1
|
Acyclic nucleoside phosphonates with adenine nucleobase inhibit Trypanosoma brucei adenine phosphoribosyltransferase in vitro. Sci Rep 2021; 11:13317. [PMID: 34172767 PMCID: PMC8233378 DOI: 10.1038/s41598-021-91747-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023] Open
Abstract
All medically important unicellular protozoans cannot synthesize purines de novo and they entirely rely on the purine salvage pathway (PSP) for their nucleotide generation. Therefore, purine derivatives have been considered as a promising source of anti-parasitic compounds since they can act as inhibitors of the PSP enzymes or as toxic products upon their activation inside of the cell. Here, we characterized a Trypanosoma brucei enzyme involved in the salvage of adenine, the adenine phosphoribosyl transferase (APRT). We showed that its two isoforms (APRT1 and APRT2) localize partly in the cytosol and partly in the glycosomes of the bloodstream form (BSF) of the parasite. RNAi silencing of both APRT enzymes showed no major effect on the growth of BSF parasites unless grown in artificial medium with adenine as sole purine source. To add into the portfolio of inhibitors for various PSP enzymes, we designed three types of acyclic nucleotide analogs as potential APRT inhibitors. Out of fifteen inhibitors, four compounds inhibited the activity of the recombinant APRT1 with Ki in single µM values. The ANP phosphoramidate membrane-permeable prodrugs showed pronounced anti-trypanosomal activity in a cell-based assay, despite the fact that APRT enzymes are dispensable for T. brucei growth in vitro. While this suggests that the tested ANP prodrugs exert their toxicity by other means in T. brucei, the newly designed inhibitors can be further improved and explored to identify their actual target(s).
Collapse
|
2
|
Nguyen VH, Tichý M, Rožánková S, Pohl R, Downey AM, Doleželová E, Tloušťová E, Slapničková M, Zíková A, Hocek M. Synthesis and anti-trypanosomal activity of 3'-fluororibonucleosides derived from 7-deazapurine nucleosides. Bioorg Med Chem Lett 2021; 40:127957. [PMID: 33741462 DOI: 10.1016/j.bmcl.2021.127957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Trypanosoma brucei parasites cause Human African Trypanosomiasis and the current drugs for its treatment are often inefficient and toxic. This urges the need to development of new antitrypanosomal agents. We report the synthesis and biological profiling of 3'-deoxy-3'-fluororibonucleosides derived from 7-deazaadenine nucleosides bearing diverse substituents at position 7. They were synthesized through glycosylation of 6-chloro-7-bromo- or -7-iodo-7-deazapurine with protected 3'-fluororibose followed by cross-coupling reactions at position 7 and/or deprotection. Most of the title nucleosides displayed micromolar or submicromolar activity against Trypanosoma brucei brucei. The most active were the 7-bromo- and 7-iododerivatives which exerted double-digit nanomolar activity against T. b. brucei and T. b. gambiense and no cytotoxicity and thus represent promising candidates for further development.
Collapse
Affiliation(s)
- Van Hai Nguyen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Samanta Rožánková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - A Michael Downey
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Eva Doleželová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Martina Slapničková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.
| |
Collapse
|
3
|
Mabille D, Cardoso Santos C, Hendrickx R, Claes M, Takac P, Clayton C, Hendrickx S, Hulpia F, Maes L, Van Calenbergh S, Caljon G. 4E Interacting Protein as a Potential Novel Drug Target for Nucleoside Analogues in Trypanosoma brucei. Microorganisms 2021; 9:microorganisms9040826. [PMID: 33924674 PMCID: PMC8069773 DOI: 10.3390/microorganisms9040826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Human African trypanosomiasis is a neglected parasitic disease for which the current treatment options are quite limited. Trypanosomes are not able to synthesize purines de novo and thus solely depend on purine salvage from the host environment. This characteristic makes players of the purine salvage pathway putative drug targets. The activity of known nucleoside analogues such as tubercidin and cordycepin led to the development of a series of C7-substituted nucleoside analogues. Here, we use RNA interference (RNAi) libraries to gain insight into the mode-of-action of these novel nucleoside analogues. Whole-genome RNAi screening revealed the involvement of adenosine kinase and 4E interacting protein into the mode-of-action of certain antitrypanosomal nucleoside analogues. Using RNAi lines and gene-deficient parasites, 4E interacting protein was found to be essential for parasite growth and infectivity in the vertebrate host. The essential nature of this gene product and involvement in the activity of certain nucleoside analogues indicates that it represents a potential novel drug target.
