1
|
Sarink MJ, Mykytyn AZ, Jedidi A, Houweling M, Brouwers JF, Ruijter G, Verbon A, van Hellemond JJ, Tielens AGM. Acanthamoeba castellanii trophozoites need oxygen for normal functioning and lipids are their preferred substrate, offering new possibilities for treatment. Int J Parasitol 2024:S0020-7519(24)00187-5. [PMID: 39490506 DOI: 10.1016/j.ijpara.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Acanthamoebae, pathogenic free-living amoebae, can cause Granulomatous Amoebic Encephalitis (GAE) and keratitis, and for both types of infection, no adequate treatment options are available. As the metabolism of pathogens is an attractive treatment target, we set out to examine the energy metabolism of Acanthamoeba castellanii and studied the aerobic and anaerobic capacities of the trophozoites. Under anaerobic conditions, or in the presence of inhibitors of the electron-transport chain, A. castellanii trophozoites became rounded, moved sluggishly and stopped multiplying. This demonstrates that oxygen and the respiratory chain are essential for movement and replication. Furthermore, the simultaneous activities of both terminal oxidases, cytochrome c oxidase and the plant-like alternative oxidase, are essential for normal functioning and replication. The inhibition of normal function caused by the inactivity of the respiratory chain was reversible. Once respiration was made possible again, the rounded, rather inactive amoebae formed acanthopodia within 4 h and resumed moving, feeding and multiplying. Experiments with radiolabelled nutrients revealed a preference for lipids over glucose and amino acids as food. Subsequent experiments showed that adding lipids to a standard culture medium of trophozoites strongly increased the growth rate. Acanthamoeba castellanii trophozoites have a strictly aerobic energy metabolism and β-oxidation of fatty acids, the Krebs cycle, and an aerobic electron-transport chain coupled to the ATP synthase, producing most of the used ATP. The preference for lipids can be exploited, as we show that three known inhibitors of lipid oxidation strongly inhibited the growth of A. castellanii. In particular, thioridazine and perhexiline showed potent effects in low micromolar concentrations. Therefore, this study revealed a new drug target with possibly new options to treat Acanthamoeba infections.
Collapse
Affiliation(s)
- Maarten J Sarink
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Anna Z Mykytyn
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Aïsha Jedidi
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Martin Houweling
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jos F Brouwers
- Avans University of Applied Sciences, School of Life Sciences and Technology, Research Group for Analysis Techniques in the Life Sciences, Breda, the Netherlands
| | - George Ruijter
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Bahiraii S, Brenner M, Weckwerth W, Heiss EH. Sulforaphane impedes mitochondrial reprogramming and histone acetylation in polarizing M1 (LPS) macrophages. Free Radic Biol Med 2024; 213:443-456. [PMID: 38301976 DOI: 10.1016/j.freeradbiomed.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
M1 (LPS) macrophages are characterized by a high expression of pro-inflammatory mediators, and distinct metabolic features that comprise increased glycolysis, a broken TCA cycle, or impaired OXPHOS with augmented mitochondrial ROS production. This study investigated whether the phytochemical sulforaphane (Sfn) influences mitochondrial reprogramming during M1 polarization, as well as to what extent this can contribute to Sfn-mediated inhibition of M1 marker expression in murine macrophages. The use of extracellular flux-, metabolite-, and immunoblot analyses as well as fluorescent dyes indicative for mitochondrial morphology, membrane potential or superoxide production, demonstrated that M1 (LPS/Sfn) macrophages maintain an unbroken TCA cycle, higher OXPHOS rate, boosted fusion dynamics, lower membrane potential, and less superoxide production in their mitochondria when compared to control M1 (LPS) cells. Sustained OXPHOS and TCA activity but not the concomitantly observed high dependency on fatty acids as fuel appeared necessary for M1 (LPS/Sfn) macrophages to reduce expression of nos2, il1β, il6 and tnfα. M1 (LPS/Sfn) macrophages also displayed lower nucleo/cytosolic acetyl-CoA levels in association with lower global and site-specific histone acetylation at selected pro-inflammatory gene promoters than M1 (LPS), evident in colorimetric coupled enzyme assays, immunoblot and ChIP-qPCR analyses, respectively. Supplementation with acetate or citrate was able to rescue both histone acetylation and mRNA expression of the investigated M1 marker genes in Sfn-treated cells. Overall, Sfn preserves mitochondrial functionality and restricts indispensable nuclear acetyl-CoA for histone acetylation and M1 marker expression in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Sheyda Bahiraii
