1
|
Castelo-Branco D, Lockhart SR, Chen YC, Santos DA, Hagen F, Hawkins NJ, Lavergne RA, Meis JF, Le Pape P, Rocha MFG, Sidrim JJC, Arendrup M, Morio F. Collateral consequences of agricultural fungicides on pathogenic yeasts: A One Health perspective to tackle azole resistance. Mycoses 2022; 65:303-311. [PMID: 34821412 PMCID: PMC11268486 DOI: 10.1111/myc.13404] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023]
Abstract
Candida and Cryptococcus affect millions of people yearly, being responsible for a wide array of clinical presentations, including life-threatening diseases. Interestingly, most human pathogenic yeasts are not restricted to the clinical setting, as they are also ubiquitous in the environment. Recent studies raise concern regarding the potential impact of agricultural use of azoles on resistance to medical antifungals in yeasts, as previously outlined with Aspergillus fumigatus. Thus, we undertook a narrative review of the literature and provide lines of evidence suggesting that an alternative, environmental route of azole resistance, may develop in pathogenic yeasts, in addition to patient route. However, it warrants sound evidence to support that pathogenic yeasts cross border between plants, animals and humans and that environmental reservoirs may contribute to azole resistance in Candida or other yeasts for humans. As these possibilities could concern public health, we propose a road map for future studies under the One Health perspective.
Collapse
Affiliation(s)
- Débora Castelo-Branco
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta, Georgia, USA
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Rose-Anne Lavergne
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| | - Jacques F Meis
- Center of Expertise in Mycology, Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Patrice Le Pape
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| | - Marcos Fabio Gadelha Rocha
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - José Julio Costa Sidrim
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Maiken Arendrup
- Copenhagen University Hospital, and Statens Serum Institut, Copenhagen, Denmark
| | - Florent Morio
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| |
Collapse
|
2
|
Castelo-Branco DDSCM, Paiva MDAN, Teixeira CEC, Caetano ÉP, Guedes GMDM, Cordeiro RDA, Brilhante RSN, Rocha MFG, Sidrim JJC. Azole resistance in Candida from animals calls for the One Health approach to tackle the emergence of antimicrobial resistance. Med Mycol 2021; 58:896-905. [PMID: 31950176 DOI: 10.1093/mmy/myz135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
This study initially aimed at investigating the occurrence of azole resistance among Candida spp. from animals and analyzing the involvement of efflux pumps in the resistance phenomenon. Then, the dynamics of antifungal resistance was assessed, by comparing the antifungal epidemiological cutoff values (ECVs) against C. albicans and C. tropicalis from humans and animals. Fifty azole-resistant isolates (24 C. albicans, 24 C. tropicalis; 2 C. parapsilosis sensu lato) were submitted to the efflux pump inhibition assay with promethazine and significant MIC reductions were observed for fluconazole (2 to 250-fold) and itraconazole (16 to 4000-fold). Then, the antifungal ECVs against C. albicans and C. tropicalis from human and animal isolates were compared. Fluconazole, itraconazole and voriconazole ECVs against human isolates were lower than those against animal isolates. Based on the antifungal ECVs against human isolates, only 33.73%, 50.39% and 63.53% of C. albicans and 52.23%, 61.85% and 55.17% of C. tropicalis from animals were classified as wild-type for fluconazole, itraconazole and voriconazole, respectively. Therefore, efflux-mediated mechanisms are involved in azole resistance among Candida spp. from animals and this phenomenon seems to emerge in animal-associated niches, pointing to the existence of environmental drivers of resistance and highlighting the importance of the One Health approach to control it.
Collapse
Affiliation(s)
| | - Manoel de Araújo Neto Paiva
- Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel Nunes de Melo, Brazil.,School of Veterinary, Postgraduate Program in Veterinary Science, State University of Ceará, Fortaleza-CE, Brazil
| | - Carlos Eduardo Cordeiro Teixeira
- Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel Nunes de Melo, Brazil
| | - Érica Pacheco Caetano
- Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel Nunes de Melo, Brazil
| | - Gláucia Morgana de Melo Guedes
- Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel Nunes de Melo, Brazil
| | - Rossana de Aguiar Cordeiro
- Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel Nunes de Melo, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel Nunes de Melo, Brazil
| | - Marcos Fábio Gadelha Rocha
- Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel Nunes de Melo, Brazil.,School of Veterinary, Postgraduate Program in Veterinary Science, State University of Ceará, Fortaleza-CE, Brazil
| | - José Júlio Costa Sidrim
- Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel Nunes de Melo, Brazil
| |
Collapse
|
3
|
Januário da Costa Neto D, Benevides de Morais P. The vectoring of Starmerella species and other yeasts by stingless bees in a Neotropical savanna. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Namvar Z, Sepahy AA, Tabatabaei RR, Rezaie S. Antifungal susceptibility of non-albicans Candida spp. isolated from raw milk and human blood in Alborz and Tehran provinces. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:520-526. [PMID: 32148684 PMCID: PMC7048955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Recent reports indicate high prevalence of fungal infections due to non-albicans Candida spp. which are present in various environments such as raw milk. The quality of milk for fungal normal flora was investigated in this study. MATERIALS AND METHODS A total of 262 milk samples were collected directly from milk collection tanks indesignated dairy farms and cultured in SDA media. By further analysis of grown yeasts, 69 non-albicans Candida strains were identified. Antifungal susceptibility of the isolated species, were evaluated against amphotericin B, itraconazole, fluconazole and flucytosine. Fifty two non-albicans clinical samples isolated from human blood have been evaluated along. RESULTS Antifungal susceptibility evaluation in non-albicans strains isolated from milk revealed Candida glabrata and Candida tropicalis to be 100% sensitive to flucytosine and fluconazole. Candida krusei showed 94% and 80% sensitivity to flucytosine and fluconazole respectively. Candida parapsilosis indicated 72.72% sensitivity to fluconazole. CONCLUSION Evaluation of non-albicans Candida species in raw milk and antifungal susceptibility patterns of these isolates-compare with non-albicansisolates from human blood, may help physicians to choose an appropriate medication for diseases needing long-term treatment, especially for diseases caused by local strains.
Collapse
Affiliation(s)
- Zahra Namvar
- Depatment of Microbiology, School of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahy
- Depatment of Microbiology, School of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran,Corresponding author: Abbas Akhavan Sepahy, PhD, Depatment of Microbiology, School of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran., Tel: +98-21-22949793, Fax: +98-21-22950723,
| | - Robab Rafiei Tabatabaei
- Depatment of Microbiology, School of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Sassan Rezaie
- Depatment of Medical Mycology and Parasitology, Division of Molecular Biology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|