) to extend the spectrum of activity of glycopeptides to Gram-negative bacteria was investigated. Its MIC towards Escherichia coli, including β-lactamase expressing Ambler classes A, B, and D, was 8 to 16 μg/ml. Addition of 8 times the MIC of V-r to E. coli was acutely bactericidal and associated with a low frequency of resistance (<2.32 × 10−10). In vivo, V-r markedly reduced E. coli burden by >7 log10 CFU/g in a thigh muscle model. These data warrant further development of V-r in combatting E. coli, including resistant forms.
Collapse
|
11
|
Application of physiologically based pharmacokinetic modeling to predict the pharmacokinetics of telavancin in obesity with renal impairment. Eur J Clin Pharmacol 2021; 77:989-998. [PMID: 33447912 PMCID: PMC7808764 DOI: 10.1007/s00228-020-03072-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022]
Abstract
Purpose U.S. Food and Drug Administration (FDA) recommended telavancin dosing is based on total body weight (TBW) but lacks adjusted regimens for obese subjects with varying renal function. Our aim was to develop a physiologically based pharmacokinetic (PBPK) model of telavancin to design optimized dosing regimens for obese patients with hospital-acquired pneumonia (HAP) and varying renal function. Methods The PBPK model was verified using clinical pharmacokinetic (PK) data of telavancin in healthy populations with varying renal function and obese populations with normal renal function. Then, the PBPK model was applied to predict the PK in obese HAP patients with renal impairment (RI). Results The fold error values of PK parameters (AUC, Cmax, Tmax) were all within 1.5. The telavancin AUC0-inf was predicted to increase 1.07-fold in mild RI, 1.23-fold in moderate RI, 1.41-fold in severe RI, and 1.57-fold in end-stage renal disease (ESRD), compared with that in obese HAP with normal renal function. The PBPK model combined with Monte Carlo simulations (MCS) suggested that dose adjustment based on a 750-mg-fixed dose could achieve effectiveness with reduced risk of toxicity, compared with current TBW-based dosing recommendations. Conclusion The PBPK simulation proposed that using TBW-based regimen in obesity with RI should be avoided. Dose recommendations in obesity from the PBPK model are 750 mg daily for normal renal function and mild RI, 610 mg daily for moderate RI, 530 mg daily for severe RI, and 480 mg daily for ESRD. Supplementary Information The online version contains supplementary material available at 10.1007/s00228-020-03072-y.
Collapse
|
12
|
Efficacy of Telavancin in Comparison to Linezolid in a Porcine Model of Severe Methicillin-Resistant Staphylococcus aureus Pneumonia. Antimicrob Agents Chemother 2020; 65:AAC.01009-20. [PMID: 33046500 DOI: 10.1128/aac.01009-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Current guidelines recommend vancomycin and linezolid as first-line agents against methicillin-resistant Staphylococcus aureus (MRSA) nosocomial pneumonia. Telavancin is a potential new therapeutic alternative, specifically in monomicrobial MRSA pneumonia. This study compared the efficacies of telavancin versus linezolid in a porcine model of severe MRSA pneumonia. In 18 mechanically ventilated pigs (32.11 ± 1.18 kg), 75 ml of 106 CFU/ml of MRSA was administered into each pulmonary lobe. After the onset of pneumonia, pigs were randomized into three groups: a control group, a group receiving 22.5 mg/kg of body weight every 24 h (q24h) of telavancin, and a group receiving 10 mg/kg q12h of linezolid intravenously. Tracheal aspirate and bronchoalveolar lavage (BAL) fluids were cultured every 24 h. After 48 h of treatment, tissue samples were collected from the ventral and dorsal sections of each lobe. Microbiological and histopathological analyses were performed. Lung tissue concentrations differed among the groups (P = 0.019), with the lowest MRSA lung burden in the telavancin group (P < 0.05 versus the control). MRSA was detected in 46.7%, 40.0%, and 21.7% of the lung tissue samples from the control, linezolid, and telavancin groups, respectively (P < 0.001). MRSA concentrations differed among the groups in tracheal aspirate fluid (P = 0.011) but not in BAL fluid. Furthermore, there was no increased risk of kidney injury during telavancin use. Thus, telavancin has higher bactericidal efficacy than linezolid during the first 48 h of treatment in a porcine model of severe MRSA pneumonia. However, studies are needed to confirm the benefits of telavancin in treating MRSA nosocomial pneumonia.
