1
|
Rudolph N, Charbe N, Plano D, Shoyaib AA, Pal A, Boyce H, Zhao L, Wu F, Polli J, Dressman J, Cristofoletti R. A physiologically based biopharmaceutics modeling (PBBM) framework for characterizing formulation-dependent food effects: Paving the road towards fed state virtual BE studies for itraconazole amorphous solid dispersions. Eur J Pharm Sci 2025; 209:107047. [PMID: 39983931 DOI: 10.1016/j.ejps.2025.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
This study leverages physiologically based biopharmaceutics modeling (PBBM) to predict the clinical performance of two itraconazole (ITRA) amorphous solid dispersions (ASDs), Sempera® and Tolsura®, under fasted and fed state conditions, exploring the potential of PBBM in predicting formulation-specific food interactions. The ITRA formulations were subjected to extensive in vitro biopharmaceutical testing, including solubility studies and dissolution tests under fasted and fed state conditions, revealing significant differences in dissolution behaviors between Sempera® and Tolsura®. The impact of food and hypochlorhydria on drug absorption was evaluated using a stepwise mechanistic deconvolution-reconvolution PBBM approach, integrating fundamental parameters based on the in vitro data into the final model. Our model not only successfully predicted the effects of acid reducing agents (ARA) and food on the oral absorption of ITRA, but also captured the between-subject variability, demonstrating the utility of this approach in understanding the complex interplay between drug, formulation, and gastrointestinal environment. Most importantly, the PBBM was able to accurately predict the positive impact of food on the absorption of Sempera® and the negative food effect of Tolsura®. The findings highlight the importance of considering formulation characteristics and gastrointestinal physiology, underscoring the potential of PBBM in bioequivalence (BE) assessment of generic formulations under varying physiological conditions, including in the fed state and in hypochlorhydric patients. The successful application of this stepwise and mechanistic PBBM approach suggests a potential pathway for streamlining drug development and may contribute to more informed decision-making for BE assessment.
Collapse
Affiliation(s)
- Niklas Rudolph
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Nitin Charbe
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - David Plano
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Abdullah Al Shoyaib
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Arindom Pal
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Heather Boyce
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Fang Wu
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - James Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany.
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Eletel L, Thomas T, Berry EA, Kearns GL. Emerging Treatments in Neonatal Fungal Infections: Progress and Prospects. Paediatr Drugs 2025:10.1007/s40272-025-00688-4. [PMID: 40117020 DOI: 10.1007/s40272-025-00688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2025] [Indexed: 03/23/2025]
Abstract
Fungal infections in neonates are potentially life threatening. The differential diagnosis for neonatal rashes is extensive, with common culprits including both bacteria and fungi. Candida albicans is the predominant fungal pathogen, causing infections that range from superficial disease to severe systemic conditions, including sepsis and meningitis. Neonates, especially those who are preterm, are particularly susceptible because of developmentally immature immune systems and the use of invasive procedures and devices in neonatal intensive care units. Congenital cutaneous candidiasis, acquired in utero or during delivery, can lead to disseminated infection with high mortality rates. Early diagnosis and prompt antifungal treatment are crucial but challenging because of subtle clinical presentations, making accurate identification of the offending organism essential for selecting the appropriate treatment. Candida species account for the majority of neonatal fungal infections, with different species necessitating distinct treatments because of varying susceptibility profiles. Aspergillus, another significant pathogen, poses high mortality risks and can present either cutaneously or systemically. Malassezia, though less common, primarily affects preterm infants with catheter-related fungemia. Other fungal species, including Zygomycetes, Trichosporon, and Cryptococcus, rarely produce neonatal infections but are noteworthy for consideration. Treatment of fungal infection is critical despite the relative paucity of information regarding the clinical pharmacology of many antifungal drugs in neonates. We review the major antifungal agents (e.g., amphotericin B, the echinocandins, the azoles) and provide pharmacologic and dosing information. Finally, preventive strategies, including the use of stringent aseptic techniques and careful clinical monitoring, are essential to mitigate both the incidence and severity of these infections in neonates and infants in the first months of life.
Collapse
Affiliation(s)
- Lucy Eletel
- Department of Medical Education, Anne Marion Burnett School of Medicine at Texas Christian University, Fort Worth, TX, USA
| | - Talia Thomas
- Department of Medical Education, Anne Marion Burnett School of Medicine at Texas Christian University, Fort Worth, TX, USA
| | - Emily A Berry
- Department of Medical Education, Anne Marion Burnett School of Medicine at Texas Christian University, Fort Worth, TX, USA
| | - Gregory L Kearns
- Department of Pediatrics, Anne Marion Burnett School of Medicine at Texas Christian University, 1100 W. Rosedale St., Fort Worth, TX, 76104, USA.
| |
Collapse
|
3
|
Gościniak A, Lainé E, Cielecka-Piontek J. How Do Cyclodextrins and Dextrans Affect the Gut Microbiome? Review of Prebiotic Activity. Molecules 2024; 29:5316. [PMID: 39598705 PMCID: PMC11596334 DOI: 10.3390/molecules29225316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The modulation of the gut microbiome through dietary components has garnered significant attention for its potential health benefits. Prebiotics, non-digestible food ingredients that promote the growth of beneficial gut bacteria, play a crucial role in maintaining gut health, enhancing immune function, and potentially preventing various metabolic and inflammatory disorders. This review explores the prebiotic activity of cyclodextrins and dextrans, focusing on their ability to influence gut microbiota composition and function. Both cyclodextrins and dextrans have demonstrated the capacity to promote the growth of beneficial bacterial populations, while also impacting short-chain fatty acid production, crucial for gut health.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Emmanuelle Lainé
- UMR 454 INRAe-UCA, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
4
|
Agrawal A, Salunke S, Rumondor A, Thompson K, Caivano G, Walsh J, Enright B, Sherratt P, Hughes K, Clapham D, Kuehl P. Paediatric excipient risk assessment (PERA) tool and application for selecting appropriate excipients for paediatric dosage forms - Part 2. Eur J Pharm Biopharm 2024; 203:114447. [PMID: 39122051 DOI: 10.1016/j.ejpb.2024.114447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
It is necessary to use a scientifically sound process for excipient risk evaluation, selection, and management in order to develop paediatric medicinal products that are both safe and effective. The "Paediatric Excipient Risk Assessment (PERA)" framework, which proposes a comprehensive approach by considering all relevant factors related to patient, dosage form, and excipient attributes, was developed and published as part 1 of this paper series, to enable the rational selection of excipients for paediatric medicinal products. This article is Part 2 of the series and presents the PERA tool that allows easy adoption of the PERA framework. Using a straightforward heat map scoring approach (Red, Yellow, and Green category) for risk evaluation, the PERA tool can be used to compare and choose excipients. The PERA tool will help users identify potential gaps in excipients information that will help with risk-based mitigation planning. Several case studies covering frequently used and novel excipients for oral, as well as the choice of excipient for parenteral products for neonatal administration, serve to illustrate the PERA tool's usefulness.