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria; ViennaDoctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Vienna, Austria
| | - Martin Brenner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria; ViennaDoctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria; Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology (FEE), University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Akbar N, Siddiqui R, El-Gamal MI, Zaraei SO, Alawfi BS, Khan NA. The anti-amoebic potential of carboxamide derivatives containing sulfonyl or sulfamoyl moieties against brain-eating Naegleria fowleri. Parasitol Res 2023; 122:2539-2548. [PMID: 37665414 DOI: 10.1007/s00436-023-07953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Naegleria fowleri is a free-living thermophilic flagellate amoeba that causes a rare but life-threatening infection called primary amoebic meningoencephalitis (PAM), with a very high fatality rate. Herein, the anti-amoebic potential of carboxamide derivatives possessing sulfonyl or sulfamoyl moiety was assessed against pathogenic N. fowleri using amoebicidal, cytotoxicity and cytopathogenicity assays. The results from amoebicidal experiments showed that derivatives dramatically reduced N. fowleri viability. Selected derivatives demonstrated IC50 values at lower concentrations; 1j showed IC50 at 24.65 μM, while 1k inhibited 50% amoebae growth at 23.31 μM. Compounds with significant amoebicidal effects demonstrated limited cytotoxicity against human cerebral microvascular endothelial cells. Finally, some derivatives mitigated N. fowleri-instigated host cell death. Ultimately, this study demonstrated that 1j and 1k exhibited potent anti-amoebic activity and ought to be looked at in future studies for the development of therapeutic anti-amoebic pharmaceuticals. Further investigation is required to determine the clinical relevance of our findings.
Collapse
Affiliation(s)
- Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, 26666, United Arab Emirates
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
| | - Mohammed I El-Gamal
- Research Institute of Medical and Health Sciences, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Seyed-Omar Zaraei
- Research Institute of Medical and Health Sciences, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates
| | - Bader S Alawfi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| |
Collapse
|
4
|
Chen S, Che C, Lin W, Chen B, Huang X, Liu C, Huang H. Case Report: Recognition of Devastating Primary Amoebic Meningoencephalitis (PAM) Caused by Naegleria fowleri: Another Case in South China Detected via Metagenomics Next-Generation Sequencing Combined With Microscopy and a Review. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.899700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IntroductionPrimary amoebic meningoencephalitis (PAM) caused by Naegleria fowleri is seldom reported in mainland China.MethodsOne case from South China was presented, and the clinical features of the PAM, especially the early CT features, were compared to those in the literatures from PubMed/Web of Science/China National Knowledge internet (CNKI).Case Presentation and ResultsA 47-year-old man with a high fever came to the fever clinic. Twelve hours later, the man lost consciousness and exhibited generalized tonic-clonic seizures and needed ventilator-controlled ventilation. Then, he was admitted to the neurology intensive care unit (NICU). The opening pressure of his cerebrospinal fluid (CSF) was over 500 mm H2O with highly increased leukocyte/protein levels and very low glucose levels. Three days after admission, high copy numbers of Naegleria fowleri amoebae were detected by metagenomics next-generation sequencing (mNGS) and cysts were visible with wet mount microscopy. Four days after admission, the patient experienced brain death. However, the relatives of the patient did not want to give up, and he received amphotericin B (AmB). During hospitalization, he suffered from severe damage to the liver and kidneys and electrolyte disorders that required continuous renal replacement therapy (CRRT).ReviewAll 20 included PAM patients suffered from fever. Seventeen of them had headache and neck stiffness. Ten of them showed generalized brain edema. To date, 7 cases of PAM have been reported in China. Only one patient survived. Most of the patients showed generalized brain edema. Only the surviving patient showed focal edema. He died three months later.ConclusionRapidly progressive meningoencephalitis in which the CSF results are similar to those suffered from a bacterial infection should be considered a possible case of PAM. It can be rapidly detected with microscopy in CSF wet mounts but needs further molecular investigation for confirmation, and mNGS should be a new method used for rapid and precise identification. Moreover, CRRT may prolong the survival time of PAM patients with multiple organ failure.