Collapse
|
13
|
Frank MW, Yao J, Batte JL, Gullett JM, Subramanian C, Rosch JW, Rock CO. Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site. mBio 2020; 11:e00920-20. [PMID: 32430471 PMCID: PMC7240157 DOI: 10.1128/mbio.00920-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus utilizes the fatty acid (FA) kinase system to activate exogenous FAs for membrane synthesis. We developed a lipidomics workflow to determine the membrane phosphatidylglycerol (PG) molecular species synthesized by S. aureus at the thigh infection site. Wild-type S. aureus utilizes both host palmitate and oleate to acylate the 1 position of PG, and the 2 position is occupied by pentadecanoic acid arising from de novo biosynthesis. Inactivation of FakB2 eliminates the ability to assimilate oleate and inactivation of FakB1 reduces the content of saturated FAs and enhances oleate utilization. Elimination of FA activation in either ΔfakA or ΔfakB1 ΔfakB2 mutants does not impact growth. All S. aureus strains recovered from the thigh have significantly reduced branched-chain FAs and increased even-chain FAs compared to that with growth in rich laboratory medium. The molecular species pattern observed in the thigh was reproduced in the laboratory by growth in isoleucine-deficient medium containing exogenous FAs. S. aureus utilizes specific host FAs for membrane biosynthesis but also requires de novo FA biosynthesis initiated by isoleucine (or leucine) to produce pentadecanoic acid.IMPORTANCE The shortage of antibiotics against drug-resistant Staphylococcus aureus has led to the development of new drugs targeting the elongation cycle of fatty acid (FA) synthesis that are progressing toward the clinic. An objection to the use of FA synthesis inhibitors is that S. aureus can utilize exogenous FAs to construct its membrane, suggesting that the bacterium would bypass these therapeutics by utilizing host FAs instead. We developed a mass spectrometry workflow to determine the composition of the S. aureus membrane at the infection site to directly address how S. aureus uses host FAs. S. aureus strains that cannot acquire host FAs are as effective in establishing an infection as the wild type, but strains that require the utilization of host FAs for growth were attenuated in the mouse thigh infection model. We find that S. aureus does utilize host FAs to construct its membrane, but host FAs do not replace the requirement for pentadecanoic acid, a branched-chain FA derived from isoleucine (or leucine) that predominantly occupies the 2 position of S. aureus phospholipids. The membrane phospholipid structure of S. aureus mutants that cannot utilize host FAs indicates the isoleucine is a scarce resource at the infection site. This reliance on the de novo synthesis of predominantly pentadecanoic acid that cannot be obtained from the host is one reason why drugs that target fatty acid synthesis are effective in treating S. aureus infections.