Collapse
Affiliation(s)
- Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Camila Cardoso Santos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
- Laboratório de Biologia Celular (LBC), Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Peter Takac
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia;
- Scientica, Ltd., 83106 Bratislava, Slovakia
| | - Christine Clayton
- DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, 69120 Heidelberg, Germany;
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, 9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, 9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
- Correspondence:
| |
Collapse
|
4
|
Perlíková P, Krajczyk A, Doleželová E, Slapničková M, Milisavljevic N, Slavětínská LP, Tloušt’ová E, Gurská S, Džubák P, Hajdúch M, Zíková A, Hocek M. Synthesis and Antitrypanosomal Activity of 6-Substituted 7-Methyl-7-deazapurine Nucleosides. ACS Infect Dis 2021; 7:917-926. [PMID: 33769794 DOI: 10.1021/acsinfecdis.1c00062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human African Trypanosomiasis caused by Trypanosoma brucei species is one of the most damaging neglected tropical diseases. While the number of newly diagnosed cases per year is record low, there is still high interest in the development of new antitrypanosomal agents in case of resistance to currently used drugs and their combinations, and to replace drugs with serious side effects. We report a series of 7-methyl-7-deazapurine (5-methyl-pyrrolo[2,3-d]pyrimidine) ribonucleosides bearing alkyl, methylsulfanyl, methylamino, or diverse alkoxy groups at position 6 that was prepared through glycosylation of 6-chloro-7-methyl-7-deazapurine followed by nucleophilic substitutions or cross-coupling reactions at position 6 and deprotection. Most of the title nucleosides displayed significant activity against Trypanosoma brucei brucei and T. b. gambiense at submicromolar or nanomolar concentrations and low cytotoxicity and thus represent promising candidates for further development.
Collapse
Affiliation(s)
- Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Anna Krajczyk
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Eva Doleželová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Martina Slapničková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Nemanja Milisavljevic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Eva Tloušt’ová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, CZ-779 00 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, CZ-779 00 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, CZ-779 00 Olomouc, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
5
|
Abdelfattah MAO, Ibrahim MA, Abdullahi HL, Aminu R, Saad SB, Krstin S, Wink M, Sobeh M. Eugenia uniflora and Syzygium samarangense extracts exhibit anti-trypanosomal activity: Evidence from in-silico molecular modelling, in vitro, and in vivo studies. Biomed Pharmacother 2021; 138:111508. [PMID: 33756157 DOI: 10.1016/j.biopha.2021.111508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
The parasite Trypanosoma brucei is the main cause of the sleeping sickness threatening millions of populations in many African countries. The parasitic infection is currently managed by some synthetic medications, most of them suffer limited activity spectrum and/or serious adverse effects. Some studies have pointed out the promising therapeutic potential of the plant extracts rich in polyphenols to curb down parasitic infections caused by T. brucei and other trypanosomes. In this work, the main components dominating Eugenia uniflora and Syzygium samarangense plant extracts were virtually screened, through docking, as inhibitors of seven T. brucei enzymes validated as potential drug targets. The in vitro and in vivo anti-T. brucei activities of the extracts in two treatment doses were evaluated. Moreover, the extract effects on the packed cell volume level, liver, and kidney functions were assessed. Five compounds showed strong docking and minimal binding energy to five target enzymes simultaneously and three other compounds were able to bind strongly to at least four of the target enzymes. These compounds represent lead hits to develop novel trypanocidal agents of natural origin. Both extracts showed moderate in vitro anti-trypanosomal activity. Infected animal groups treated over 5 days with the studied extracts showed an appreciable in vivo anti-trypanosomal activity and ameliorated in a dose dependent manner the anaemia, liver, and kidney damages induced by the infection. In conclusion, Eugenia uniflora and Syzygium samarangense could serve as appealing sources to treat trypanosomes infections.
