1
|
Krishnakant Kushwaha S, Wu Y, Leonardo Avila H, Anand A, Sicheritz-Pontén T, Millard A, Amol Marathe S, Nobrega FL. Comprehensive blueprint of Salmonella genomic plasticity identifies hotspots for pathogenicity genes. PLoS Biol 2024; 22:e3002746. [PMID: 39110680 PMCID: PMC11305592 DOI: 10.1371/journal.pbio.3002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the dynamic evolution of Salmonella is vital for effective bacterial infection management. This study explores the role of the flexible genome, organised in regions of genomic plasticity (RGP), in shaping the pathogenicity of Salmonella lineages. Through comprehensive genomic analysis of 12,244 Salmonella spp. genomes covering 2 species, 6 subspecies, and 46 serovars, we uncover distinct integration patterns of pathogenicity-related gene clusters into RGP, challenging traditional views of gene distribution. These RGP exhibit distinct preferences for specific genomic spots, and the presence or absence of such spots across Salmonella lineages profoundly shapes strain pathogenicity. RGP preferences are guided by conserved flanking genes surrounding integration spots, implicating their involvement in regulatory networks and functional synergies with integrated gene clusters. Additionally, we emphasise the multifaceted contributions of plasmids and prophages to the pathogenicity of diverse Salmonella lineages. Overall, this study provides a comprehensive blueprint of the pathogenicity potential of Salmonella. This unique insight identifies genomic spots in nonpathogenic lineages that hold the potential for harbouring pathogenicity genes, providing a foundation for predicting future adaptations and developing targeted strategies against emerging human pathogenic strains.
Collapse
Affiliation(s)
- Simran Krishnakant Kushwaha
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Yi Wu
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Hugo Leonardo Avila
- Laboratory for Applied Science and Technology in Health, Instituto Carlos Chagas, FIOCRUZ Paraná, Brazil
| | - Abhirath Anand
- Department of Computer Sciences and Information Systems, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
| | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Andrew Millard
- Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Lukose B, Maruno T, Faidh M, Uchiyama S, Naganathan A. Molecular and thermodynamic determinants of self-assembly and hetero-oligomerization in the enterobacterial thermo-osmo-regulatory protein H-NS. Nucleic Acids Res 2024; 52:2157-2173. [PMID: 38340344 PMCID: PMC10954469 DOI: 10.1093/nar/gkae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Environmentally regulated gene expression is critical for bacterial survival under stress conditions, including extremes in temperature, osmolarity and nutrient availability. Here, we dissect the thermo- and osmo-responsory behavior of the transcriptional repressor H-NS, an archetypal nucleoid-condensing sensory protein, ubiquitous in enterobacteria that infect the mammalian gut. Through experiments and thermodynamic modeling, we show that H-NS exhibits osmolarity, temperature and concentration dependent self-association, with a highly polydisperse native ensemble dominated by monomers, dimers, tetramers and octamers. The relative population of these oligomeric states is determined by an interplay between dimerization and higher-order oligomerization, which in turn drives a competition between weak homo- versus hetero-oligomerization of protein-protein and protein-DNA complexes. A phosphomimetic mutation, Y61E, fully eliminates higher-order self-assembly and preserves only dimerization while weakening DNA binding, highlighting that oligomerization is a prerequisite for strong DNA binding. We further demonstrate the presence of long-distance thermodynamic connectivity between dimerization and oligomerization sites on H-NS which influences the binding of the co-repressor Cnu, and switches the DNA binding mode of the hetero-oligomeric H-NS:Cnu complex. Our work thus uncovers important organizational principles in H-NS including a multi-layered thermodynamic control, and provides a molecular framework broadly applicable to other thermo-osmo sensory proteins that employ similar mechanisms to regulate gene expression.