Collapse
Affiliation(s)
- Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Justin L Batte
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jessica M Gullett
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
14
|
Pharmacokinetics of Telavancin in Adult Patients with Cystic Fibrosis during Acute Pulmonary Exacerbation. Antimicrob Agents Chemother 2019; 64:AAC.01914-19. [PMID: 31685468 DOI: 10.1128/aac.01914-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/25/2019] [Indexed: 02/03/2023] Open
Abstract
Adults with cystic fibrosis (CF) frequently harbor Staphylococcus aureus, which is increasingly antibiotic resistant. Telavancin is a once-daily rapidly bactericidal antibiotic active against methicillin-, linezolid-, and ceftaroline-resistant S. aureus Because CF patients experience alterations in pharmacokinetics, the optimal dose of telavancin in this population is unknown. Adult CF patients (n = 18) admitted for exacerbations received 3 doses of telavancin 7.5 mg/kg of body weight (first 6 patients) or 10 mg/kg (final 12 patients) every 24 h (q24h). Population pharmacokinetic models with and without covariates were fitted using the nonparametric adaptive grid algorithm in Pmetrics. The final model was used to perform 5,000-patient Monte Carlo simulations for multiple telavancin doses. The best fit was a 2-compartment model describing the volume of distribution of the central compartment (Vc ) as a multiple of total body weight (TBW) and the volume of distribution of the central compartment scaled to total body weight (V θ) normalized by the median observed value (Vc = V θ × TBW/52.1) and total body clearance (CL) as a linear function of creatinine clearance (CRCL) (CL = CLNR + CLθ × CRCL), where CLNR represents nonrenal clearance and CLθ represents the slope term on CRCL to estimate renal clearance. The mean population parameters were as follows: V θ, 4.92 ± 0.76 liters · kg-1; CLNR, 0.59 ± 0.30 liters · h-1; CLθ, 5.97 × 10-3 ± 1.24 × 10-3; Vp (volume of the peripheral compartment), 3.77 ± 1.41 liters; Q (intercompartmental clearance), 4.08 ± 2.17 liters · h-1 The free area under the concentration-time curve (fAUC) values for 7.5 and 10 mg/kg were 30 ± 4.6 and 52 ± 12 mg · h/liter, respectively. Doses of 7.5 mg/kg and 10 mg/kg achieved 76.5% and 100% probability of target attainment (PTA) at a fAUC/MIC threshold of >215, respectively, for MIC of ≤0.12 mg/liter. The probabilities of reaching the acute kidney injury (AKI) threshold AUC (763 mg · h · liter-1) for these doses were 0% and 0.96%, respectively. No serious adverse events occurred. Telavancin 10 mg/kg yielded optimal PTA and minimal risk of AKI, suggesting that this FDA-approved dose is appropriate to treat acute pulmonary exacerbations in CF adults. (The clinical trial discussed in this study has been registered at ClinicalTrials.gov under identifier NCT03172793.).
Collapse
|
15
|
Clinical Pharmacokinetics and Pharmacodynamics of Telavancin Compared with the Other Glycopeptides. Clin Pharmacokinet 2019; 57:797-816. [PMID: 29332251 PMCID: PMC5999141 DOI: 10.1007/s40262-017-0623-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Telavancin was discovered by modifying the chemical structure of vancomycin and belongs to the group of lipoglycopeptides. It employs its antimicrobial potential through two distinct mechanisms of action: inhibition of bacterial cell wall synthesis and induction of bacterial membrane depolarization and permeabilization. In this article we review the clinically relevant pharmacokinetic and pharmacodynamic data of telavancin. For comparison, the pharmacokinetic and pharmacodynamic data of the other glycopeptides are presented. Although, in contrast to the newer lipoglycopeptides, telavancin demonstrates a relatively short half-life and rapid total clearance, its apparent volume of distribution (Vd) is almost identical to that of dalbavancin. The accumulation of telavancin after repeated dosing is only marginal, whereas the pharmacokinetic values of the other glycopeptides show much greater differences after administration of multiple doses. Despite its high plasma-protein binding of 90% and relatively low Vd of approximately 11 L, telavancin shows near complete equilibration of the free fraction in plasma with soft tissue. The ratio of the area under the plasma concentration-time curve from time zero to 24 h (AUC24) of unbound plasma concentrations to the minimal inhibitory concentration (MIC) required to inhibit growth of 90% of organisms (MIC90) of Staphylococcus aureus and S. epidermidis of telavancin are sufficiently high to achieve pharmacokinetic/pharmacodynamic targets indicative for optimal bacterial killing. Considering both the AUC24/MIC ratios of telavancin and the near complete equilibration of the free fraction in plasma with soft tissue, telavancin is an appropriate antimicrobial agent to treat soft tissue infections caused by Gram-positive pathogens. Although the penetration of telavancin into epithelial lining fluid (ELF) requires further investigations, the AUC24/MIC ratio for S. aureus indicates that bactericidal activity in the ELF could be expected.