Collapse
Affiliation(s)
- Anjali Agrawal
- Novo Nordisk Inc., 300 North Beacon Street, Suite 501, Watertown, MA 02472, USA.
| | - Smita Salunke
- European Paediatric Formulation Initiative (EUPFI), University College London School of Pharmacy, London WC1N 1AX, UK.
| | - Alfred Rumondor
- Bristol Myers Squibb, One Squibb Drive, New Brunswick, NJ 08901, USA.
| | - Karen Thompson
- Merck & Co., Inc., 126 E Lincoln Ave, Rahway, NJ 07065, USA.
| | - Grazia Caivano
- Chiesi Farmaceutici S.p.A. Largo Francesco Belloli 11/A-43122 Parma, Italy.
| | | | - Brian Enright
- Abbvie Inc. 1 N Waukegan Road, North Chicago, IL, 60064, USA.
| | - Philip Sherratt
- Bristol Myers Squibb, 556 Morris Avenue, Summit, NJ 07901, USA.
| | - Kevin Hughes
- IPEC Europe (International Pharmaceutical Excipients Council) and Colorcon Ltd, Dartford, UK.
| | - David Clapham
- Independent Pharmaceutical Consultant, Bishops Stortford, UK.
| | - Peter Kuehl
- F. Hoffmann La Roche AG, Grenzacher Str. 124, CH-4070 Basel, Switzerland.
| |
Collapse
|
5
|
Denninger A, Becker T, Westedt U, Wagner KG. Advanced In Vivo Prediction by Introducing Biphasic Dissolution Data into PBPK Models. Pharmaceutics 2023; 15:1978. [PMID: 37514164 PMCID: PMC10386266 DOI: 10.3390/pharmaceutics15071978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Coupling biorelevant in vitro dissolution with in silico physiological-based pharmacokinetic (PBPK) tools represents a promising method to describe and predict the in vivo performance of drug candidates in formulation development including non-passive transport, prodrug activation, and first-pass metabolism. The objective of the present study was to assess the predictability of human pharmacokinetics by using biphasic dissolution results obtained with the previously established BiPHa+ assay and PBPK tools. For six commercial drug products, formulated by different enabling technologies, the respective organic partitioning profiles were processed with two PBPK in silico modeling tools, namely PK-Sim and GastroPlus®, similar to extended-release dissolution profiles. Thus, a mechanistic dissolution/precipitation model of the assessed drug products was not required. The developed elimination/distribution models were used to simulate the pharmacokinetics of the evaluated drug products and compared with available human data. In essence, an in vitro to in vivo extrapolation (IVIVE) was successfully developed. Organic partitioning profiles obtained from the BiPHa+ dissolution analysis enabled highly accurate predictions of the pharmacokinetic behavior of the investigated drug products. In addition, PBPK models of (pro-)drugs with pronounced first-pass metabolism enabled adjustment of the solely passive diffusion predicting organic partitioning profiles, and increased prediction accuracy further.
Collapse
Affiliation(s)
- Alexander Denninger
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
- Corden Pharma GmbH, Otto-Hahn-Strasse, 68723 Plankstadt, Germany
| | - Tim Becker
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| | - Ulrich Westedt
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| |
Collapse
|
6
|
Miljković MN, Rančić N, Kovačević A, Cikota-Aleksić B, Skadrić I, Jaćević V, Mikov M, Dragojević-Simić V. Influence of Gender, Body Mass Index, and Age on the Pharmacokinetics of Itraconazole in Healthy Subjects: Non-Compartmental Versus Compartmental Analysis. Front Pharmacol 2022; 13:796336. [PMID: 35784683 PMCID: PMC9240599 DOI: 10.3389/fphar.2022.796336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Itraconazole is a triazole antifungal agent with highly variable pharmacokinetics, with not yet fully identified factors as the source of this variability. Our study aimed to examine the influence of body mass index, gender, and age on the first dose pharmacokinetics of itraconazole in healthy subjects, using pharmacokinetic modeling, non-compartmental versus compartmental ones. A total of 114 itraconazole and hydroxy-itraconazole sets of plasma concentrations of healthy subjects of both genders, determined using a validated liquid chromatographic method with mass spectrometric detection (LC-MS), were obtained for pharmacokinetic analyses performed by the computer program Kinetica 5®. Genetic polymorphism in CYP3A4, CYP3A5, CYP1A1, CYP2C9, and CYP2C19 was analyzed using PCR-based methods. Multiple linear regression analysis indicated that gender had a significant effect on AUC as the most important pharmacokinetics endpoint, whereas body mass index and age did not show such an influence. Therefore, further analysis considered gender and indicated that both geometric mean values of itraconazole and hydroxy-itraconazole plasma concentrations in men were prominently higher than those in women. A significant reduction of the geometric mean values of Cmax and AUC and increment of Vd in females compared with males were obtained. Analyzed genotypes and gender differences in drug pharmacokinetics could not be related. Non-compartmental and one-compartmental models complemented each other, whereas the application of the two-compartmental model showed a significant correlation with the analysis of one compartment. They indicated a significant influence of gender on itraconazole pharmacokinetics after administration of the single oral dose of the drug, given under fed conditions. Women were less exposed to itraconazole and hydroxy-itraconazole than men due to poorer absorption of itraconazole, its more intense pre-systemic metabolism, and higher distribution of both drug and its metabolite.
Collapse
Affiliation(s)
- Milijana N. Miljković
- Centre for Clinical Pharmacology, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defence in Belgrade, Belgrade, Serbia
| | - Nemanja Rančić
- Centre for Clinical Pharmacology, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defence in Belgrade, Belgrade, Serbia
| | - Aleksandra Kovačević
- Centre for Clinical Pharmacology, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defence in Belgrade, Belgrade, Serbia
| | - Bojana Cikota-Aleksić
- Centre for Clinical Pharmacology, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defence in Belgrade, Belgrade, Serbia
| | - Ivan Skadrić
- Institute of Microbiology and Immunology, University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Vesna Jaćević
- Medical Faculty of the Military Medical Academy, University of Defence in Belgrade, Belgrade, Serbia
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Belgrade, Serbia
- Department for Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Momir Mikov
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Viktorija Dragojević-Simić
- Centre for Clinical Pharmacology, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defence in Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Bury D, Tissing WJE, Muilwijk EW, Wolfs TFW, Brüggemann RJ. Clinical Pharmacokinetics of Triazoles in Pediatric Patients. Clin Pharmacokinet 2021; 60:1103-1147. [PMID: 34002355 PMCID: PMC8416858 DOI: 10.1007/s40262-021-00994-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Triazoles represent an important class of antifungal drugs in the prophylaxis and treatment of invasive fungal disease in pediatric patients. Understanding the pharmacokinetics of triazoles in children is crucial to providing optimal care for this vulnerable population. While the pharmacokinetics is extensively studied in adult populations, knowledge on pharmacokinetics of triazoles in children is limited. New data are still emerging despite drugs already going off patent. This review aims to provide readers with the most current knowledge on the pharmacokinetics of the triazoles: fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole. In addition, factors that have to be taken into account to select the optimal dose are summarized and knowledge gaps are identified that require further research. We hope it will provide clinicians guidance to optimally deploy these drugs in the setting of a life-threatening disease in pediatric patients.