Collapse
Affiliation(s)
- Bincy Lukose
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Mohammed A Faidh
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
3
|
Wen L, Luo C, Chen X, Liu T, Li X, Wang M. In vitro Activity of Cefepime/Avibactam Against Carbapenem Resistant Klebsiella pneumoniae and Integrative Metabolomics-Proteomics Approach for Resistance Mechanism: A Single-Center Study. Infect Drug Resist 2023; 16:6061-6077. [PMID: 37719649 PMCID: PMC10503517 DOI: 10.2147/idr.s420898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose We aimed to evaluate the in vitro antibacterial effects of combination of cefepime/avibactam against carbapenem-resistant Klebsiella pneumonia (CRKP) and explore the resistance mechanism of FEP/AVI. Patients and Methods This study explored the in vitro antibacterial activities of ceftazidime/avibactam (CAZ/AVI) and cefepime/avibactam (FEP/AVI) against 40 and 76 CRKP clinical isolates. Proteomics and metabolomics were employed to investigate the resistance mechanisms of CRKP to FEP/AVI. Results FEP/AVI (MIC50/MIC90 0.5/4-64/4 μg/mL, resistance rate 17.1%) showed better antibacterial activity against CRKP than CAZ/AVI (MIC50/MIC90 4/4-128/4 μg/mL, resistance rate 20%) in vitro. Bioinformatics analysis showed that the differentially expressed proteins (DEPs) were enriched in alanine, aspartate and glutamate metabolism, and ribosome. Remarkably, transcriptional and translational activity-related pathways were inhibited in FEP/AVI resistant CRKP. Overlap analysis suggested that H-NS might play an important role in resistance to FEP/AVI in CRKP. The mRNA levels of DEPs-related genes (adhE, gltB, purA, ftsI and hns) showed the same trends as DEPs in FEP/AVI susceptible and resistant strains. FEP/AVI resistant isolates demonstrated stronger biofilm formation capacity than susceptible isolates. Metabolomics results showed that disturbed metabolites were mainly lipids, and adenine was decreased in FEP/AVI resistant CRKP. Conclusion These results indicated that H-NS, GltB and SpoT may directly or indirectly promote biofilm formation of CRKP and led to FEP/AVI resistance, but inhibited ribosomal function. Our study provides a mechanistic insight into the acquisition of resistance to FEP/AVI in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Lingjun Wen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Can Luo
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xinyi Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Tianyao Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| |
Collapse
|
4
|
Qin ZX, Chen GZ, Yang QQ, Wu YJ, Sun CQ, Yang XM, Luo M, Yi CR, Zhu J, Chen WH, Liu Z. Cross-Platform Transcriptomic Data Integration, Profiling, and Mining in Vibrio cholerae. Microbiol Spectr 2023; 11:e0536922. [PMID: 37191528 PMCID: PMC10269641 DOI: 10.1128/spectrum.05369-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
A large number of transcriptome studies generate important data and information for the study of pathogenic mechanisms of pathogens, including Vibrio cholerae. V. cholerae transcriptome data include RNA-seq and microarray: microarray data mainly include clinical human and environmental samples, and RNA-seq data mainly focus on laboratory processing conditions, including different stresses and experimental animals in vivo. In this study, we integrated the data sets of both platforms using Rank-in and the Limma R package normalized Between Arrays function, achieving the first cross-platform transcriptome data integration of V. cholerae. By integrating the entire transcriptome data, we obtained the profiles of the most active or silent genes. By transferring the integrated expression profiles into the weighted correlation network analysis (WGCNA) pipeline, we identified the important functional modules of V. cholerae in vitro stress treatment, gene manipulation, and in vitro culture as DNA transposon, chemotaxis and signaling, signal transduction, and secondary metabolic pathways, respectively. The analysis of functional module hub genes revealed the uniqueness of clinical human samples; however, under specific expression patterning, the Δhns, ΔoxyR1 strains, and tobramycin treatment group showed high expression profile similarity with human samples. By constructing a protein-protein interaction (PPI) interaction network, we discovered several unreported novel protein interactions within transposon functional modules. IMPORTANCE We used two techniques to integrate RNA-seq data for laboratory studies with clinical microarray data for the first time. The interactions between V. cholerae genes were obtained from a global perspective, as well as comparing the similarity between clinical human samples and the current experimental conditions, and uncovering the functional modules that play a major role under different conditions. We believe that this data integration can provide us with some insight and basis for elucidating the pathogenesis and clinical control of V. cholerae.