Collapse
Affiliation(s)
| | | | | | - Raphael Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Saad Bello Saad
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Sonja Krstin
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
6
|
Differentially Expressed Homologous Genes Reveal Interspecies Differences of Paragonimus Proliferus based on Transcriptome Analysis. Helminthologia 2020; 57:196-210. [PMID: 32855607 PMCID: PMC7425231 DOI: 10.2478/helm-2020-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/01/2020] [Indexed: 01/23/2023] Open
Abstract
Paragonimus proliferus (P. proliferus), one of 46 Paragonimus species registered in the National Center for Biotechnology Information database, may be much more widely distributed in Southeast Asia than previously thought, as its reported natural foci have increased in the past decades. However, very little is known about its molecular biology, especially at the transcriptome level. For the first time, the transcriptome of this species was sequenced and compared with four other common Paragonimus species, namely Paragonimus skrjabini, Paragonimus kellicotti, Paragonimus miyazakii, and Paragonimus westermani, to predict homologous genes and differentially expressed homologous genes to explore interspecies differences of Paragonimus proliferus. A total of 7393 genes were found to be significantly differentially expressed. Of these, 49 were considered to be core genes because they were differentially expressed in all four comparison groups. Annotations revealed that these genes were related mainly to "duplication, transcription, or translation", energy or nutrient metabolism, and parasitic growth, proliferation, motility, invasion, adaptation to the host, or virulence. Interestingly, a majority (5601/7393) of the identified genes, and in particular the core genes (48/49), were expressed at lower levels in P. proliferus. The identified genes may play essential roles in the biological differences between Paragonimus species. This work provides fundamental background information for further research into the molecular biology of P. proliferus.
Collapse
|
7
|
Hulpia F, Bouton J, Campagnaro GD, Alfayez IA, Mabille D, Maes L, de Koning HP, Caljon G, Van Calenbergh S. C6-O-alkylated 7-deazainosine nucleoside analogues: Discovery of potent and selective anti-sleeping sickness agents. Eur J Med Chem 2020; 188:112018. [PMID: 31931339 DOI: 10.1016/j.ejmech.2019.112018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/02/2023]
Abstract
African trypanosomiasis, a deadly infectious disease caused by the protozoan Trypanosoma brucei spp., is spread to new hosts by bites of infected tsetse flies. Currently approved therapies all have their specific drawbacks, prompting a search for novel therapeutic agents. T. brucei lacks the enzymes necessary to forge the purine ring from amino acid precursors, rendering them dependent on the uptake and interconversion of host purines. This dependency renders analogues of purines and corresponding nucleosides an interesting source of potential anti-T. brucei agents. In this study, we synthesized and evaluated a series of 7-substituted 7-deazainosine derivatives and found that 6-O-alkylated analogues in particular showed highly promising in vitro activity with EC50 values in the mid-nanomolar range. SAR investigation of the O-alkyl chain showed that antitrypanosomal activity increased, and also cytotoxicity, with alkyl chain length, at least in the linear alkyl chain series. However, this could be attenuated by introducing a terminal branch point, resulting in the highly potent and selective analogues, 36, 37 and 38. No resistance related to transporter-mediated uptake could be identified, earmarking several of these analogues for further in vivo follow-up studies.
Collapse
Affiliation(s)
- Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Ibrahim A Alfayez
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium.
| |
Collapse
|
8
|
Hulpia F, Mabille D, Campagnaro GD, Schumann G, Maes L, Roditi I, Hofer A, de Koning HP, Caljon G, Van Calenbergh S. Combining tubercidin and cordycepin scaffolds results in highly active candidates to treat late-stage sleeping sickness. Nat Commun 2019; 10:5564. [PMID: 31804484 PMCID: PMC6895180 DOI: 10.1038/s41467-019-13522-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
African trypanosomiasis is a disease caused by Trypanosoma brucei parasites with limited treatment options. Trypanosoma is unable to synthesize purines de novo and relies solely on their uptake and interconversion from the host, constituting purine nucleoside analogues a potential source of antitrypanosomal agents. Here we combine structural elements from known trypanocidal nucleoside analogues to develop a series of 3’-deoxy-7-deazaadenosine nucleosides, and investigate their effects against African trypanosomes. 3’-Deoxytubercidin is a highly potent trypanocide in vitro and displays curative activity in animal models of acute and CNS-stage disease, even at low doses and oral administration. Whole-genome RNAi screening reveals that the P2 nucleoside transporter and adenosine kinase are involved in the uptake and activation, respectively, of this analogue. This is confirmed by P1 and P2 transporter assays and nucleotide pool analysis. 3’-Deoxytubercidin is a promising lead to treat late-stage sleeping sickness. Trypanosoma brucei relies on uptake and conversion of purines from the host, which constitutes a potential drug target. Here, Hulpia et al. combine structural elements from known trypanocidal nucleoside analogues and develop a potent trypanocide with curative activity in animal models of acute and late stage sleeping sickness.