Collapse
Affiliation(s)
- Didi Bury
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim J E Tissing
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eline W Muilwijk
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Tom F W Wolfs
- Department of Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Infectious Diseases, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roger J Brüggemann
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Wu HH, Garidel P, Michaela B. HP-β-CD for the formulation of IgG and Ig-based biotherapeutics. Int J Pharm 2021; 601:120531. [PMID: 33775727 DOI: 10.1016/j.ijpharm.2021.120531] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
The main challenge to develop HCF for IgG and Ig-based therapeutics is to achieve essential solubility, viscosity and stability of these molecules in order to maintain product quality and meet regulatory requirement during manufacturing, production, storage, shipment and administration processes. The commonly used and FDA approved excipients for IgG and Ig -based therapeutics may no longer fulfil the challenge of HCF development for these molecules to certain extent, especially for some complex Ig-based platforms. 2-Hydroxypropyl beta-cyclodextrin (HP-β-CD) is one of the promising excipients applied recently for HCF development of IgG and Ig-based therapeutics although it has been used for formulation of small synthesized chemical drugs for more than thirty years. This review describes essential aspects about application of HP-β-CD as excipient in pharmaceutical formulation, including physico-chemical properties of HP-β-CD, supply chain, regulatory, patent landscape, marketed drugs with HP-β-CD, analytics and analytical challenges, stability and control strategies, and safety concerns. It also provides an overview of different studies, and outcomes thereof, regarding formulation development for IgGs and Ig-based molecules in liquid and solid (lyophilized) dosage forms with HP-β-CD. The review specifically highlights the challenges for formulation manufacturing of IgG and Ig-based therapeutics with HP-β-CD and identifies areas for future work in pharmaceutical and formulation development.
Collapse
Affiliation(s)
- Helen Haixia Wu
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals, Biberach an der Riss, Germany.
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals, Biberach an der Riss, Germany
| | - Blech Michaela
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals, Biberach an der Riss, Germany
| |
Collapse
|
9
|
Jug M. Cyclodextrin-based drug delivery systems. NANOMATERIALS FOR CLINICAL APPLICATIONS 2020:29-69. [DOI: 10.1016/b978-0-12-816705-2.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Yun YE, Edginton AN. Model qualification of the PK-Sim® pediatric module for pediatric exposure assessment of CYP450 metabolized compounds. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:789-814. [PMID: 31405354 DOI: 10.1080/15287394.2019.1652215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pediatric physiologically based pharmacokinetic (PBPK) models facilitate the estimation of pharmacokinetic (PK) parameters in children under specific exposure conditions. In human health risk assessment, PBPK modeling has been used to determine a chemical-specific human kinetic adjustment factor (HKAF). Due to increased demands in regulatory assessment, model evaluation and qualification have gained growing attention. The aim of this study was to undertake model qualification of pediatric PBPK models for compounds that are primarily metabolized by cytochrome P450 (CYP) enzymes. The objectives were to determine the appropriateness of the virtual individual creating algorithm in PK-Sim® in predicting PK parameters and their variability in children and identify critical system-specific inputs. PBPK models in adults were constructed for several pharmaceuticals (grouped by major clearance process such as CYP3A4). Several age groups of virtual individuals were created to represent children in pediatric clinical studies. The mean and variance of clearance (CL) from virtual populations were compared to observed values. Sensitivity analysis on area under the curve (AUC) was performed. System-specific parameters of virtual children that contribute to inter-individual PK properties were assessed. Eighty-one percent of the comparisons between simulated and observed clearance values were within twofold error. The mean fold errors were 1.1, 1, 0.7 and 1.8 in adolescents, children, infants and neonates, respectively. CL variability was reasonably predicted for 70% of the comparisons with comparable coefficients of variation between observed and predicted. The sensitivity analysis revealed that fraction unbound in plasma, parameters related to CYP enzyme-mediated metabolism and liver volumewere most important in the estimation of pediatric exposure. A comparison of variabilities in weight, height and liver volume in virtual children showed reliable agreement with observed data. The presented results of predictive performance and properties of virtual populations provide confidence in the use of PK-Sim for pediatric PBPK modeling in toxicological applications including PBPK-based-HKAF derivation.
Collapse
Affiliation(s)
- Yejin Esther Yun
- School of Pharmacy, University of Waterloo , Waterloo , Ontario , Canada
| | - Andrea N Edginton
- School of Pharmacy, University of Waterloo , Waterloo , Ontario , Canada
| |
Collapse
|
11
|
Warris A, Lehrnbecher T, Roilides E, Castagnola E, Brüggemann RJM, Groll AH. ESCMID-ECMM guideline: diagnosis and management of invasive aspergillosis in neonates and children. Clin Microbiol Infect 2019; 25:1096-1113. [PMID: 31158517 DOI: 10.1016/j.cmi.2019.05.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
Abstract
SCOPE Presenting symptoms, distributions and patterns of diseases and vulnerability to invasive aspergillosis (IA) are similar between children and adults. However, differences exist in the epidemiology and underlying conditions, the usefulness of newer diagnostic tools, the pharmacology of antifungal agents and in the evidence from interventional phase 3 clinical trials. Therefore, the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) and the European Confederation of Medical Mycology (ECMM) have developed a paediatric-specific guideline for the diagnosis and management of IA in neonates and children. METHODS Review and discussion of the scientific literature and grading of the available quality of evidence was performed by the paediatric subgroup of the ESCMID-ECMM-European Respiratory Society (ERS) Aspergillus disease guideline working group, which was assigned the mandate for the development of neonatal- and paediatric-specific recommendations. QUESTIONS Questions addressed by the guideline included the epidemiology of IA in neonates and children; which paediatric patients may benefit from antifungal prophylaxis; how to diagnose IA in neonates and children; which antifungal agents are available for use in neonates and children; which antifungal agents are suitable for prophylaxis and treatment of IA in neonates and children; what is the role of therapeutic drug monitoring of azole antifungals; and which management strategies are suitable to be used in paediatric patients. This guideline provides recommendations for the diagnosis, prevention and treatment of IA in the paediatric population, including neonates. The aim of this guideline is to facilitate optimal management of neonates and children at risk for or diagnosed with IA.
Collapse
Affiliation(s)
- A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands.
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University 96 School of Health Sciences, Thessaloniki, Greece; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| | - E Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG)
| | - R J M Brüggemann
- Radboud Center for Infectious Diseases, Radboud University Medical Centre, Center of Expertise in Mycology Radboudumc/CWZ, European Confederation of Medical Mycology (ECMM) Excellence Center of Medical Mycology, Nijmegen, the Netherlands; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG)
| | - A H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Paediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| |
Collapse
|
12
|
Rhoden E, Nix WA, Weldon WC, Selvarangan R. Antifungal azoles itraconazole and posaconazole exhibit potent in vitro antiviral activity against clinical isolates of parechovirus A3 (Picornaviridae). Antiviral Res 2018; 149:75-77. [PMID: 29155163 PMCID: PMC9169550 DOI: 10.1016/j.antiviral.2017.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/19/2017] [Accepted: 11/14/2017] [Indexed: 11/16/2022]
Abstract
Parechovirus A3 (Par-A3, formerly human parechovirus 3) is an emerging viral infection of the central nervous system in children. We used an automated, homogeneous, cell based assay to identify itraconazole and posaconazole as inhibitors of Par-A3, with antiviral activity below concentrations clinically attainable in pediatric patients. Currently, there is no approved antiviral treatment for Par-A3 infection, despite numerous reports of serious Par-A3 disease in neonates and infants.