Collapse
Affiliation(s)
- Zi-Xin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo-Zhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian-Qian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying-Jian Wu
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Chu-Qing Sun
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Xiao-Man Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chun-Rong Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Zhu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Yamasaki S, Zwama M, Yoneda T, Hayashi-Nishino M, Nishino K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001322. [PMID: 37319001 PMCID: PMC10333786 DOI: 10.1099/mic.0.001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/18/2023] [Indexed: 06/17/2023]
Abstract
Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, 2-8 Yamadaoka, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Liu C, Wang L, Wang P, Xiao D, Zou Q. The Mechanism of Tigecycline Resistance in Acinetobacter baumannii Revealed by Proteomic and Genomic Analysis. Int J Mol Sci 2023; 24:ijms24108652. [PMID: 37239993 DOI: 10.3390/ijms24108652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The mechanism of tigecycline resistance in A. baumannii remains largely unclear. In this study, we selected a tigecycline-resistant and a tigecycline-susceptible strain from a tigecycline-susceptible and a resistant strain, respectively. Proteomic and genomic analyses were performed to elucidate the variations associated with tigecycline resistance. Our study showed proteins associated with efflux pump, biofilm formation, iron acquisition, stress response, and metabolic ability are upregulated in tigecycline resistant strains, and efflux pump should be the key mechanism for tigecycline resistance. By genomic analysis, we found several changes in the genome that can explain the increased level of efflux pump, including the loss of the global negative regulator hns in the plasmid and the disruption of the hns gene and acrR gene on the chromosome by the insertion of IS5. Collectively, we not only revealed the phenomenon that the efflux pump is mainly responsible for tigecycline resistance, but also highlighted the mechanism at the genomic level, which will help in understanding the resistance mechanism in detail and provide clues for the treatment of clinical multiple drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Cunwei Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lei Wang
- State Key Laboratory of Communicable Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ping Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Di Xiao
- State Key Laboratory of Communicable Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qinghua Zou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
7
|
Pugh HL, Connor C, Siasat P, McNally A, Blair JMA. E. coli ST11 (O157:H7) does not encode a functional AcrF efflux pump. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001324. [PMID: 37074150 PMCID: PMC10202319 DOI: 10.1099/mic.0.001324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
Escherichia coli is a facultative anaerobe found in a wide range of environments. Commonly described as the laboratory workhorse, E. coli is one of the best characterized bacterial species to date, however much of our understanding comes from studies involving the laboratory strain E. coli K-12. Resistance-nodulation-division efflux pumps are found in Gram-negative bacteria and can export a diverse range of substrates, including antibiotics. E. coli K-12 has six RND pumps; AcrB, AcrD, AcrF, CusA, MdtBC and MdtF, and it is frequently reported that all E. coli strains possess these six pumps. However, this is not true of E. coli ST11, a lineage of E. coli, which is primarily composed of the highly virulent important human pathogen, E. coli O157:H7. Here we show that acrF is absent from the pangenome of ST11 and that this lineage of E. coli has a highly conserved insertion within the acrF gene, which when translated encodes 13 amino acids and two stop codons. This insertion was found to be present in 97.59 % of 1787 ST11 genome assemblies. Non-function of AcrF in ST11 was confirmed in the laboratory as complementation with acrF from ST11 was unable to restore AcrF function in E. coli K-12 substr. MG1655 ΔacrB ΔacrF. This shows that the complement of RND efflux pumps present in laboratory bacterial strains may not reflect the situation in virulent strains of bacterial pathogens.
Collapse
Affiliation(s)
- Hannah L. Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Christopher Connor
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Pauline Siasat
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica M. A. Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
8
|
Chaudhari R, Singh K, Kodgire P. Biochemical and molecular mechanisms of antibiotic resistance in Salmonella spp. Res Microbiol 2023; 174:103985. [PMID: 35944794 DOI: 10.1016/j.resmic.2022.103985] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
Salmonella is a diverse Gram-negative bacterium that represents the major disease burden worldwide. According to WHO, Salmonella is one of the fourth global causes of diarrhoeal disease. Antibiotic resistance is a worldwide health concern, and Salmonella spp. is one of the microorganisms that can evade the toxicity of antimicrobials via antibiotic resistance. This review aims to deliver in-depth knowledge of the molecular mechanisms and the underlying biochemical alterations perceived in antibiotic resistance in Salmonella. This information will help understand and mitigate the impact of antibiotic-resistant bacteria on humans and contribute to the state-of-the-art research developing newer and more potent antibiotics.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kanika Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