Collapse
Affiliation(s)
- Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Gustavo D Campagnaro
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gabriela Schumann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Harry P de Koning
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium.
| |
Collapse
|
9
|
Revisiting tubercidin against kinetoplastid parasites: Aromatic substitutions at position 7 improve activity and reduce toxicity. Eur J Med Chem 2019; 164:689-705. [DOI: 10.1016/j.ejmech.2018.12.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/09/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023]
|
10
|
Schmidt RS, Macêdo JP, Steinmann ME, Salgado AG, Bütikofer P, Sigel E, Rentsch D, Mäser P. Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J 2017; 285:1012-1023. [PMID: 29063677 DOI: 10.1111/febs.14302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Abstract
Trypanosoma brucei comprise the causative agents of sleeping sickness, T. b. gambiense and T. b. rhodesiense, as well as the livestock-pathogenic T. b. brucei. The parasites are transmitted by the tsetse fly and occur exclusively in sub-Saharan Africa. T. brucei are not only lethal pathogens but have also become model organisms for molecular parasitology. We focus here on membrane transport proteins of T. brucei, their contribution to homeostasis and metabolism in the context of a parasitic lifestyle, and their pharmacological role as potential drug targets or routes of drug entry. Transporters and channels in the plasma membrane are attractive drug targets as they are accessible from the outside. Alternatively, they can be exploited to selectively deliver harmful substances into the trypanosome's interior. Both approaches require the targeted transporter to be essential: in the first case to kill the trypanosome, in the second case to prevent drug resistance due to loss of the transporter. By combining functional and phylogenetic analyses, we were mining the T. brucei predicted proteome for transporters of pharmacological significance. Here, we review recent progress in the identification of transporters of lipid precursors, amino acid permeases and ion channels in T. brucei.
Collapse
Affiliation(s)
- Remo S Schmidt
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Juan P Macêdo
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
11
|
Alzahrani KJH, Ali JAM, Eze AA, Looi WL, Tagoe DNA, Creek DJ, Barrett MP, de Koning HP. Functional and genetic evidence that nucleoside transport is highly conserved in Leishmania species: Implications for pyrimidine-based chemotherapy. Int J Parasitol Drugs Drug Resist 2017; 7:206-226. [PMID: 28453984 PMCID: PMC5407577 DOI: 10.1016/j.ijpddr.2017.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/28/2022]
Abstract
Leishmania pyrimidine salvage is replete with opportunities for therapeutic intervention with enzyme inhibitors or antimetabolites. Their uptake into cells depends upon specific transporters; therefore it is essential to establish whether various Leishmania species possess similar pyrimidine transporters capable of drug uptake. Here, we report a comprehensive characterization of pyrimidine transport in L. major and L. mexicana. In both species, two transporters for uridine/adenosine were detected, one of which also transported uracil and the antimetabolites 5-fluoruracil (5-FU) and 5F,2'deoxyuridine (5F,2'dUrd), and was designated uridine-uracil transporter 1 (UUT1); the other transporter mediated uptake of adenosine, uridine, 5F,2'dUrd and thymidine and was designated Nucleoside Transporter 1 (NT1). To verify the reported L. donovani model of two NT1-like genes encoding uridine/adenosine transporters, and an NT2 gene encoding an inosine transporter, we cloned the corresponding L. major and L. mexicana genes, expressing each in T. brucei. Consistent with the L. donovani reports, the NT1-like genes of either species mediated the adenosine-sensitive uptake of [3H]-uridine but not of [3H]-inosine. Conversely, the NT2-like genes mediated uptake of [3H]-inosine but not [3H]-uridine. Among pyrimidine antimetabolites tested, 5-FU and 5F,2'dUrd were the most effective antileishmanials; resistance to both analogs was induced in L. major and L. mexicana. In each case it was found that the resistant cells had lost the transport capacity for the inducing drug. Metabolomics analysis found that the mechanism of action of 5-FU and 5F-2'dUrd was similar in both Leishmania species, with major changes in deoxynucleotide metabolism. We conclude that the pyrimidine salvage system is highly conserved in Leishmania species - essential information for the development of pyrimidine-based chemotherapy.