Collapse
Affiliation(s)
- Eric Rhoden
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - W Allan Nix
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - William C Weldon
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | | |
Collapse
|
13
|
Hamilton DA, Ernst CC, Kramer WG, Madden D, Lang E, Liao E, Lacouture PG, Ramaiya A, Carr DB. Pharmacokinetics of Diclofenac and Hydroxypropyl-β-Cyclodextrin (HPβCD) Following Administration of Injectable HPβCD-Diclofenac in Subjects With Mild to Moderate Renal Insufficiency or Mild Hepatic Impairment. Clin Pharmacol Drug Dev 2017; 7:110-122. [PMID: 29197175 PMCID: PMC5814843 DOI: 10.1002/cpdd.417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/13/2017] [Indexed: 11/17/2022]
Abstract
Given their established analgesic properties, nonsteroidal anti‐inflammatory drugs (NSAIDs) represent an important postoperative pain management option. This study investigated: (1) the effects of mild or moderate renal insufficiency and mild hepatic impairment on the pharmacokinetics (PK) of diclofenac and hydroxypropyl‐β‐cyclodextrin (HPβCD) following administration of the injectable NSAID HPβCD‐diclofenac; and (2) the PK of HPβCD following administration of HPβCD‐diclofenac and intravenous itraconazole formulated with HPβCD in healthy adults. Diclofenac clearance (CL) and volume of distribution (Vz) tended to increase with decreasing renal function (moderate insufficiency versus mild insufficiency or healthy controls). Regression analysis demonstrated a significant relationship between Vz (but not CL or elimination half‐life, t½) and renal function. HPβCD CL was significantly decreased in subjects with renal insufficiency, with a corresponding increase in t½. There were no significant differences in diclofenac or HPβCD PK in subjects with mild hepatic impairment versus healthy subjects. Exposure to HPβCD in healthy subjects following HPβCD‐diclofenac administration was ∼12% of that with intravenous itraconazole, after adjusting for dosing schedule and predicted accumulation (<5% without adjustment). With respect to PK properties, these results suggest that HPβCD‐diclofenac might be administered to patients with mild or moderate renal insufficiency or mild hepatic impairment without dose adjustment (NCT00805090).
Collapse
Affiliation(s)
- Douglas A Hamilton
- Javelin Pharmaceuticals, Cambridge, MA, USA, (now Hospira, a Pfizer company, Lake Forest, IL, USA).,New Biology Ventures LLC, San Mateo, CA, USA
| | - Cynthia C Ernst
- Javelin Pharmaceuticals, Cambridge, MA, USA, (now Hospira, a Pfizer company, Lake Forest, IL, USA)
| | | | - Donna Madden
- Javelin Pharmaceuticals, Cambridge, MA, USA, (now Hospira, a Pfizer company, Lake Forest, IL, USA)
| | - Eric Lang
- Javelin Pharmaceuticals, Cambridge, MA, USA, (now Hospira, a Pfizer company, Lake Forest, IL, USA)
| | - Edward Liao
- Javelin Pharmaceuticals, Cambridge, MA, USA, (now Hospira, a Pfizer company, Lake Forest, IL, USA)
| | - Peter G Lacouture
- Magidom Discovery, LLC, St. Augustine, FL, USA.,Brown University School of Medicine, Providence, RI, USA
| | | | - Daniel B Carr
- Javelin Pharmaceuticals, Cambridge, MA, USA, (now Hospira, a Pfizer company, Lake Forest, IL, USA).,Department of Anesthesiology, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
14
|
Allegra S, Fatiguso G, De Francia S, Favata F, Pirro E, Carcieri C, De Nicolò A, Cusato J, Di Perri G, D'Avolio A. Pharmacokinetic evaluation of oral itraconazole for antifungal prophylaxis in children. Clin Exp Pharmacol Physiol 2017; 44:1083-1088. [PMID: 28744925 DOI: 10.1111/1440-1681.12822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023]
Abstract
Itraconazole is a first-generation triazole agent with an extended spectrum of activity; it is licensed in adults for superficial and systemic fungal infections; no recommendation has been yet established for use in children patients. Its variable and unpredictable oral bioavailability make it difficult to determine the optimal dosing regimen. Hence, therapeutic drug monitoring, highly available in clinical practice, may improve itraconazole treatment success and safety. The aim of the study was to describe in paediatrics the oral itraconazole pharmacokinetics, used for prophylaxis. Moreover, we evaluated the utility of its therapeutic drug monitoring in this cohort. A fully validated chromatographic method was used to quantify itraconazole concentration in plasma collected from paediatric patients, at the end of dosing interval. Associations between variables were tested using the Pearson test. Mann-Whitney U test has been used to probe the influence of categorical variables on continuous ones. Any predictive power of the considered variables was finally evaluated through univariate and multivariate linear and logistic regression analyses. A high inter-individual variability was shown; ethnicity (beta coefficient, β -0.161 and interval of confidence at 95%, IC -395.035; -62.383) and gender (β 0.123 and IC 9.590; 349.395) remained in the final linear regression model with P value of .007 and .038, respectively. This study highlights that therapeutic drug monitoring is required to achieve an adequate target itraconazole serum exposure.
Collapse
Affiliation(s)
- Sarah Allegra
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, ASL Città di Torino, Amedeo di Savoia Hospital, Turin, Italy
| | - Giovanna Fatiguso
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, ASL Città di Torino, Amedeo di Savoia Hospital, Turin, Italy
| | - Silvia De Francia
- Department of Biological and Clinical Sciences, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Fabio Favata
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, ASL Città di Torino, Amedeo di Savoia Hospital, Turin, Italy
| | - Elisa Pirro
- Department of Biological and Clinical Sciences, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Chiara Carcieri
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, ASL Città di Torino, Amedeo di Savoia Hospital, Turin, Italy
| | - Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, ASL Città di Torino, Amedeo di Savoia Hospital, Turin, Italy
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, ASL Città di Torino, Amedeo di Savoia Hospital, Turin, Italy
| | - Giovanni Di Perri
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, ASL Città di Torino, Amedeo di Savoia Hospital, Turin, Italy
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, ASL Città di Torino, Amedeo di Savoia Hospital, Turin, Italy
| |
Collapse
|
15
|
|
16
|
Coisne C, Tilloy S, Monflier E, Wils D, Fenart L, Gosselet F. Cyclodextrins as Emerging Therapeutic Tools in the Treatment of Cholesterol-Associated Vascular and Neurodegenerative Diseases. Molecules 2016; 21:E1748. [PMID: 27999408 PMCID: PMC6273856 DOI: 10.3390/molecules21121748] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, like atherosclerosis, and neurodegenerative diseases affecting the central nervous system (CNS) are closely linked to alterations of cholesterol metabolism. Therefore, innovative pharmacological approaches aiming at counteracting cholesterol imbalance display promising therapeutic potential. However, these approaches need to take into account the existence of biological barriers such as intestinal and blood-brain barriers which participate in the organ homeostasis and are major defense systems against xenobiotics. Interest in cyclodextrins (CDs) as medicinal agents has increased continuously based on their ability to actively extract lipids from cell membranes and to provide suitable carrier system for drug delivery. Many novel CD derivatives are constantly generated with the objective to improve CD bioavailability, biocompatibility and therapeutic outcomes. Newly designed drug formulation complexes incorporating CDs as drug carriers have demonstrated better efficiency in treating cardiovascular and neurodegenerative diseases. CD-based therapies as cholesterol-sequestrating agent have recently demonstrated promising advances with KLEPTOSE® CRYSMEB in atherosclerosis as well as with the 2-hydroxypropyl-β-cyclodextrin (HPβCD) in clinical trials for Niemann-Pick type C disease. Based on this success, many investigations evaluating the therapeutical beneficial of CDs in Alzheimer's, Parkinson's and Huntington's diseases are currently on-going.