9
|
Blair JMA, Siasat P, McNeil HE, Colclough A, Ricci V, Lawler AJ, Abdalaal H, Buckner MMC, Baylay A, Busby SJ, Piddock LJV. EnvR is a potent repressor of acrAB transcription in Salmonella. J Antimicrob Chemother 2022; 78:133-140. [PMID: 36308324 PMCID: PMC9780535 DOI: 10.1093/jac/dkac364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Resistance nodulation division (RND) family efflux pumps, including the major pump AcrAB-TolC, are important mediators of intrinsic and evolved antibiotic resistance. Expression of these pumps is carefully controlled by a network of regulators that respond to different environmental cues. EnvR is a TetR family transcriptional regulator encoded upstream of the RND efflux pump acrEF. METHODS Binding of EnvR protein upstream of acrAB was determined by electrophoretic mobility shift assays and the phenotypic consequence of envR overexpression on antimicrobial susceptibility, biofilm motility and invasion of eukaryotic cells in vitro was measured. Additionally, the global transcriptome of clinical Salmonella isolates overexpressing envR was determined by RNA-Seq. RESULTS EnvR bound to the promoter region upstream of the genes coding for the major efflux pump AcrAB in Salmonella, inhibiting transcription and preventing production of AcrAB protein. The phenotype conferred by overexpression of envR mimicked deletion of acrB as it conferred multidrug susceptibility, decreased motility and decreased invasion into intestinal cells in vitro. Importantly, we demonstrate the clinical relevance of this regulatory mechanism because RNA-Seq revealed that a drug-susceptible clinical isolate of Salmonella had low acrB expression even though expression of its major regulator RamA was very high; this was caused by very high EnvR expression. CONCLUSIONS In summary, we show that EnvR is a potent repressor of acrAB transcription in Salmonella, and can override binding by RamA so preventing MDR to clinically useful drugs. Finding novel tools to increase EnvR expression may form the basis of a new way to prevent or treat MDR infections.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen E McNeil
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Abigail Colclough
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Vito Ricci
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Amelia J Lawler
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Hind Abdalaal
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Michelle M C Buckner
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Alison Baylay
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Stephen J Busby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
10
|
A role for the periplasmic adaptor protein AcrA in vetting substrate access to the RND efflux transporter AcrB. Sci Rep 2022; 12:4752. [PMID: 35306531 PMCID: PMC8934357 DOI: 10.1038/s41598-022-08903-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Tripartite resistance-nodulation-division (RND) efflux pumps, such as AcrAB-TolC of Salmonella Typhimurium, contribute to antibiotic resistance and comprise an inner membrane RND-transporter, an outer membrane factor, and a periplasmic adaptor protein (PAP). The role of the PAP in the assembly and active transport process remains poorly understood. Here, we identify the functionally critical residues involved in PAP-RND-transporter binding between AcrA and AcrB and show that the corresponding RND-binding residues in the closely related PAP AcrE, are also important for its interaction with AcrB. We also report a residue in the membrane-proximal domain of AcrA, that when mutated, differentially affects the transport of substrates utilising different AcrB efflux channels, namely channels 1 and 2. This supports a potential role for the PAP in sensing the substrate-occupied state of the proximal binding pocket of the transporter and substrate vetting. Understanding the PAP’s role in the assembly and function of tripartite RND pumps can guide novel ways to inhibit their function to combat antibiotic resistance.
Collapse
|
11
|
Nishino K, Yamasaki S, Nakashima R, Zwama M, Hayashi-Nishino M. Function and Inhibitory Mechanisms of Multidrug Efflux Pumps. Front Microbiol 2021; 12:737288. [PMID: 34925258 PMCID: PMC8678522 DOI: 10.3389/fmicb.2021.737288] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
Multidrug efflux pumps are inner membrane transporters that export multiple antibiotics from the inside to the outside of bacterial cells, contributing to bacterial multidrug resistance (MDR). Postgenomic analysis has demonstrated that numerous multidrug efflux pumps exist in bacteria. Also, the co-crystal structural analysis of multidrug efflux pumps revealed the drug recognition and export mechanisms, and the inhibitory mechanisms of the pumps. A single multidrug efflux pump can export multiple antibiotics; hence, developing efflux pump inhibitors is crucial in overcoming infectious diseases caused by multidrug-resistant bacteria. This review article describes the role of multidrug efflux pumps in MDR, and their physiological functions and inhibitory mechanisms.
