1
|
Liu W, Yang L, Qin H, Zhang P. Successful Treatment of Intractable Tuberculous Peritonitis in a Woman with Chronic Kidney Allograft Dysfunction Using Contezolid Containing Regimen. Infect Drug Resist 2024; 17:2713-2718. [PMID: 38974317 PMCID: PMC11225989 DOI: 10.2147/idr.s465350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Tuberculosis(TB) is a serious infection that affects transplant recipients, particularly in high TB burden countries. Clinical presentation of these patients is atypical, and the care and management are frequently tricky as multi-drug interaction and intolerable adverse effects. Contezolid, a novel oxazolidinone antibacterial agent, had been demonstrated to be effective for TB in vitro and had been shown in some clinical cases with a more favorable safety profile than linezolid, the first-generation oxazolidinone, which had a commonly seen myelosuppression and neuropathy. Additionally, Contezolid has a unique metabolic mechanism that leads to less drug interaction. Here, we report a case of multi-system TB in a transplant recipient with chronic kidney allograft dysfunction. She was intolerant to most first and second-line anti-TB drugs and repeatedly developed ascites and nocturnal low-grade fever. She finally achieved good efficacy and safety results after enhanced anti-TB treatment with the addition of contezolid. Given the increased risk of TB in patients with organ transplantation and multi-drug interaction in patients with severe comorbidities, further clinical studies are needed to investigate the application and appropriate dosage of contezolid in patients with active TB.
Collapse
Affiliation(s)
- Weijian Liu
- Department of Pulmonary Medicine and Tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Liangzi Yang
- Department of Pulmonary Medicine and Tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Hongjuan Qin
- Department of Pulmonary Medicine and Tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Peize Zhang
- Department of Pulmonary Medicine and Tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Bulitta JB, Fang E, Stryjewski ME, Wang W, Atiee GJ, Stark JG, Hafkin B. Population pharmacokinetic rationale for intravenous contezolid acefosamil followed by oral contezolid dosage regimens. Antimicrob Agents Chemother 2024; 68:e0140023. [PMID: 38415667 PMCID: PMC10989001 DOI: 10.1128/aac.01400-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024] Open
Abstract
Contezolid is a novel oxazolidinone antibiotic with a promising safety profile. Oral contezolid and its intravenous (IV) prodrug contezolid acefosamil (CZA) are in development for treatment of diabetic foot and acute bacterial skin and skin structure infections (ABSSSI). The prodrug CZA is converted to active contezolid via intermediate MRX-1352. This study aimed to provide the pharmacokinetic rationale for safe, effective, and flexible dosage regimens with initial IV CZA followed by oral contezolid. We simultaneously modeled plasma concentrations from 110 healthy volunteers and 74 phase 2 patients with ABSSSI via population pharmacokinetics (using the importance sampling estimation algorithm), and optimized dosage regimens by Monte Carlo simulations. This included data on MRX-1352, contezolid, and its metabolite MRX-1320 from 66 healthy volunteers receiving intravenous CZA (150-2400 mg) for up to 28 days, and 74 patients receiving oral contezolid [800 mg every 12 h (q12h)] for 10 days. The apparent total clearance for 800 mg oral contezolid with food was 16.0 L/h (23.4% coefficient of variation) in healthy volunteers and 17.7 L/h (53.8%) in patients. CZA was rapidly converted to MRX-1352, which subsequently transformed to contezolid. The proposed dosage regimen used an IV CZA 2000 mg loading dose with 1000 mg IV CZA q12h as maintenance dose(s), followed by 800 mg oral contezolid q12h (with food). During each 24-h period, Monte Carlo simulations predicted this regimen to achieve consistent areas under the curve of 91.9 mg·h/L (range: 76.3-106 mg·h/L) under all scenarios. Thus, this regimen was predicted to reliably achieve efficacious contezolid exposures independent of timing of switch from IV CZA to oral contezolid.IMPORTANCEThis study provides the population pharmacokinetic rationale for the dosage regimen of the intravenous (IV) prodrug contezolid acefosamil (CZA) followed by oral contezolid. We developed the first integrated population model for the pharmacokinetics of the MRX-1352 intermediate prodrug, active contezolid, and its main metabolite MRX-1320 based on data from three clinical studies in healthy volunteers and phase 2 patients. The proposed regimen was predicted to reliably achieve efficacious contezolid exposures independent of timing of switch from IV CZA to oral contezolid.