Collapse
|
5
|
Comparative transcriptome profiling of virulent and avirulent isolates of Neoparamoeba perurans. Sci Rep 2022; 12:5860. [PMID: 35393457 PMCID: PMC8989968 DOI: 10.1038/s41598-022-09806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Neoparamoeba perurans, the aetiological agent of amoebic gill disease, remains a persistent threat to Atlantic salmon mariculture operations worldwide. Innovation in methods of AGD control is required yet constrained by a limited understanding of the mechanisms of amoebic gill disease pathogenesis. In the current study, a comparative transcriptome analysis of two N. perurans isolates of contrasting virulence phenotypes is presented using gill-associated, virulent (wild type) isolates, and in vitro cultured, avirulent (clonal) isolates. Differential gene expression analysis identified a total of 21,198 differentially expressed genes between the wild type and clonal isolates, with 5674 of these genes upregulated in wild type N. perurans. Gene set enrichment analysis predicted gene sets enriched in the wild type isolates including, although not limited to, cortical actin cytoskeleton, pseudopodia, phagocytosis, macropinocytic cup, and fatty acid beta-oxidation. Combined, the results from these analyses suggest that upregulated gene expression associated with lipid metabolism, oxidative stress response, protease activity, and cytoskeleton reorganisation is linked to pathogenicity in wild type N. perurans. These findings provide a foundation for future AGD research and the development of novel therapeutic and prophylactic AGD control measures for commercial aquaculture.
Collapse
|
6
|
Differential Growth Rates and In Vitro Drug Susceptibility to Currently Used Drugs for Multiple Isolates of Naegleria fowleri. Microbiol Spectr 2022; 10:e0189921. [PMID: 35138140 PMCID: PMC8826828 DOI: 10.1128/spectrum.01899-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The free-living amoeba Naegleria fowleri, which typically dwells within warm, freshwater environments, can opportunistically cause primary amoebic meningoencephalitis (PAM), a disease with a mortality rate of >97%. The lack of positive treatment outcomes for PAM has prompted the discovery and development of more effective therapeutics, yet most studies utilize only one or two clinical isolates. The inability to assess possible heterogenic responses to drugs among isolates from various geographical regions hinders progress in the discovery of more effective drugs. Here, we conducted drug efficacy and growth rate determinations for 11 different clinical isolates by applying a previously developed CellTiter-Glo 2.0 screening technique and flow cytometry. We found significant differences in the susceptibilities of these isolates to 7 of 8 drugs tested, all of which make up the cocktail that is recommended to physicians by the U.S. Centers for Disease Control and Prevention. We also discovered significant variances in growth rates among isolates, which draws attention to the differences among the amoeba isolates collected from different patients. Our results demonstrate the need for additional clinical isolates of various genotypes in drug assays and highlight the necessity for more targeted therapeutics with universal efficacy across N. fowleri isolates. Our data establish a needed baseline for drug susceptibility among clinical isolates and provide a segue for future combination therapy studies as well as research related to phenotypic or genetic differences that could shed light on mechanisms of action or predispositions to specific drugs. IMPORTANCENaegleria fowleri, also known as the brain-eating amoeba, is ubiquitous in warm freshwater and is an opportunistic pathogen that causes primary amoebic meningoencephalitis. Although few cases are described each year, the disease has a case fatality rate of >97%. In most laboratory studies of this organism, only one or two well-adapted lab strains are used; therefore, there is a lack of data to discern if there are major differences in potency of currently used drugs for multiple strains and genotypes of the amoeba. In this study, we found significant differences in the susceptibilities of 11 N. fowleri isolates to 7 of the 8 drugs currently used to treat the disease. The data from this study provide a baseline of drug susceptibility among clinical isolates and suggest that new drugs should be tested on a larger number of isolates in the future.