Collapse
Affiliation(s)
- Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Ryosuke Nakashima
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Alav I, Bavro VN, Blair JMA. Interchangeability of periplasmic adaptor proteins AcrA and AcrE in forming functional efflux pumps with AcrD in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2021; 76:2558-2564. [PMID: 34278432 PMCID: PMC8446912 DOI: 10.1093/jac/dkab237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/18/2021] [Indexed: 01/20/2023] Open
Abstract
Background Resistance-nodulation-division (RND) efflux pumps are important mediators of antibiotic resistance. RND pumps, including the principal multidrug efflux pump AcrAB-TolC in Salmonella, are tripartite systems with an inner membrane RND transporter, a periplasmic adaptor protein (PAP) and an outer membrane factor (OMF). We previously identified the residues required for binding between the PAP AcrA and the RND transporter AcrB and have demonstrated that PAPs can function with non-cognate transporters. AcrE and AcrD/AcrF are homologues of AcrA and AcrB, respectively. Here, we show that AcrE can interact with AcrD, which does not possess its own PAP, and establish that the residues previously identified in AcrB binding are also involved in AcrD binding. Methods The acrD and acrE genes were expressed in a strain lacking acrABDEF (Δ3RND). PAP residues involved in promiscuous interactions were predicted based on previously defined PAP-RND interactions and corresponding mutations generated in acrA and acrE. Antimicrobial susceptibility of the mutant strains was determined. Results Co-expression of acrD and acrE significantly decreased susceptibility of the Δ3RND strain to AcrD substrates, showing that AcrE can form a functional complex with AcrD. The substrate profile of Salmonella AcrD differed from that of Escherichia coli AcrD. Mutations targeting the previously defined PAP-RND interaction sites in AcrA/AcrE impaired efflux of AcrD-dependent substrates. Conclusions These data indicate that AcrE forms an efflux-competent pump with AcrD and thus presents an alternative PAP for this pump. Mutagenesis of the conserved RND binding sites validates the interchangeability of AcrA and AcrE, highlighting them as potential drug targets for efflux inhibition.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
13
|
Thesnaar L, Bezuidenhout JJ, Petzer A, Petzer JP, Cloete TT. Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling. Eur J Pharm Sci 2021; 157:105603. [DOI: 10.1016/j.ejps.2020.105603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023]
|
14
|
Carvalho GG, Calarga AP, Teodoro JR, Queiroz MM, Astudillo-Trujillo CA, Levy CE, Brocchi M, Kabuki DY. Isolation, comparison of identification methods and antibiotic resistance of Cronobacter spp. in infant foods. Food Res Int 2020; 137:109643. [PMID: 33233222 DOI: 10.1016/j.foodres.2020.109643] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/25/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023]
Abstract
Cronobacter spp. are opportunistic pathogens that cause serious infections, especially in infants, elderly, and immunocompromised people. Dehydrated infant foods are the main vehicle associated with infections caused by these bacteria. Thus, this study aims to investigate the occurrence of Cronobacter spp. in 152 commercial samples of dehydrated infant formulas (77 samples) and dehydrated infant cereals (75 samples), as well as characterize the isolates. Polymerase Chain Reaction (PCR) and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF/MS) methods for isolate identification were used, and their results compared. Furthermore, the susceptibility to 11 antibiotics was tested, and DNA sequencing of one isolate with multi-drug resistance was analyzed. No contamination in the infant formula samples was found, whereas 17.33% (13/75) of the infant cereal samples presented contamination with Cronobacter sakazakii. The identification results by PCR and MALDI-TOF/MS were divergent for some isolates. The antimicrobial resistance results showed a high incidence of resistance to cefazolin (94.4%) besides resistance to amoxicillin (9.45%), cefpodoxime (5.55%), streptomycin (1.35%), and trimethoprim/sulfamethoxazole (1.35%). Whole genome sequencing of one multi-drug resistant isolate showed six genes associated with antimicrobial resistance and an 82% possibility of being a human pathogen based on the presence of virulence factors. The presence of Cronobacter spp. in infant foods represents a risk for the infant's health. Moreover, the presence of a pathogenic multi-drug resistant isolate in infant's food reinforces the necessity of improving food safety policies to protect young children.
Collapse
Affiliation(s)
- Gabriela Guimarães Carvalho
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Aline Parolin Calarga
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Josie Roberta Teodoro
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Murilo Mariz Queiroz
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Carlos Emilio Levy
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Dirce Yorika Kabuki
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
15
|
Ferrand A, Vergalli J, Pagès JM, Davin-Regli A. An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae. Microorganisms 2020; 8:E833. [PMID: 32492979 PMCID: PMC7355843 DOI: 10.3390/microorganisms8060833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille University, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; (A.F.); (J.V.); (J.-M.P.)
