1
|
Sheng X, Lu W, Li A, Lu J, Song C, Xu J, Dong Y, Fu C, Lin X, Zhu M, Bao Q, Li K. ANT(9)-Ic, a Novel Chromosomally Encoded Aminoglycoside Nucleotidyltransferase from Brucella intermedia. Microbiol Spectr 2023; 11:e0062023. [PMID: 37039640 PMCID: PMC10269693 DOI: 10.1128/spectrum.00620-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
Aminoglycoside-modifying enzymes are among the most important mechanisms of resistance to aminoglycoside antibiotics, typically conferring high-level resistance by enzymatic drug inactivation. Previously, we isolated a multidrug-resistant Brucella intermedia strain ZJ499 from a cancer patient, and whole-genome sequencing revealed several putative novel aminoglycoside-modifying enzyme genes in this strain. Here, we report the characterization of one of them that encodes an intrinsic, chromosomal aminoglycoside nucleotidyltransferase designated ANT(9)-Ic, which shares only 33.05% to 47.44% amino acid identity with the most closely related ANT(9)-I enzymes. When expressed in Escherichia coli, ANT(9)-Ic conferred resistance only to spectinomycin and not to any other aminoglycosides tested, indicating a substrate profile typical of ANT(9)-I enzymes. Consistent with this, deletion of ant(9)-Ic in ZJ499 resulted in a specific and significant decrease in MIC of spectinomycin. Furthermore, the purified ANT(9)-Ic protein showed stringent substrate specificity for spectinomycin with a Km value of 44.83 μM and a kcat/Km of 2.8 × 104 M-1 s-1, echoing the above observations of susceptibility testing. In addition, comparative genomic analysis revealed that the genetic context of ant(9)-Ic was conserved in Brucella, with no mobile genetic elements found within its 20-kb surrounding region. Overall, our results demonstrate that ANT(9)-Ic is a novel member of the ANT(9)-I lineage, contributing to the intrinsic spectinomycin resistance of ZJ499. IMPORTANCE The emergence, evolution, and worldwide spread of antibiotic resistance present a significant global public health crisis. For aminoglycoside antibiotics, enzymatic drug modification is the most common mechanism of resistance. We identify a novel chromosomal aminoglycoside nucleotidyltransferase from B. intermedia, called ANT(9)-Ic, which shares the highest identity (47.44%) with the previously known ANT(9)-Ia and plays an important role in spectinomycin resistance of the host strain. Analysis of the genetic environment and origin of ant(9)-Ic shows that the gene and its surrounding region are widely conserved in Brucella, and no mobile elements are detected, indicating that ANT(9)-Ic may be broadly important in the natural resistance to spectinomycin of Brucella species.
Collapse
Affiliation(s)
- Xiusheng Sheng
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Lu
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Aifang Li
- Fifth Affiliated Hospital, Wenzhou Medical University, Lishui, Zhejiang, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunhan Song
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Jiefeng Xu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Youming Dong
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunqing Fu
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mei Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Qiyu Bao
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China. Acta Pharm Sin B 2014; 4:295-300. [PMID: 26579398 PMCID: PMC4629078 DOI: 10.1016/j.apsb.2014.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 05/28/2014] [Accepted: 06/16/2014] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to investigate the genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii clinical isolates from Beijing, China. 173 A. baumannii clinical isolates from hospitals in Beijing from 2006 to 2009 were first subjected to high level aminoglycoside resistance (HLAR, MIC to gentamicin and amikacin>512 µg/mL) phenotype selection by broth microdilution method. The strains were then subjected to genetic basis analysis by PCR detection of the aminoglycoside modifying enzyme genes (aac(3)-I, aac(3)-IIc, aac(6')-Ib, aac(6')-II, aph(4)-Ia, aph(3')-I, aph(3')-IIb, aph(3')-IIIa, aph(3')-VIa, aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Id, ant(2″)-Ia, ant(3″)-I and ant(4')-Ia) and the 16S rRNA methylase genes (armA, rmtB and rmtC). Correlation analysis between the presence of aminoglycoside resistance gene and HLAR phenotype were performed by SPSS. Totally 102 (58.96%) HLAR isolates were selected. The HLAR rates for year 2006, 2007, 2008 and 2009 were 52.63%, 65.22%, 51.11% and 70.83%, respectively. Five modifying enzyme genes (aac(3)-I, detection rate of 65.69%; aac(6')-Ib, detection rate of 45.10%; aph(3')-I, detection rate of 47.06%; aph(3')-IIb, detection rate of 0.98%; ant(3″)-I, detection rate of 95.10%) and one methylase gene (armA, detection rate of 98.04%) were detected in the 102 A. baumannii with aac(3)-I+aac(6')-Ib+ant(3″)-I+armA (detection rate of 25.49%), aac(3)-I+aph(3')-I+ant(3″)-I+armA (detection rate of 21.57%) and ant(3″)-I+armA (detection rate of 12.75%) being the most prevalent gene profiles. The values of chi-square tests showed correlation of armA, ant(3″)-I, aac(3)-I, aph(3')-I and aac(6')-Ib with HLAR. armA had significant correlation (contingency coefficient 0.685) and good contingency with HLAR (kappa 0.940). The high rates of HLAR may cause a serious problem for combination therapy of aminoglycoside with β-lactams against A. baumannii infections. As armA was reported to be able to cause high level aminoglycoside resistance to most of the clinical important aminoglycosides (gentamicin, amikacin, tobramycin, etc), the function of aminoglycoside modifying enzyme gene(s) in A. baumannii carrying armA deserves further investigation.
Collapse
|
3
|
Caldwell SJ, Berghuis AM. Small-angle X-ray scattering analysis of the bifunctional antibiotic resistance enzyme aminoglycoside (6') acetyltransferase-ie/aminoglycoside (2'') phosphotransferase-ia reveals a rigid solution structure. Antimicrob Agents Chemother 2012; 56:1899-906. [PMID: 22290965 PMCID: PMC3318351 DOI: 10.1128/aac.06378-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/20/2012] [Indexed: 11/20/2022] Open
Abstract
Aminoglycoside (6') acetyltransferase-Ie/aminoglycoside (2″) phosphotransferase-Ia [AAC(6')-Ie/APH(2″)-Ia] is one of the most problematic aminoglycoside resistance factors in clinical pathogens, conferring resistance to almost every aminoglycoside antibiotic available to modern medicine. Despite 3 decades of research, our understanding of the structure of this bifunctional enzyme remains limited. We used small-angle X-ray scattering (SAXS) to model the structure of this bifunctional enzyme in solution and to study the impact of substrate binding on the enzyme. It was observed that the enzyme adopts a rigid conformation in solution, where the N-terminal AAC domain is fixed to the C-terminal APH domain and not loosely tethered. The addition of acetyl-coenzyme A, coenzyme A, GDP, guanosine 5'-[β,γ-imido]triphosphate (GMPPNP), and combinations thereof to the protein resulted in only modest changes to the radius of gyration (R(G)) of the enzyme, which were not consistent with any large changes in enzyme structure upon binding. These results imply some selective advantage to the bifunctional enzyme beyond coexpression as a single polypeptide, likely linked to an improvement in enzymatic properties. We propose that the rigid structure contributes to improved electrostatic steering of aminoglycoside substrates toward the two active sites, which may provide such an advantage.
Collapse
Affiliation(s)
| | - Albert M. Berghuis
- Department of Biochemistry
- Department of Microbiology and Immunology, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| |
Collapse
|