Collapse
|
16
|
Rodvold KA. 60 Plus Years Later and We Are Still Trying to Learn How to Dose Vancomycin. Clin Infect Dis 2019; 70:1546-1549. [DOI: 10.1093/cid/ciz467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Keith A Rodvold
- University of Illinois at Chicago, Colleges of Pharmacy and Medicine
| |
Collapse
|
17
|
Evaluation of the clinical relevance of vancomycin for the treatment of Lyme disease. Wien Klin Wochenschr 2019; 135:185-189. [PMID: 31076888 DOI: 10.1007/s00508-019-1505-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Vancomycin is active in vitro and in vivo in mouse systems against Lyme disease borrelia; however, there are no published data on the efficacy of vancomycin in patients with Lyme disease and no convincing theoretical advantages of vancomycin over the currently used and highly effective orally administered antimicrobial agents, including doxycycline, amoxicillin and cefuroxime axetil. In addition, vancomycin may cause a wide variety of potentially serious adverse effects and requires the placement of an intravenous catheter. It is concluded that vancomycin is a much less attractive option for the treatment of patients with early Lyme disease (or any other manifestation of Lyme disease), compared with the antimicrobials currently being used. Based on available evidence, clinical studies to evaluate the safety and efficacy of vancomycin for Lyme disease cannot be recommended.
Collapse
|
18
|
A population pharmacokinetic model of intravenous telavancin in healthy individuals to assess tissue exposure. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1097-1106. [PMID: 31062064 DOI: 10.1007/s00210-019-01647-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 10/26/2022]
Abstract
Non-compartmental analysis of telavancin microdialysis data indicated a sustained exposure in soft tissues and that unbound plasma concentrations were underestimated in vitro. The objective of the present evaluation was to develop a population pharmacokinetic model of telavancin to describe its plasma protein binding, its distribution into muscle, and subcutaneous tissue and to predict pharmacokinetic/-dynamic target attainment (PTA). Total plasma concentrations and microdialysate concentrations (plasma, subcutaneous, and muscle tissue) were available up to 24 h (plasma microdialysate, up to 8 h) post-dose from eight healthy subjects after a single intravenous infusion of 10 mg/kg telavancin. Population pharmacokinetic modeling and simulations were performed using NONMEM. A two-compartment model with saturable protein binding best described plasma concentrations. Plasma unbound fractions at steady state were 23, 15, and 11% at 100, 50, and 10% of the maximum predicted concentrations respectively. Distribution into muscle and subcutaneous tissue was non-linear and described appropriately by one additional compartment each. Based on total plasma concentrations, predicted median (95% confidence interval) values of AUC/MIC (MIC 0.125 mg/L, clinical breakpoint for MRSA) at steady state were 4009 [3421-4619] with a PTA of 96 [78-100] %. The fAUC/MIC in muscle was 496 [227-1232] with a PTA of 100 [98-100] %. The %fT>MIC was approximately 100% in plasma and interstitial space fluid of muscle and subcutaneous tissues up to an MIC of 0.25 mg/L. The model provided a new hypothesis on telavancin plasma protein binding in vivo. Proposed pharmacodynamic targets in plasma and muscle are achieved with currently approved doses of 10 mg/kg daily.
Collapse
|
19
|
Duncan LR, Flamm RK, Sader HS, Mendes RE. In vitro activity of telavancin against Staphylococcus aureus causing pneumonia or skin and skin structure infections with concomitant bloodstream infections in United States hospitals (2012–2016). Diagn Microbiol Infect Dis 2019; 93:167-170. [DOI: 10.1016/j.diagmicrobio.2018.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 11/26/2022]
|
20
|
Kidd JM, Abdelraouf K, Nicolau DP. Comparative efficacy of human-simulated epithelial lining fluid exposures of tedizolid, linezolid and vancomycin in neutropenic and immunocompetent murine models of staphylococcal pneumonia. J Antimicrob Chemother 2018; 74:970-977. [DOI: 10.1093/jac/dky513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- James M Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
21
|
Abstract
![]()
Glycopeptide
antibiotics (GPAs) are a key weapon in the fight against drug resistant
bacteria, with vancomycin still a mainstream therapy against serious
Gram-positive infections more than 50 years after it was first introduced.