| |
Collapse
|
16
|
Shaheen A, Tariq A, Shehzad A, Iqbal M, Mirza O, Maslov DA, Rahman M. Transcriptional regulation of drug resistance mechanisms in Salmonella: where we stand and what we need to know. World J Microbiol Biotechnol 2020; 36:85. [PMID: 32468234 DOI: 10.1007/s11274-020-02862-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023]
Abstract
Salmonellae have evolved a wide range of molecular mechanisms to neutralize the effect of antibiotics and evade the host immune system response. These mechanisms are exquisitely controlled by global and local regulators and enable the pathogens to use its energy as per need and hence allow the pathogen to economize the consumption of energy by its cellular machinery. Several families that regulate the expression of different drug resistance genes are known; some of these are: the TetR family (which affects tetracycline resistance genes), the AraC/XylS family (regulators that can act as both transcriptional activators and repressors), two-component signal transduction systems (e.g. PhoPQ, a key regulator for virulence), mercury resistance Mer-R and multiple antibiotic resistance Mar-R regulators, LysR-type global regulators (e.g. LeuO) and histone-like protein regulators (involved in the repression of newly transferred resistance genes). This minireview focuses on the role of different regulators harbored by the Salmonella genome and characterized for mediating the drug resistance mechanisms particularly via efflux and influx systems. Understanding of such transcriptional regulation mechanisms is imperative to address drug resistance issues in Salmonella and other bacterial pathogens.
Collapse
Affiliation(s)
- Aqsa Shaheen
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Anam Tariq
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Aamir Shehzad
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry A Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333
| | - Moazur Rahman
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
17
|
Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM, Legood SW, McNeil HE, Blair JM. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15:143-157. [PMID: 32073314 DOI: 10.2217/fmb-2019-0235] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rresistance-nodulation-division (RND) efflux pumps in Gram-negative bacteria remove multiple, structurally distinct classes of antimicrobials from inside bacterial cells therefore directly contributing to multidrug resistance. There is also emerging evidence that many other mechanisms of antibiotic resistance rely on the intrinsic resistance conferred by RND efflux. In addition to their role in antibiotic resistance, new information has become available about the natural role of RND pumps including their established role in virulence of many Gram-negative organisms. This review also discusses the recent advances in understanding the regulation and structure of RND efflux pumps.
Collapse
Affiliation(s)
- Abigail L Colclough
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emily E Whittle
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah L Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elizabeth M Darby
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Simon W Legood
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Helen E McNeil
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
18
|
Shahul Hameed UF, Liao C, Radhakrishnan AK, Huser F, Aljedani SS, Zhao X, Momin AA, Melo FA, Guo X, Brooks C, Li Y, Cui X, Gao X, Ladbury JE, Jaremko Ł, Jaremko M, Li J, Arold ST. H-NS uses an autoinhibitory conformational switch for environment-controlled gene silencing. Nucleic Acids Res 2019; 47:2666-2680. [PMID: 30597093 PMCID: PMC6411929 DOI: 10.1093/nar/gky1299] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
As an environment-dependent pleiotropic gene regulator in Gram-negative bacteria, the H-NS protein is crucial for adaptation and toxicity control of human pathogens such as Salmonella, Vibrio cholerae or enterohaemorrhagic Escherichia coli. Changes in temperature affect the capacity of H-NS to form multimers that condense DNA and restrict gene expression. However, the molecular mechanism through which H-NS senses temperature and other physiochemical parameters remains unclear and controversial. Combining structural, biophysical and computational analyses, we show that human body temperature promotes unfolding of the central dimerization domain, breaking up H-NS multimers. This unfolding event enables an autoinhibitory compact H-NS conformation that blocks DNA binding. Our integrative approach provides the molecular basis for H-NS-mediated environment-sensing and may open new avenues for the control of pathogenic multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Umar F Shahul Hameed
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Chenyi Liao
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Anand K Radhakrishnan