Collapse
Affiliation(s)
- Khalid J H Alzahrani
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Clinical Laboratory, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Juma A M Ali
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Al Jabal Al Gharbi University, Gharyan, Libya
| | - Anthonius A Eze
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Medical Biochemistry, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Wan Limm Looi
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel N A Tagoe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Darren J Creek
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michael P Barrett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
12
|
9-(2'-Deoxy-2'-Fluoro-β-d-Arabinofuranosyl) Adenine Is a Potent Antitrypanosomal Adenosine Analogue That Circumvents Transport-Related Drug Resistance. Antimicrob Agents Chemother 2017; 61:AAC.02719-16. [PMID: 28373184 PMCID: PMC5444181 DOI: 10.1128/aac.02719-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/27/2017] [Indexed: 01/25/2023] Open
Abstract
Current chemotherapy against African sleeping sickness, a disease caused by the protozoan parasite Trypanosoma brucei, is limited by toxicity, inefficacy, and drug resistance. Nucleoside analogues have been successfully used to cure T. brucei-infected mice, but they have the limitation of mainly being taken up by the P2 nucleoside transporter, which, when mutated, is a common cause of multidrug resistance in T. brucei We report here that adenine arabinoside (Ara-A) and the newly tested drug 9-(2'-deoxy-2'-fluoro-β-d-arabinofuranosyl) adenine (FANA-A) are instead taken up by the P1 nucleoside transporter, which is not associated with drug resistance. Like Ara-A, FANA-A was found to be resistant to cleavage by methylthioadenosine phosphorylase, an enzyme that protects T. brucei against the antitrypanosomal effects of deoxyadenosine. Another important factor behind the selectivity of nucleoside analogues is how well they are phosphorylated within the cell. We found that the T. brucei adenosine kinase had a higher catalytic efficiency with FANA-A than the mammalian enzyme, and T. brucei cells treated with FANA-A accumulated high levels of FANA-A triphosphate, which even surpassed the level of ATP and led to cell cycle arrest, inhibition of DNA synthesis, and the accumulation of DNA breaks. FANA-A inhibited nucleic acid biosynthesis and parasite proliferation with 50% effective concentrations (EC50s) in the low nanomolar range, whereas mammalian cell proliferation was inhibited in the micromolar range. Both Ara-A and FANA-A, in combination with deoxycoformycin, cured T. brucei-infected mice, but FANA-A did so at a dose 100 times lower than that of Ara-A.