Collapse
Affiliation(s)
- Caroline Coisne
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens, F-62300, France.
| | - Sébastien Tilloy
- Unité de Catalyse et de Chimie du Solide (UCCS), University Artois, CNRS, UMR 8181, Lens, F-62300, France.
| | - Eric Monflier
- Unité de Catalyse et de Chimie du Solide (UCCS), University Artois, CNRS, UMR 8181, Lens, F-62300, France.
| | - Daniel Wils
- ROQUETTE, Nutrition & Health R & D, 62136 Lestrem, France.
| | - Laurence Fenart
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens, F-62300, France.
| | - Fabien Gosselet
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens, F-62300, France.
| |
Collapse
|
17
|
Chen S, Sun KY, Feng XW, Ran X, Lama J, Ran YP. Efficacy and safety of itraconazole use in infants. World J Pediatr 2016; 12:399-407. [PMID: 27286691 DOI: 10.1007/s12519-016-0034-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/18/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Itraconazole has been used to treat fungal infections, in particular invasive fungal infections in infants or neonates in many countries. DATA SOURCES Literature search was conducted through Ovid EMBASE, PubMed, ISI Web of Science, CNKI and Google scholarship using the following key words: "pediatric" or "infant" or "neonate" and "fungal infection" in combination with "itraconazole". Based on the literature and our clinical experience, we outline the administration of itraconazole in infants in order to develop evidence-based pharmacotherapy. RESULTS Of 45 articles on the use of itraconazole in infancy, 13 are related to superficial fungal infections including tinea capitis, sporotrichosis, mucosal fungal infections and opportunistic infections. The other 32 articles are related to systemic fungal infections including candidiasis, aspergillosis, histoplasmosis, zygomycosis, trichosporonosis and opportunistic infections as caused by Myceliophthora thermophila. CONCLUSION Itraconazole is safe and effective at a dose of 5 mg/kg per day in a short duration of therapy for superficial fungal infections and 10 mg/kg per day for systemic fungal infections in infants. With a good compliance, it is cost-effective in treating infantile fungal infections. The profiles of adverse events induced by itraconazole in infants are similar to those in adults and children.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai-Yi Sun
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Wei Feng
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jebina Lama
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu-Ping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Kim H, Shin D, Kang HJ, Yu KS, Lee JW, Kim SJ, Kim MS, Song ES, Jang MK, Park JD, Jang IJ, Park KD, Shin HY, Ahn HS. Successful empirical antifungal therapy of intravenous itraconazole with pharmacokinetic evidence in pediatric cancer patients undergoing hematopoietic stem cell transplantation. Clin Drug Investig 2016; 35:437-46. [PMID: 26022135 DOI: 10.1007/s40261-015-0297-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Empirical antifungal therapy prevents invasive fungal infections in patients with cancer. This study assessed the empirical efficacy of intravenous itraconazole in pediatric patients undergoing hematopoietic stem cell transplantation, and investigated the pharmacokinetics and clinical implications. METHODS Oral itraconazole syrup was started (2.5 mg/kg twice daily) for prophylaxis, and patients with persistent neutropenic fever for more than 2 days were switched to intravenous itraconazole (5 mg/kg twice daily for 2 days for induction and 5 mg/kg daily for maintenance) as empirical treatment. Empirical antifungal efficacy was assessed retrospectively in 159 transplantations, and a full pharmacokinetic study was prospectively conducted in six of these patients. Successful antifungal efficacy was defined as the fulfillment of all components of a five-part composite end point. RESULTS The overall empirical antifungal success rate fulfilling all criteria was 42.1 %. No death or drug-related serious adverse events occurred during the study. Mean trough plasma concentration of itraconazole after oral prophylaxis and intravenous induction were 577.2 and 1659.7 μg/L, respectively. Mean area under the concentration-time curve of itraconazole and its metabolite at steady state were 42,837 ± 24,746 μg·h/L and 63,094 ± 19,255 μg·h/L. CONCLUSIONS Intravenous itraconazole was effective and safe as an empirical antifungal agent in pediatric patients; this was due to the fast and satisfactory increase in drug concentration by switching from oral to intravenous therapy.
Collapse
Affiliation(s)
- Hyery Kim
- Cancer Research Institute, Seoul National University College of Medicine, #28 Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liang C, Shan Q, Zhong J, Li W, Zhang X, Wang J, Cao C, Zeng Z. Pharmacokinetics and bioavailability of itraconazole oral solution in cats. J Feline Med Surg 2016; 18:310-4. [PMID: 25916686 PMCID: PMC11112252 DOI: 10.1177/1098612x15581408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The aim of this study was to describe the pharmacokinetics and bioavailability of itraconazole (ITR) oral solution in healthy cats. METHODS The pharmacokinetics of ITR were studied in eight healthy, fasted cats after a single intravenous (IV) and oral (PO) administration at a dose of 5 mg/kg, in a two-period crossover design study. Blood was obtained at predetermined intervals for the determination of ITR concentrations with high-performance liquid chromatography. Pharmacokinetic characterisation was performed by a non-compartmental method using WinNonlin 5.2.1. RESULTS After IV administration, the major pharmacokinetic parameters were as follows (mean ± SD): terminal elimination half-life (T1/2λz ) 15.8 ± 1.88 h; area under the curve from time zero to infinity (AUC0-∞ ) 13.9 ± 3.17 h·μg/ml; total body clearance 0.37 ± 0.08 l/h/kg; apparent volume of distribution 8.51 ± 1.92 l/kg; mean residence time 20.6 ± 3.95 h. After PO administration, the principal pharmacokinetic parameters were as follows (mean ± SD): T1/2λz 15.6 ± 3.20 h; AUC0-∞ 7.94 ± 2.83 h·μg/ml; peak concentration 0.70 ± 0.14 μg/ml; time of peak 1.43 ± 0.53 h. The absolute bioavailability of ITR oral solution after oral administration was 52.1 ± 11.6%. CONCLUSIONS AND RELEVANCE The disposition of ITR oral solution in cats is characterised by a long terminal half-life, a short peak time and moderate bioavailability.
Collapse
Affiliation(s)
- Chaoping Liang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Shan
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jialian Zhong
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei Li
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiufeng Zhang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jing Wang
- Guangzhou Senya Animal's Pharmaceutical Co Ltd, Guangzhou, China
| | - Changfu Cao
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhenling Zeng
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Lee HJ, Lee B, Park JD, Jeong HJ, Choi YH, Ju HY, Hong CR, Lee JW, Kim H, Suh DI, Park KD, Kang HJ, Shin HY, Ahn HS. Association of systolic blood pressure drop with intravenous administration of itraconazole in children with hemato-oncologic disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6489-95. [PMID: 26719674 PMCID: PMC4687612 DOI: 10.2147/dddt.s95218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose Although few adverse effects have been reported for itraconazole, a widely used antifungal therapy for febrile neutropenia, we found intravenous (IV) itraconazole to be associated with serious cases of blood pressure (BP) drop. We therefore evaluated the incidence and risk factors for BP drop during IV administration of the drug. Materials and methods We reviewed the medical records of children with hemato-oncologic disease who were treated with IV itraconazole from January 2012 to December 2013. By analyzing systolic BP (SBP) measurements made from 4 hours before through to 4 hours after itraconazole administration, we evaluated the changes in SBP and the risk factors for an SBP drop, especially clinically meaningful (≥20%) drops. Results Itraconazole was administered 2,627 times to 180 patients. The SBP during the 4 hours following itraconazole administration was lower than during the 4 hours before administration (104 [53.0–160.33 mmHg] versus 105 [59.8–148.3 mmHg]; P<0.001). The decrease in SBP was associated with the application of continuous renal replacement therapy (CRRT) (P=0.012) and the use of inotropic (P=0.005) and hypotensive drugs (P=0.021). A clinically meaningful SBP drop was seen in 5.37% (141 out of 2,627) of the administrations, and the use of inotropics (odds ratio [OR] 6.70, 95% confidence interval [CI] 3.22–13.92; P<0.001), reducing the dose of inotropics (OR 8.08; 95% CI 1.39–46.94; P=0.02), CRRT (OR 3.10, 95% CI 1.41–6.81; P=0.005), and bacteremia (OR 2.70, 95% CI 1.32–5.51; P=0.007) were risk factors, while age was a protective factor (OR 0.93, 95% CI 0.89–0.97; P<0.001). Conclusion A decrease in SBP was associated with IV administration of itraconazole. It was particularly significant in younger patients with bacteremia using inotropic agents and during application of CRRT. Careful attention to hypotension is warranted during IV administration of itraconazole in this group of patients.