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Franceline Huser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Safia S Aljedani
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Xiaochuan Zhao
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Afaque A Momin
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Fernando A Melo
- Department of Physics (IBILCE), São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Xianrong Guo
- King Abdullah University of Science and Technology (KAUST), Imaging and Characterization Core Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Claire Brooks
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Yu Li
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Xuefeng Cui
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| |
Collapse
|
19
|
Emergence of High-Level Colistin Resistance in an Acinetobacter baumannii Clinical Isolate Mediated by Inactivation of the Global Regulator H-NS. Antimicrob Agents Chemother 2018; 62:AAC.02442-17. [PMID: 29712662 DOI: 10.1128/aac.02442-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/01/2018] [Indexed: 12/31/2022] Open
Abstract
Colistin is a crucial last-line drug used for the treatment of life-threatening infections caused by multidrug-resistant strains of the Gram-negative bacterium Acinetobacter baumannii However, colistin-resistant A. baumannii isolates can still be isolated following failed colistin therapy. Resistance is most often mediated by the addition of phosphoethanolamine (pEtN) to lipid A by PmrC, following missense mutations in the pmrCAB operon encoding PmrC and the two-component signal transduction system PmrA/PmrB. We recovered a pair of A. baumannii isolates from a single patient before (6009-1) and after (6009-2) failed colistin treatment. These strains displayed low and very high levels of colistin resistance (MICs, 8 to 16 μg/ml and 128 μg/ml), respectively. To understand how increased colistin resistance arose, we sequenced the genome of each isolate, which revealed that 6009-2 had an extra copy of the insertion sequence element ISAba125 within a gene encoding an H-NS family transcriptional regulator. To confirm the role of H-NS in colistin resistance, we generated an hns deletion mutant in 6009-1 and showed that colistin resistance increased upon the deletion of hns We also provided 6009-2 with an intact copy of hns and showed that the strain was no longer resistant to high concentrations of colistin. Transcriptomic analysis of the clinical isolates identified more than 150 genes as being differentially expressed in the colistin-resistant hns mutant 6009-2. Importantly, the expression of eptA, encoding a second lipid A-specific pEtN transferase but not pmrC, was increased in the hns mutant. This is the first time an H-NS family transcriptional regulator has been associated with a pEtN transferase and colistin resistance.
Collapse
|
20
|
Hughes D, Andersson DI. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev 2018; 41:374-391. [PMID: 28333270 PMCID: PMC5435765 DOI: 10.1093/femsre/fux004] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic ‘dark matter’) that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success.
Collapse
Affiliation(s)
- Diarmaid Hughes
- Corresponding author: Department of Medical Biochemistry and Microbiology, Biomedical Center (Box 582), Uppsala University, S-751 23 Uppsala, Sweden. Tel: +46 18 4714507; E-mail:
| | | |
Collapse
|
21
|
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2017; 169:425-431. [PMID: 29128373 DOI: 10.1016/j.resmic.2017.10.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.
Collapse
Affiliation(s)
- Natasha Weston
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
22
|
Affiliation(s)
- Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
23
|
Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, Villa TG. Considerations on bacterial nucleoids. Appl Microbiol Biotechnol 2017; 101:5591-5602. [PMID: 28664324 DOI: 10.1007/s00253-017-8381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Abstract
The classic genome organization of the bacterial chromosome is normally envisaged with all its genetic markers linked, thus forming a closed genetic circle of duplex stranded DNA (dsDNA) and several proteins in what it is called as "the bacterial nucleoid." This structure may be more or less corrugated depending on the physiological state of the bacterium (i.e., resting state or active growth) and is not surrounded by a double membrane as in eukayotic cells. The universality of the closed circle model in bacteria is however slowly changing, as new data emerge in different bacterial groups such as in Planctomycetes and related microorganisms, species of Borrelia, Streptomyces, Agrobacterium, or Phytoplasma. In these and possibly other microorganisms, the existence of complex formations of intracellular membranes or linear chromosomes is typical; all of these situations contributing to weakening the current cellular organization paradigm, i.e., prokaryotic vs eukaryotic cells.