Collapse
Affiliation(s)
- Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Edward Fang
- MicuRx Pharmaceuticals, Inc., Foster City, California, USA
| | - Martin E. Stryjewski
- Department of Medicine, Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, Argentina
| | - Wen Wang
- MicuRx Pharmaceuticals, Inc., Foster City, California, USA
| | | | | | - Barry Hafkin
- MicuRx Pharmaceuticals, Inc., Foster City, California, USA
| |
Collapse
|
3
|
Kamimura H, Uehara S, Yoneda N, Suemizu H. Empirical scaling factor for predicting human pharmacokinetic profiles of disproportionate metabolites using the Css-MRTpo method and chimeric mice with humanised livers. Xenobiotica 2023; 53:523-535. [PMID: 37938160 DOI: 10.1080/00498254.2023.2280785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Predicting plasma concentration-time profiles of disproportionate metabolites in humans is crucial for evaluating metabolites according to the Safety Testing guidelines. We evaluated Css-MRTpo, an empirical method, using chimeric mice with humanised livers capable of generating human-disproportionate metabolites. Azilsartan and AZ-M2 were administered to humanised chimeric mice, and pharmacokinetic parameters were obtained. Pharmacokinetic data for DS-1971a and DS-M1 in humanised chimeric mice were obtained from the literature. The human plasma concentration-time profiles of these compounds were simulated using the Css-MRTpo method. Azilsartan, DS-1971a, and PF-04937319 produced human disproportionate metabolites, AZ-M2, DS-M1, and PF-M1, respectively. The predicted human pharmacokinetic profiles of PF-04937319 and PF-M1 were obtained from a previous study, and their outcomes were re-evaluated. Our findings revealed that the plasma concentrations of the three metabolites were unexpectedly underpredicted, whereas the three unchanged drugs were reasonably predicted. Further, the introduction of the empirical scaling factor of 3, obtained from six model compounds, improved the predictability of metabolites, suggesting the potential usefulness of the Css-MRTpo method in combination with humanised chimeric mice for predicting the pharmacokinetic profiles of disproportionate metabolites at the early stage of new drug development.
Collapse
Affiliation(s)
- Hidetaka Kamimura
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Shotaro Uehara
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Nao Yoneda
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Hiroshi Suemizu
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| |
Collapse
|
4
|
El-Kimary EI, Allam AN, Khafagy ES, Hegazy WAH. Analytical Methodologies for the Estimation of Oxazolidinone Antibiotics as Key Members of anti-MRSA Arsenal: A Decade in Review. Crit Rev Anal Chem 2023:1-30. [PMID: 37378883 DOI: 10.1080/10408347.2023.2228902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Gram-positive bacterial infections are among the most serious diseases related with high mortality rates and huge healthcare costs especially with the rise of antibiotic-resistant strains that limits treatment options. Thus, development of new antibiotics combating these multi-drug resistant bacteria is crucial. Oxazolidinone antibiotics are the only totally synthetic group of antibiotics that showed activity against multi-drug resistant Gram positive bacteria including MRSA because of their unique mechanism of action in targeting protein synthesis. This group include approved marketed members (tedizolid, linezolid and contezolid) or those under development (delpazlolid, radezolid and sutezolid). Due to the significant impact of this class, larger number of analytical methods were required to meet the needs of both clinical and industrial studies. Analyzing these drugs either alone or with other antimicrobial agents commonly used in ICU, in the presence of pharmaceutical or endogenous biological interferences, or in the presence of matrix impurities as metabolites and degradation products poses a big analytical challenge. This review highlights current analytical approaches published in the last decade (2012-2022) that dealt with the determination of these drugs in different matrices and discusses their advantages and disadvantages. Various techniques have been described for their determination including chromatographic, spectroscopic, capillary electrophoretic and electroanalytical methods. The review comprises six sections (one for each drug) with their related tables that depict critical figures of merit and some experimental conditions for the reviewed methods. Furthermore, future perspectives about the analytical methodologies that can be developed in the near future for determination of these drugs are suggested.