Collapse
|
13
|
Bessho T, Okada T, Kimura C, Shinohara T, Tomiyama A, Imamura A, Kuwamura M, Nishimura K, Fujimori K, Shuto S, Ishibashi O, Kubata BK, Inui T. Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals. PLoS Negl Trop Dis 2016; 10:e0004339. [PMID: 26731263 PMCID: PMC4701174 DOI: 10.1371/journal.pntd.0004339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/08/2015] [Indexed: 12/02/2022] Open
Abstract
The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5’-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5’-monophosphate (GMP) to inosine 5’-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR’s was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis. Only a limited number of therapeutics for human African trypanosomiasis also known as African sleeping sickness is available today, and it narrows the choice of the drugs to escape from the side effects and the emergence of drug-resistant pathogens. The parasitic protozoa Trypanosoma brucei is the causative reagent of African trypanosomiasis, and is infective to various mammalian species. T. brucei and its mammalian hosts share almost the same metabolic machinery, and therefore it is important to understand the differences in biochemical properties of the metabolic enzymes between T. brucei and its hosts. Here we report that guanosine 5’-monophosphate reductase (GMPR) of T. brucei showed apparent differences in its primary structure and biochemical properties from those of its host counterparts, and was more sensitive to purine nucleotide analogs such as monophosphate forms of ribavirin and mizoribine than were the host GMPRs. Furthermore, ribavirin prevented the proliferation of trypanosomes in vitro. Our present findings may imply the availability of ribavirin and/or its derivatives in a treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Tomoaki Bessho
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tetsuya Okada
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Chihiro Kimura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takahiro Shinohara
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Ai Tomiyama
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Akira Imamura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kazuhiko Nishimura
- Laboratory of Toxicology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Satoshi Shuto
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Osamu Ishibashi
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- * E-mail:
| |
Collapse
|
14
|
de Macêdo JP, Schumann Burkard G, Niemann M, Barrett MP, Vial H, Mäser P, Roditi I, Schneider A, Bütikofer P. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei. PLoS Pathog 2015; 11:e1004875. [PMID: 25946070 PMCID: PMC4422618 DOI: 10.1371/journal.ppat.1004875] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 04/13/2015] [Indexed: 01/27/2023] Open
Abstract
Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug action or targeting. Human and animal trypanosomiases caused by Trypanosoma brucei parasites represent major burdens to human welfare and agricultural development in rural sub-Saharan Africa. Although the numbers of infected humans have decreased continuously during the last decades, emerging resistance and adverse side effects against commonly used drugs require an urgent need for the identification of novel drug targets and the development of new drugs. Using an unbiased genome-wide screen to search for genes involved in the mode of action of trypanocidal compounds, we identified a member of the mitochondrial carrier family, TbMCP14, as prime candidate to mediate the action of a group of anti-parasitic choline analogs against T. brucei. Ablation of TbMCP14 expression by RNA interference or gene deletion decreases the susceptibility of parasites towards the compounds while over-expression of the carrier shows the opposite effect. In addition, down-regulation of TbMCP14 protects mitochondria from drug-induced decrease in mitochondrial membrane potential and reduces proline-dependent ATP production. Together, the results demonstrate that TbMCP14 is involved in energy production in T. brucei, possibly by acting as a mitochondrial proline carrier, and reveal TbMCP14 as candidate protein for drug action or targeting.
Collapse
Affiliation(s)
- Juan P de Macêdo
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henri Vial
- Dynamique Moléculaire des Interactions Membranaires, CNRS UMR 5235, Université Montpellier II, Montpellier, France
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014; 74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.
Collapse
|
16
|
Lüscher A, Lamprea-Burgunder E, Graf FE, de Koning HP, Mäser P. Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 4:55-63. [PMID: 24596669 PMCID: PMC3940079 DOI: 10.1016/j.ijpddr.2013.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
Abstract
African trypanosomes possess two distinct adenine phosphoribosyltransferases. Trypanosoma brucei TbAPRT1 is cytosolic, TbAPRT2 localizes to the glycosome. Aprt1,2 null mutants are viable but do not incorporate adenine into nucleotides. Aprt1,2 null mutants are resistant to aminopurinol but still sensitive to adenine. Aminopurinol is a trypanocide with submicromolar activity against T. brucei.