Collapse
Affiliation(s)
- Lucía Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - José Luis R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Angeles Sánchez-Pérez
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tomás G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
24
|
Scavuzzi AML, Maciel MAV, de Melo HRL, Alves LC, Brayner FA, Lopes ACS. Occurrence of qnrB1 and qnrB12 genes, mutation in gyrA and ramR, and expression of efflux pumps in isolates of Klebsiella pneumoniae carriers of bla
KPC-2. J Med Microbiol 2017; 66:477-484. [DOI: 10.1099/jmm.0.000452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alexsandra Maria Lima Scavuzzi
- Centro de Pesquisas Aggeu Magalhães (CPqAM-Fiocruz), Recife-PE, Brazil
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
| | - Maria Amélia Vieira Maciel
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
| | - Heloísa Ramos Lacerda de Melo
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
- Departamento de Clínica Médica, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
| | - Luiz Carlos Alves
- Centro de Pesquisas Aggeu Magalhães (CPqAM-Fiocruz), Recife-PE, Brazil
| | - Fábio André Brayner
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
- Centro de Pesquisas Aggeu Magalhães (CPqAM-Fiocruz), Recife-PE, Brazil
| | - Ana Catarina Souza Lopes
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
| |
Collapse
|
25
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 946] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
26
|
Prajapat MK, Saini S. Interplay between Fur and HNS in controlling virulence gene expression in Salmonella typhimurium. Comput Biol Med 2012; 42:1133-40. [PMID: 23040276 DOI: 10.1016/j.compbiomed.2012.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/08/2012] [Accepted: 09/11/2012] [Indexed: 01/04/2023]
Abstract
Salmonella enterica is responsible for a large number of diseases in a wide-range of hosts. Two of the global regulators involved in controlling gene expression during the infection cycle of the bacterium are Fur and HNS. In this paper, we demonstrate computationally that Fur and HNS have disproportionately high density of binding sites in the Pathogenicity Islands on the Salmonella chromosome. Moreover, the frequency of binding sites for the two proteins is correlated throughout the genome of the organism. These results indicate a complex interplay between Fur and HNS in regulating cellular global behavior.
Collapse
Affiliation(s)
- Mahendra Kumar Prajapat
- Chemical Engineering, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad, Gujarat 382424, India
| | | |
Collapse
|
27
|
Haznedaroglu BZ, Yates MV, Maduro MF, Walker SL. Effects of residual antibiotics in groundwater on Salmonella typhimurium: changes in antibiotic resistance, in vivo and in vitro pathogenicity. ACTA ACUST UNITED AC 2011; 14:41-7. [PMID: 22051852 DOI: 10.1039/c1em10723b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An outbreak-causing strain of Salmonella enterica serovar Typhimurium was exposed to groundwater with residual antibiotics for up to four weeks. Representative concentrations (0.05, 1, and 100 μg L(-1)) of amoxicillin, tetracycline, and a mixture of several other antibiotics (1 μg L(-1) each) were spiked into artificially prepared groundwater (AGW). Antibiotic susceptibility analysis and the virulence response of stressed Salmonella were determined on a weekly basis by using human epithelial cells (HEp2) and soil nematodes (C. elegans). Results have shown that Salmonella typhimurium remains viable for long periods of exposure to antibiotic-supplemented groundwater; however, they failed to cultivate as an indication of a viable but nonculturable state. Prolonged antibiotics exposure did not induce any changes in the antibiotic susceptibility profile of the S. typhimurium strain used in this study. S. typhimurium exposed to 0.05 and 1 μg L(-1) amoxicillin, and 1 μg L(-1) tetracycline showed hyper-virulent profiles in both in vitro and in vivo virulence assays with the HEp2 cells and C. elegans respectively, most evident following 2nd and 3rd weeks of exposure.
Collapse
Affiliation(s)
- Berat Z Haznedaroglu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
It is generally assumed that antibiotics and resistance determinants are the task forces of a biological warfare in which each resistance determinant counteracts the activity of a specific antibiotic. According to this view, antibiotic resistance might be considered as a specific response to an injury, not necessarily linked to bacterial metabolism, except for the burden that the acquisition of resistance might impose on the bacteria (fitness costs). Nevertheless, it is known that changes in bacterial metabolism, such as those associated with dormancy or biofilm formation, modulate bacterial susceptibility to antibiotics (phenotypic resistance), indicating that there exists a linkage between bacterial metabolism and antibiotic resistance. The analyses of the intrinsic resistomes of bacterial pathogens also demonstrate that the building up of intrinsic resistance requires the concerted action of many elements, several of which play a relevant role in the bacterial metabolism. In this article, we will review the current knowledge on the linkage between bacterial metabolism and antibiotic resistance and will discuss the role of global metabolic regulators such as Crc in bacterial susceptibility to antibiotics. Given that growing into the human host requires a metabolic adaptation, we will discuss whether this adaptation might trigger resistance even in the absence of selective pressure by antibiotics.
Collapse
Affiliation(s)
- José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, Spain.
| | | |
Collapse
|
29
|
Horiyama T, Nikaido E, Yamaguchi A, Nishino K. Roles of Salmonella multidrug efflux pumps in tigecycline resistance. J Antimicrob Chemother 2010; 66:105-10. [DOI: 10.1093/jac/dkq421] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Indole enhances acid resistance in Escherichia coli. Microb Pathog 2010; 49:90-4. [DOI: 10.1016/j.micpath.2010.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 01/13/2023]
|