Collapse
Affiliation(s)
- Hyeong Jin Lee
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Bongjin Lee
- Division of Pediatric Intensive Care, Department of Pediatrics, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - June Dong Park
- Division of Pediatric Intensive Care, Department of Pediatrics, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyung Joo Jeong
- Division of Pediatric Intensive Care, Department of Pediatrics, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Yu Hyeon Choi
- Division of Pediatric Intensive Care, Department of Pediatrics, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Hee Young Ju
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Che Ry Hong
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Ji Won Lee
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyery Kim
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Dong In Suh
- Division of Pulmonology, Department of Pediatrics, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Kyung Duk Park
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Hee Young Shin
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyo Seop Ahn
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
21
|
De Schaepdrijver L, Mariën D, Rhimi C, Voets M, van Heerden M, Lammens L. Juvenile animal testing of hydroxypropyl-β-cyclodextrin in support of pediatric drug development. Reprod Toxicol 2015; 56:87-96. [DOI: 10.1016/j.reprotox.2015.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/30/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
|
22
|
|
23
|
Pharmacokinetics and pharmacodynamics of antifungals in children and their clinical implications. Clin Pharmacokinet 2014; 53:429-54. [PMID: 24595533 DOI: 10.1007/s40262-014-0139-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Invasive fungal infections are a significant cause of morbidity and mortality in children. Successful management of these systemic infections requires identification of the causative pathogen, appropriate antifungal selection, and optimisation of its pharmacokinetic and pharmacodynamic properties to maximise its antifungal activity and minimise toxicity and the emergence of resistance. This review highlights salient scientific advancements in paediatric antifungal pharmacotherapies and focuses on pharmacokinetic and pharmacodynamic studies that underpin current clinical decision making. Four classes of drugs are widely used in the treatment of invasive fungal infections in children, including the polyenes, triazoles, pyrimidine analogues and echinocandins. Several lipidic formulations of the polyene amphotericin B have substantially reduced the toxicity associated with the traditional amphotericin B formulation. Monotherapy with the pyrimidine analogue flucytosine rapidly promotes the emergence of resistance and cannot be recommended. However, when used in combination with other antifungal agents, therapeutic drug monitoring of flucytosine has been shown to reduce high peak flucytosine concentrations, which are strongly associated with toxicity. The triazoles feature large inter-individual pharmacokinetic variability, although this pattern is less pronounced with fluconazole. In clinical trials, posaconazole was associated with fewer adverse effects than other members of the triazole family, though both posaconazole and itraconazole display erratic absorption that is influenced by gastric pH and the gastric emptying rate. Limited data suggest that the clinical response to therapy may be improved with higher plasma posaconazole and itraconazole concentrations. For voriconazole, pharmacokinetic studies among children have revealed that children require twice the recommended adult dose to achieve comparable blood concentrations. Voriconazole clearance is also affected by the cytochrome P450 (CYP) 2C19 genotype and hepatic impairment. Therapeutic drug monitoring is recommended as voriconazole pharmacokinetics are highly variable and small dose increases can result in marked changes in plasma concentrations. For the echinocandins, the primary source of pharmacokinetic variability stems from an age-dependent decrease in clearance with increasing age. Consequently, young children require larger doses per kilogram of body weight than older children and adults. Routine therapeutic drug monitoring for the echinocandins is not recommended. The effectiveness of many systemic antifungal agents has been correlated with pharmacodynamic targets in in vitro and in murine models of invasive candidiasis and aspergillosis. Further study is needed to translate these findings into optimal dosing regimens for children and to understand how these agents interact when multiple antifungal agents are used in combination.
Collapse
|
24
|
Azanza JR, Sádaba B, Gómez-Guíu A. Farmacología de los antifúngicos en el tratamiento de la aspergilosis. Rev Iberoam Micol 2014; 31:255-61. [DOI: 10.1016/j.riam.2014.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/15/2014] [Indexed: 11/26/2022] Open
|
25
|
Autmizguine J, Guptill JT, Cohen-Wolkowiez M, Benjamin DK, Capparelli EV. Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs 2014; 74:891-909. [PMID: 24872147 PMCID: PMC4073603 DOI: 10.1007/s40265-014-0227-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Invasive fungal disease (IFD) remains life threatening in premature infants and immunocompromised children despite the recent development of new antifungal agents. Optimal dosing of antifungals is one of the few factors clinicians can control to improve outcomes of IFD. However, dosing in children cannot be extrapolated from adult data because IFD pathophysiology, immune response, and drug disposition differ from adults. We critically examined the literature on pharmacokinetics (PK) and pharmacodynamics (PD) of antifungal agents and highlight recent developments in treating pediatric IFD. To match adult exposure in pediatric patients, dosing adjustment is necessary for almost all antifungals. In young infants, the maturation of renal and metabolic functions occurs rapidly and can significantly influence drug exposure. Fluconazole clearance doubles from birth to 28 days of life and, beyond the neonatal period, agents such as fluconazole, voriconazole, and micafungin require higher dosing than in adults because of faster clearance in children. As a result, dosing recommendations are specific to bracketed ranges of age. PD principles of antifungals mostly rely on in vitro and in vivo models but very few PD studies specifically address IFD in children. The exposure-response relationship may differ in younger children compared with adults, especially in infants with invasive candidiasis who are at higher risk of disseminated disease and meningoencephalitis, and by extension severe neurodevelopmental impairment. Micafungin is the only antifungal agent for which a specific target of exposure was proposed based on a neonatal hematogenous Candida meningoencephalitis animal model. In this review, we found that pediatric data on drug disposition of newer triazoles and echinocandins are lacking, dosing of older antifungals such as fluconazole and amphotericin B products still need optimization in young infants, and that target PK/PD indices need to be clinically validated for almost all antifungals in children. A better understanding of age-specific PK and PD of new antifungals in infants and children will help improve clinical outcomes of IFD by informing dosing and identifying future research areas.