African trypanosomes, like all obligate parasitic protozoa, cannot synthesize purines de novo and import purines from their hosts to build nucleic acids. The purine salvage pathways of Trypanosoma brucei being redundant, none of the involved enzymes is likely to be essential. Nevertheless they can be of pharmacological interest due to their role in activation of purine nucleobase or nucleoside analogues, which only become toxic when converted to nucleotides. Aminopurine antimetabolites, in particular, are potent trypanocides and even adenine itself is toxic to trypanosomes at elevated concentrations. Here we report on the T. brucei adenine phosphoribosyltransferases TbAPRT1 and TbAPRT2, encoded by the two genes Tb927.7.1780 and Tb927.7.1790, located in tandem on chromosome seven. The duplication is syntenic in all available Trypanosoma genomes but not in Leishmania. While TbAPRT1 is cytosolic, TbAPRT2 possesses a glycosomal targeting signal and co-localizes with the glycosomal marker aldolase. Interestingly, the distribution of glycosomal targeting signals among trypanosomatid adenine phosphoribosyltransferases is not consistent with their phylogeny, indicating that the acquisition of adenine salvage to the glycosome happened after the radiation of Trypanosoma. Double null mutant T. brucei Δtbaprt1,2 exhibited no growth phenotype but no longer incorporated exogenous adenine into the nucleotide pool. This, however, did not reduce their sensitivity to adenine. The Δtbaprt1,2 trypanosomes were resistant to the adenine isomer aminopurinol, indicating that it is activated by phosphoribosyl transfer. Aminopurinol was about 1000-fold more toxic to bloodstream-form T. brucei than the corresponding hypoxanthine isomer allopurinol. Aminopurinol uptake was not dependent on the aminopurine permease P2 that has been implicated in drug resistance.
Collapse
Affiliation(s)
- Alexandra Lüscher
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | | | - Fabrice E Graf
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8RA, UK
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| |
Collapse
|
17
|
Vodnala SK, Lundbäck T, Yeheskieli E, Sjöberg B, Gustavsson AL, Svensson R, Olivera GC, Eze AA, de Koning HP, Hammarström LGJ, Rottenberg ME. Structure–Activity Relationships of Synthetic Cordycepin Analogues as Experimental Therapeutics for African Trypanosomiasis. J Med Chem 2013; 56:9861-73. [DOI: 10.1021/jm401530a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Richard Svensson
- Uppsala
University Drug Optimization and Pharmaceutical Profiling Platform
(UDOPP), Department of Pharmacy, Uppsala University, 753 12 Uppsala, Sweden
- Chemical Biology Consortium Sweden, Sweden
| | | | - Anthonius A. Eze
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Harry P. de Koning
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, U.K
| | | | | |
Collapse
|
18
|
Abstract
Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5'-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically.
Collapse
Affiliation(s)
- Detlev Boison
- Legacy Research Institute, 1225 NE 16th Ave, Portland, OR 97202, USA.
| |
Collapse
|
19
|
Ali JAM, Creek DJ, Burgess K, Allison HC, Field MC, Mäser P, De Koning HP. Pyrimidine salvage in Trypanosoma brucei bloodstream forms and the trypanocidal action of halogenated pyrimidines. Mol Pharmacol 2013; 83:439-53. [PMID: 23188714 PMCID: PMC4857052 DOI: 10.1124/mol.112.082321] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host. However, uptake of pyrimidines in bloodstream form trypanosomes has not been investigated, making it difficult to judge the relative importance of salvage and synthesis or to design a pyrimidine-based chemotherapy. Detailed characterization of pyrimidine transport activities in bloodstream form Trypanosoma brucei brucei found that these cells express a high-affinity uracil transporter (designated TbU3) that is clearly distinct from the procyclic pyrimidine transporters. This transporter had low affinity for uridine and 2'deoxyuridine and was the sole pyrimidine transporter expressed in these cells. In addition, thymidine was taken up inefficiently through a P1-type nucleoside transporter. Of importance, the anticancer drug 5-fluorouracil was an excellent substrate for TbU3, and several 5-fluoropyrimidine analogs were investigated for uptake and trypanocidal activity; 5F-orotic acid, 5F-2'deoxyuridine displayed activity in the low micromolar range. The metabolism and mode of action of these analogs was determined using metabolomic assessments of T. brucei clonal lines adapted to high levels of these pyrimidine analogs, and of the sensitive parental strains. The analysis showed that 5-fluorouracil is incorporated into a large number of metabolites but likely exerts toxicity through incorporation into RNA. 5F-2'dUrd and 5F-2'dCtd are not incorporated into nucleic acids but act as prodrugs by inhibiting thymidylate synthase as 5F-dUMP. We present the most complete model of pyrimidine salvage in T. brucei to date, supported by genome-wide profiling of the predicted pyrimidine biosynthesis and conversion enzymes.