Collapse
|
7
|
Sarink MJ, van der Meijs NL, Denzer K, Koenderman L, Tielens AGM, van Hellemond JJ. Three encephalitis-causing amoebae and their distinct interactions with the host. Trends Parasitol 2021; 38:230-245. [PMID: 34758928 DOI: 10.1016/j.pt.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Naegleria fowleri, Balamuthia mandrillaris, and Acanthamoeba spp. can cause devastating brain infections in humans which almost always result in death. The symptoms of the three infections overlap, but brain inflammation and the course of the disease differ, depending on the amoeba that is responsible. Understanding the differences between these amoebae can result in the development of strategies to prevent and treat these infections. Recently, numerous scientific advancements have been made in the understanding of pathogenicity mechanisms in general, and the basic biology, epidemiology, and the human immune response towards these amoebae in particular. In this review, we combine this knowledge and aim to identify which factors can explain the differences between the lethal brain infections caused by N. fowleri, B. mandrillaris, and Acanthamoeba spp.
Collapse
Affiliation(s)
- Maarten J Sarink
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Nadia L van der Meijs
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Kristin Denzer
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aloysius G M Tielens
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Jaap J van Hellemond
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Güémez A, García E. Primary Amoebic Meningoencephalitis by Naegleria fowleri: Pathogenesis and Treatments. Biomolecules 2021; 11:biom11091320. [PMID: 34572533 PMCID: PMC8469197 DOI: 10.3390/biom11091320] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Naegleria fowleri is a free-living amoeba (FLA) that is commonly known as the "brain-eating amoeba." This parasite can invade the central nervous system (CNS), causing an acute and fulminating infection known as primary amoebic meningoencephalitis (PAM). Even though PAM is characterized by low morbidity, it has shown a mortality rate of 98%, usually causing death in less than two weeks after the initial exposure. This review summarizes the most recent information about N. fowleri, its pathogenic molecular mechanisms, and the neuropathological processes implicated. Additionally, this review includes the main therapeutic strategies described in case reports and preclinical studies, including the possible use of immunomodulatory agents to decrease neurological damage.
Collapse
|
9
|
Debnath A. Drug discovery for primary amebic meningoencephalitis: from screen to identification of leads. Expert Rev Anti Infect Ther 2021; 19:1099-1106. [PMID: 33496193 DOI: 10.1080/14787210.2021.1882302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Naegleria fowleri is responsible for primary amebic meningoencephalitis (PAM) which has a fatality rate of >97%. Because of the rarity of the disease, pharmaceutical companies do not pursue new drug discovery for PAM. Yet, it is possible that the infection is underreported and finding a better drug would have an impact on people suffering from this deadly infection.Areas covered: This paper reports the efforts undertaken by different academic groups over the last 20 years to test different compounds against N. fowleri. The drug discovery research encompassed synthesis of new compounds, development and use of high-throughput screening methods and attempts to repurpose clinically developed or FDA-approved compounds for the treatment of PAM.Expert opinion: In absence of economic investment to develop new drugs for PAM, repurposing the FDA-approved drugs has been the best strategy so far to identify new leads against N. fowleri. Increasing use of high-throughput phenotypic screening has the potential to accelerate the identification of new leads, either in monotherapy or in combination treatment. Since phase II clinical trial is not possible for PAM, it is critical to demonstrate in vivo efficacy of a clinically safe compound to translate the discovery from lab to the clinic.
Collapse
Affiliation(s)
- Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Maciver SK, McLaughlin PJ, Apps DK, Piñero JE, Lorenzo-Morales J. Opinion: Iron, Climate Change and the ‘Brain Eating Amoeba’ Naegleria fowleri. Protist 2021. [DOI: 10.1016/j.protis.2020.125791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|