Collapse
Affiliation(s)
- Julie Autmizguine
- Duke Clinical Research Institute, 2400 Pratt St, Durham, NC 27705, USA
| | | | | | | | - Edmund V. Capparelli
- Department of Pediatric Pharmacology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0831, USA
| |
Collapse
|
26
|
Barker CIS, Germovsek E, Hoare RL, Lestner JM, Lewis J, Standing JF. Pharmacokinetic/pharmacodynamic modelling approaches in paediatric infectious diseases and immunology. Adv Drug Deliv Rev 2014; 73:127-39. [PMID: 24440429 PMCID: PMC4076844 DOI: 10.1016/j.addr.2014.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/09/2013] [Accepted: 01/11/2014] [Indexed: 02/02/2023]
Abstract
Pharmacokinetic/pharmacodynamic (PKPD) modelling is used to describe and quantify dose-concentration-effect relationships. Within paediatric studies in infectious diseases and immunology these methods are often applied to developing guidance on appropriate dosing. In this paper, an introduction to the field of PKPD modelling is given, followed by a review of the PKPD studies that have been undertaken in paediatric infectious diseases and immunology. The main focus is on identifying the methodological approaches used to define the PKPD relationship in these studies. The major findings were that most studies of infectious diseases have developed a PK model and then used simulations to define a dose recommendation based on a pre-defined PD target, which may have been defined in adults or in vitro. For immunological studies much of the modelling has focused on either PK or PD, and since multiple drugs are usually used, delineating the relative contributions of each is challenging. The use of dynamical modelling of in vitro antibacterial studies, and paediatric HIV mechanistic PD models linked with the PK of all drugs, are emerging methods that should enhance PKPD-based recommendations in the future.
Collapse
Affiliation(s)
- Charlotte I S Barker
- Paediatric Infectious Diseases Research Group, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK
| | - Eva Germovsek
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK
| | - Rollo L Hoare
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK; CoMPLEX, University College London, Physics Building, Gower Street, London WC1E 6BT, UK
| | - Jodi M Lestner
- Paediatric Infectious Diseases Research Group, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Faculty of Medicine, Imperial College London, London, UK
| | - Joanna Lewis
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK; CoMPLEX, University College London, Physics Building, Gower Street, London WC1E 6BT, UK
| | - Joseph F Standing
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK; CoMPLEX, University College London, Physics Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
27
|
Lestner JM, Smith PB, Cohen-Wolkowiez M, Benjamin DK, Hope WW. Antifungal agents and therapy for infants and children with invasive fungal infections: a pharmacological perspective. Br J Clin Pharmacol 2014; 75:1381-95. [PMID: 23126319 DOI: 10.1111/bcp.12025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/31/2012] [Indexed: 12/30/2022] Open
Abstract
Invasive fungal infections, although relatively rare, are life-threatening diseases in premature infants and immunocompromised children. While many advances have been made in antifungal therapeutics in the last two decades, knowledge of the pharmacokinetics and pharmacodynamics of antifungal agents for infants and children remains incomplete. This review summarizes the pharmacology and clinical utility of currently available antifungal agents and discusses the opportunities and challenges for future research.
Collapse
Affiliation(s)
- Jodi M Lestner
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
28
|
Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother 2013; 69:1162-76. [PMID: 24379304 DOI: 10.1093/jac/dkt508] [Citation(s) in RCA: 515] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics-pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the evidence that supports TDM is circumstantial. This document reviews the available literature and provides a series of recommendations for TDM of antifungal agents.
Collapse
Affiliation(s)
- H Ruth Ashbee
- Mycology Reference Centre, Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | | | | | | | | | | |
Collapse
|
29
|
Lestner J, Hope WW. Itraconazole: an update on pharmacology and clinical use for treatment of invasive and allergic fungal infections. Expert Opin Drug Metab Toxicol 2013; 9:911-26. [PMID: 23641752 DOI: 10.1517/17425255.2013.794785] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Fungal infections are a major source of global morbidity and mortality. Itraconazole is a triazole antifungal agent that is widely used for the prevention and treatment of fungal infection. While newer antifungal agents are now available, itraconazole is an orally bioavailable agent with broad-spectrum antifungal activity. Itraconazole remains a useful drug for the management of allergic and invasive mycoses worldwide. AREAS COVERED This article provides a summary of the pharmacokinetics, pharmacodynamics and clinical uses of itraconazole. Additionally, the authors summarise the safety and recently described toxicodynamics and discuss the value of therapeutic drug monitoring (TDM) with itraconazole. The following search criteria were constructed in order to identify relevant literature using PubMed and Ovid-MEDLINE: itraconazole, triazole, pharmacokinetics, pharmacodynamics, toxicodynamics and TDM. Relevant abstracts and articles identified from reviewing secondary citations were additionally retrieved and included if relevant. EXPERT OPINION Itraconazole remains an important agent in the prevention and treatment of fungal infection. Itraconazole has a broad-spectrum of activity and is available in both an intravenous and oral form making long-term use in chronic mycoses practical. Itraconazole is widely used for the treatment of endemic fungal infections. Pharmacokinetic variability and clinically important drug interactions make TDM of itraconazole an important consideration.
Collapse
Affiliation(s)
- Jodi Lestner
- Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
30
|
Uso actual de los antifúngicos triazoles en niños. INFECTIO 2012. [DOI: 10.1016/s0123-9392(12)70031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Phase behavior of itraconazole-phenol mixtures and its pharmaceutical applications. Int J Pharm 2012; 436:652-8. [PMID: 22871560 DOI: 10.1016/j.ijpharm.2012.07.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/29/2012] [Accepted: 07/24/2012] [Indexed: 11/21/2022]
Abstract
The aims of this study were to examine the phase behavior of itraconazole-phenol mixtures and assess the feasibility of topical formulations of itraconazole using eutectic mixture systems. Itraconazole-phenol eutectic mixtures were characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy, (1)H-nuclear magnetic resonance, and powder X-ray diffractometry. The skin permeation rates of itraconazole-phenol eutectic formulations were determined using Franz diffusion cells fitted with excised hairless mouse skins. Itraconazole can form eutectic compounds with phenol, and the hydrogen-bonding interactions between the carbonyl group in the itraconazole and hydroxyl group in phenol play a major role in itraconazole-phenol eutectic formation. Despite its high molecular weight and hydrophobicity, the drug (i.e., itraconazole) can be permeated through excised hairless mouse skins from itraconazole-phenol eutectic formulations. The findings of this study emphasize the capabilities of the topical application of itraconazole via external preparations.
Collapse
|
32
|
Tragiannidis A, Dokos C, Lehrnbecher T, Groll AH. Antifungal Chemoprophylaxis in Children and Adolescents with Haematological Malignancies and Following Allogeneic Haematopoietic Stem Cell Transplantation. Drugs 2012; 72:685-704. [DOI: 10.2165/11599810-000000000-00000] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
Lehrnbecher T, Bochennek K, Schrey D, Groll AH. Antifungal Therapy in Pediatric Patients. CURRENT FUNGAL INFECTION REPORTS 2011. [DOI: 10.1007/s12281-011-0046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Kim YJ, Sung KW, Hwang HS, Jung SH, Kim JY, Cho EJ, Lim SJ, Choi YB, Cheuh HW, Lee SH, Yoo KH, Koo HH. Efficacy of itraconazole prophylaxis for autologous stem cell transplantation in children with high-risk solid tumors: a prospective double-blind randomized study. Yonsei Med J 2011; 52:293-300. [PMID: 21319349 PMCID: PMC3051209 DOI: 10.3349/ymj.2011.52.2.293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The risk of invasive fungal infection is greater for allogeneic hematopoietic stem cell transplantation (HSCT) than for autologous transplantation. Therefore, many transplantation centers use antifungal prophylaxis for allogeneic HSCT, however, there exists no standard guidelines or consensus regarding autologous HSCT. MATERIALS AND METHODS A prospective double-blind randomized study was conducted in autologous HSCT recipients who were divided into prophylaxis and empirical treatment groups, and we investigated the efficacy of itraconazole prophylaxis in pediatric autologous HSCT. RESULTS Total 87 autologous HSCT episodes in 55 children with high-risk solid tumors were studied. No invasive fungal infections occurred in either group. However, patients in the prophylaxis group had a significantly shorter duration of fever (p < 0.05) and received antibacterial treatment of shorter duration (p < 0.05) with fewer numbers of antibiotics (p < 0.05 for the use of second line antibiotics) than those in the empirical group. No significant additional adverse events were found with itraconazole prophylaxis. CONCLUSION Although beneficial effects such as a shorter duration of fever and reduced need for antibiotic use were observed in the prophylaxis group, the results were not sufficient to draw a definite recommendation about the routine use of antifungal prophylaxis in pediatric autologous HSCT recipients with high-risk solid tumors (Trial registration: NCT00336531).