New, more potent semisynthetic derivatives that have entered the clinic,
such as dalbavancin and oritavancin, have superior pharmacokinetic
and target engagement profiles that enable successful treatment of
vancomycin-resistant infections. In the face of resistance development,
with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative
infections combined, further improvements are desirable to ensure
the Gram-positive armamentarium is adequately maintained for future
generations. A range of modified glycopeptides has been generated
in the past decade via total syntheses, semisynthetic modifications
of natural products, or biological engineering. Several of these
have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical
toxicity; some may be suitable for formal preclinical development.
The natural product monobactam, cephalosporin, and β-lactam
antibiotics all spawned multiple generations of commercially and clinically
successful semisynthetic derivatives. Similarly, next-generation glycopeptides
are now technically well positioned to advance to the clinic, if sufficient
funding and market support returns to antibiotic development.
Collapse
Affiliation(s)
- Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - ZhiGuang Jia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Alan E. Mark
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| |
Collapse
|
22
|
Zhou YF, Xiong YQ, Tao MT, Li L, Bu MX, Sun J, Liao XP, Liu YH. Increased activity of linezolid in combination with rifampicin in a murine pneumonia model due to MRSA. J Antimicrob Chemother 2018; 73:1899-1907. [DOI: 10.1093/jac/dky129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yan Q Xiong
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Meng-Ting Tao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang Li
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ming-Xiao Bu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Pharmacokinetics of Telavancin at Fixed Doses in Normal-Body-Weight and Obese (Classes I, II, and III) Adult Subjects. Antimicrob Agents Chemother 2018; 62:AAC.02475-17. [PMID: 29311094 DOI: 10.1128/aac.02475-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
A recommended total-body-weight (TBW) dosing strategy for telavancin may not be optimal in obese patients. The primary objective of this study was to characterize and compare the pharmacokinetics (PK) of telavancin across four body size groups: normal to overweight and obese classes I, II, and III. Healthy adult subjects (n = 32) received a single, weight-stratified, fixed dose of 500 mg (n = 4), 750 mg (n = 8), or 1,000 mg (n = 20) of telavancin. Noncompartmental PK analyses revealed that subjects with a body mass index (BMI) of ≥40 kg/m2 had a higher volume of distribution (16.24 ± 2.7 liters) than subjects with a BMI of <30 kg/m2 (11.71 ± 2.6 liters). The observed area under the concentration-time curve from time zero to infinity (AUC0-∞) ranged from 338.1 to 867.3 mg · h/liter, with the lowest exposures being in subjects who received 500 mg. AUC0-∞ values were similar among obese subjects who received 1,000 mg. A two-compartment population PK model best described the plasma concentration-time profile of telavancin when adjusted body weight (ABW) was included as a predictive covariate. Fixed doses of 750 mg and 1,000 mg had similar target attainment probabilities for efficacy as doses of 10 mg/kg of body weight based on ABW and TBW, respectively. However, the probability of achieving a target area under the concentration-time curve from time zero to 24 h of ≥763 mg · h/liter in association with acute kidney injury was highest (19.7%) with TBW-simulated dosing and lowest (0.4%) at the 750-mg dose. These results suggest that a fixed dose of 750 mg is a safe and effective alternative to telavancin doses based on TBW or ABW for the treatment of obese patients with normal renal function and Staphylococcus aureus infections. (This study has been registered at ClinicalTrials.gov under identifier NCT02753855.).
Collapse
|
24
|
Andes DR, Lepak AJ. In vivo infection models in the pre-clinical pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Curr Opin Pharmacol 2017; 36:94-99. [DOI: 10.1016/j.coph.2017.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|