Collapse
Affiliation(s)
- Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences (Chemistry), Oman College of Health Sciences, Muscat, Oman
| | - Ahmed N Allam
- Faculty of Pharmacy, Department of Pharmaceutics, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat, Oman
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences (Microbiology and Immunology), Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
5
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
6
|
Wu J, Yang X, Wu J, Wang J, Wu H, Wang Y, Yuan H, Yang H, Wang H, Zhang J. Dose adjustment not required for contezolid in patients with moderate hepatic impairment based on pharmacokinetic/pharmacodynamic analysis. Front Pharmacol 2023; 14:1135007. [PMID: 36992830 PMCID: PMC10040594 DOI: 10.3389/fphar.2023.1135007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Objective: Contezolid is an oxazolidinone antimicrobial agent newly approved for treatment of Gram-positive bacterial infections. It is primarily metabolized by the liver. This study aimed to assess whether it is required to adjust the dose of contezolid in patients with moderate hepatic impairment for clinicians to use the drug more rationally.Methods: A single-center, open-label, parallel-group study was conducted to compare the pharmacokinetic (PK) parameters of contezolid and its metabolite M2 between the patients with moderate hepatic impairment and healthy controls with normal liver function after oral administration of 800 mg contezolid tablets. Monte Carlo simulation was performed to calculate the probability of target attainment (PTA) and cumulative fraction of response (CFR) of contezolid based on the PK and pharmacodynamic data.Results: Oral treatment with 800 mg contezolid tablets was safe and well tolerated in both the patients with moderate hepatic impairment and healthy controls. Moderate hepatic impairment did not result in substantial difference in the area under the concentration-time curve from 0 to 24 h (AUC0–24h, 106.79 vs. 97.07 h μg/mL) of contezolid even though lower maximum concentration (Cmax, 19.03 vs. 34.49 μg/mL) compared with healthy controls. The mean cumulative amount excreted in urine from 0 to 48 h (Ae0–48h) and renal clearance (CLR) of contezolid did not show significant difference between the two groups. Moderate hepatic impairment was associated with lower Cmax, slightly lower AUC and Ae0–48h of M2 compared to the healthy controls. fAUC/MIC was the best PK/PD index to predict the clinical efficacy of contezolid. Monte Carlo simulation results indicated that at the proposed fAUC/MIC target value of 2.3, the dosing regimen of oral contezolid 800 mg q12h could achieve satisfactory PTA and CFR (both >90%) for the target pathogen (methicillin-resistant S. aureus, MIC ≤4 mg/L) in patients with moderate hepatic impairment.Conclusion: Our preliminary data suggest that dose adjustment is not required for contezolid in patients with moderate hepatic impairment.Clinical Trial Registration:https://chinadrugtrials.org.cn, identifier: CTR20171377.
Collapse
Affiliation(s)
- Junzhen Wu
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyi Yang
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Jufang Wu
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing Wang
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Yuan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai MicuRx Pharmaceutical Co., Ltd., Shanghai, China
| | - Huahui Yang
- Shanghai MicuRx Pharmaceutical Co., Ltd., Shanghai, China
| | - Hailin Wang
- Shanghai MicuRx Pharmaceutical Co., Ltd., Shanghai, China
| | - Jing Zhang
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jing Zhang,
| |
Collapse
|
7
|
Drug Degradation Caused by mce3R Mutations Confers Contezolid (MRX-I) Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2022; 66:e0103422. [PMID: 36190243 PMCID: PMC9578412 DOI: 10.1128/aac.01034-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contezolid (MRX-I), a safer antibiotic of the oxazolidinone class, is a promising new antibiotic with potent activity against Mycobacterium tuberculosis (MTB) both in vitro and in vivo. To identify resistance mechanisms of contezolid in MTB, we isolated several in vitro spontaneous contezolid-resistant MTB mutants, which exhibited 16-fold increases in the MIC of contezolid compared with the parent strain but were still unexpectedly susceptible to linezolid. Whole-genome sequencing revealed that most of the contezolid-resistant mutants bore mutations in the mce3R gene, which encodes a transcriptional repressor. The mutations in mce3R led to markedly increased expression of a monooxygenase encoding gene Rv1936. We then characterized Rv1936 as a putative flavin-dependent monooxygenase that catalyzes the degradation of contezolid into its inactive 2,3-dihydropyridin-4-one (DHPO) ring-opened metabolites, thereby conferring drug resistance. While contezolid is an attractive drug candidate with potent antimycobacterial activity and low toxicity, the occurrence of mutations in Mce3R should be considered when designing combination therapy using contezolid for treating tuberculosis.
Collapse
|
8
|
Wang Y, Wu H, Wu J, Fan Y, Liu X, Li Y, Hu J, Zhang J, Guo B. Development and validation of ultra-performance liquid chromatography-tandem mass spectrometric methods for simultaneous and rapid determination of contezolid and its major metabolite M2 in plasma and urine samples and its application to a study in subjects with moderate liver impairment. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123129. [DOI: 10.1016/j.jchromb.2022.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
|