Collapse
Affiliation(s)
- Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Sook Hwang
- Department of Pharmacy, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Shin Han Jung
- Department of Pharmacy, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju Youn Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Joo Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Jin Lim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Bae Choi
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Won Cheuh
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Hyun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
35
|
|
36
|
Jia JY, Lu C, Liu GY, Zhang MQ, Liu YM, Wang W, Weng LP, Li SJ, Yu C. Simultaneous determination of itraconazole and hydroxyitraconazole in human plasma by liquid chromatography-isotope dilution tandem mass spectrometry method. Biomed Chromatogr 2010; 24:648-54. [PMID: 19813178 DOI: 10.1002/bmc.1341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A rapid and sensitive liquid chromatography-isotope dilution tandem mass spectrometry method was developed and validated for quantification of itraconazole (ITZ) and its active metabolite hydroxyitraconazole (OH-ITZ ) in human plasma. The plasma samples were extracted with tert-butyl methyl ether and two isotope-labeled internal standards (D5-itraconazole and D5-hydroxyitraconazole) were used. The chromatographic separation was performed on a Capcell Pak C(18) MG III (100 x 2 mm, 5 microm, Shiseido). The protonated ions of analytes were detected in positive ionization in multiple reaction monitoring mode. The plasma method has a lower limit of quantification of 1 ng/mL with a linearity range of 1-500 ng/mL for ITZ and OH-ITZ using 100 microL of plasma. The recoveries of the method were found to be 69.47-71.98% for ITZ and 75.68-82.52% for OH-ITZ. The intra- and inter-batch precision was less than 11% for all quality control samples at concentrations of 2.5, 200 and 400 ng/mL. These results indicate that the method was efficient with a short run time (4.5 min) and acceptable accuracy, precision and sensitivity.The validated method was successfully applied to analysis of human plasma samples in pharmacokinetics study.
Collapse
Affiliation(s)
- Jing-Ying Jia
- Central Laboratory, Shanghai Xuhui Central Hospital,966 Huaihai Middle Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Miura M, Takahashi N, Nara M, Fujishima N, Kagaya H, Kameoka Y, Saitoh H, Tagawa H, Sawada K. A simple, sensitive high-performance liquid chromatography -ultraviolet method for the quantification of concentration and steady-state pharmacokinetics of itraconazole and hydroxyitraconazole. Ann Clin Biochem 2010; 47:432-9. [DOI: 10.1258/acb.2010.010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background A steady-state trough plasma itraconazole concentration greater than 500 ng/mL is a therapeutic target for itraconazole. A simple, rapid and sensitive high-performance liquid chromatography-based method was developed for quantitation of itraconazole and hydroxyitraconazole in human plasma. Methods Itraconazole and hydroxyitraconazole were separated using a mobile phase of 0.5% KH2PO4 (pH 6.0)-acetonitrile (30:70, v/v) on a CAPCELLPAK C18 MGII column at a flow rate of 0.5 mL/min and ultraviolet absorbance at 260 nm. Results The analysis required 200 μL of plasma and involved a rapid, simple solid-phase extraction with an Oasis HLB cartridge, which resulted in recoveries of 87–92% for itraconazole and 91–94% for hydroxyitraconazole. The lower limit of quantification for itraconazole and hydroxyitraconazole was 5 ng/mL each. Intra- and interday coefficients of variation for itraconazole and hydroxyitraconazole were less than 11.3% and 12.2%, respectively, and accuracies were within 11.7% and 4.5% over the linear range, respectively. Although the steady-state plasma concentrations of itraconazole and hydroxyitraconazole ranged from 506 to 2482 ng/mL and from 766 to 2444 ng/mL, respectively, after a two-day loading dose of 400 mg/day intravenous itraconazole followed by the administration of 200 mg/day itraconazole oral solution, calibration curves of itraconazole and hydroxyitraconazole showed positive linearity in a concentration range of 5–2500 and 50–2500 ng/mL, respectively. Conclusions Our results indicate that this method is applicable for the monitoring of plasma levels of itraconazole and hydroxyitraconazole in a clinical setting. Furthermore, the regimen presented here might also be effective in preventing infection, but further studies with large sample sizes are necessary to investigate this avenue.
Collapse
Affiliation(s)
- M Miura
- Department of Pharmacy, Akita University Hospital, 1-1-1 Hondo, Akita 010-8543
| | - N Takahashi
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - M Nara
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - N Fujishima
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - H Kagaya
- Department of Pharmacy, Akita University Hospital, 1-1-1 Hondo, Akita 010-8543
| | - Y Kameoka
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - H Saitoh
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - H Tagawa
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - K Sawada
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
39
|
|
40
|
Yao M, Srinivas NR. Bioanalytical methods for the determination of itraconazole and hydroxyitraconazole: overview from clinical pharmacology, pharmacokinetic, pharmacodynamic and metabolism perspectives. Biomed Chromatogr 2009; 23:677-91. [DOI: 10.1002/bmc.1186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Chen J, Song X, Yang P, Wang J. Appearance of anaphylactic shock after long-term intravenous itraconazole treatment. Ann Pharmacother 2009; 43:537-41. [PMID: 19261964 DOI: 10.1345/aph.1l343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To report a rare but severe adverse effect of intravenous itraconazole, anaphylactic shock with hypotension and hypoxemia, in a female patient with acute lymphoblastic leukemia (ALL). CASE SUMMARY A 36-year-old woman with ALL received antifungal therapy for pulmonary fungal infections. On day 17 of itraconazole treatment, she developed hypotension and hypoxemia shock after intravenous administration of itraconazole 200 mg, which was eventually reversed by steroid treatment. On days 18 and 19, the patient developed the same type of shock 2 more times in the course of itraconazole administration. These 2 episodes of shock occurred more quickly after intravenous itraconazole administration (100 mg on day 18, 40 mg on day 19), and were reversed by stopping itraconazole and applying steroid treatment. In the modified antifungal therapy, intravenous administration of itraconazole was replaced by oral administration of voriconazole 200 mg twice daily. Shock did not recur after discontinuation of itraconazole treatment. The Naranjo probability scale showed a probable relationship between itraconazole treatment and shock occurrence. DISCUSSION Itraconazole is a widely used antifungal drugs and is well tolerated. However, long-term itraconazole treatment might lead to serious and even life-threatening adverse effects such as anaphylactic shock, as seen in our patient. T cell reduction caused by immunosuppression and itraconazole accumulation in patients with ALL are considered to be important causal factors for this delayed-type hypersensitivity reaction. CONCLUSIONS Anaphylactic shock represents a previously undocumented severe adverse effect associated with long-term itraconazole treatment; patients receiving this therapy and should be monitored closely.
Collapse
Affiliation(s)
- Jie Chen
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | |
Collapse
|