Collapse
Affiliation(s)
- Juma A M Ali
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Setzer WN, Ogungbe IV. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl Trop Dis 2012; 6:e1727. [PMID: 22848767 PMCID: PMC3404109 DOI: 10.1371/journal.pntd.0001727] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/26/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT), a parasitic protozoal disease, is caused primarily by two subspecies of Trypanosoma brucei. HAT is a re-emerging disease and currently threatens millions of people in sub-Saharan Africa. Many affected people live in remote areas with limited access to health services and, therefore, rely on traditional herbal medicines for treatment. METHODS A molecular docking study has been carried out on phytochemical agents that have been previously isolated and characterized from Nigerian medicinal plants, either known to be used ethnopharmacologically to treat parasitic infections or known to have in-vitro antitrypanosomal activity. A total of 386 compounds from 19 species of medicinal plants were investigated using in-silico molecular docking with validated Trypanosoma brucei protein targets that were available from the Protein Data Bank (PDB): Adenosine kinase (TbAK), pteridine reductase 1 (TbPTR1), dihydrofolate reductase (TbDHFR), trypanothione reductase (TbTR), cathepsin B (TbCatB), heat shock protein 90 (TbHSP90), sterol 14α-demethylase (TbCYP51), nucleoside hydrolase (TbNH), triose phosphate isomerase (TbTIM), nucleoside 2-deoxyribosyltransferase (TbNDRT), UDP-galactose 4' epimerase (TbUDPGE), and ornithine decarboxylase (TbODC). RESULTS This study revealed that triterpenoid and steroid ligands were largely selective for sterol 14α-demethylase; anthraquinones, xanthones, and berberine alkaloids docked strongly to pteridine reductase 1 (TbPTR1); chromenes, pyrazole and pyridine alkaloids preferred docking to triose phosphate isomerase (TbTIM); and numerous indole alkaloids showed notable docking energies with UDP-galactose 4' epimerase (TbUDPGE). Polyphenolic compounds such as flavonoid gallates or flavonoid glycosides tended to be promiscuous docking agents, giving strong docking energies with most proteins. CONCLUSIONS This in-silico molecular docking study has identified potential biomolecular targets of phytochemical components of antitrypanosomal plants and has determined which phytochemical classes and structural manifolds likely target trypanosomal enzymes. The results could provide the framework for synthetic modification of bioactive phytochemicals, de novo synthesis of structural motifs, and lead to further phytochemical investigations.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama, USA.
| | | |
Collapse
|
21
|
Ranjbarian F, Vodnala M, Vodnala SM, Rofougaran R, Thelander L, Hofer A. Trypanosoma brucei thymidine kinase is tandem protein consisting of two homologous parts, which together enable efficient substrate binding. J Biol Chem 2012; 287:17628-17636. [PMID: 22442154 DOI: 10.1074/jbc.m112.340059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma brucei causes African sleeping sickness, a disease for which existing chemotherapies are limited by their toxicity or lack of efficacy. We have found that four parasites, including T. brucei, contain genes where two or four thymidine kinase (TK) sequences are fused into a single open reading frame. The T. brucei full-length enzyme as well as its two constituent parts, domain 1 and domain 2, were separately expressed and characterized. Of potential interest for nucleoside analog development, T. brucei TK was less discriminative against purines than human TK1 with the following order of catalytic efficiencies: thymidine > deoxyuridine ≫ deoxyinosine > deoxyguanosine. Proteins from the TK1 family are generally dimers or tetramers, and the quaternary structure is linked to substrate affinity. T. brucei TK was primarily monomeric but can be considered a two-domain pseudodimer. Independent kinetic analysis of the two domains showed that only domain 2 was active. It had a similar turnover number (k(cat)) as the full-length enzyme but could not self-dimerize efficiently and had a 5-fold reduced thymidine/deoxyuridine affinity. Domain 1, which lacks three conserved active site residues, can therefore be considered a covalently attached structural partner that enhances substrate binding to domain 2. A consequence of the non-catalytic role of domain 1 is that its active site residues are released from evolutionary pressure, which can be advantageous for developing new catalytic functions. In addition, nearly identical 89-bp sequences present in both domains suggest that the exchange of genetic material between them can further promote evolution.
Collapse
Affiliation(s)
- Farahnaz Ranjbarian
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Munender Vodnala
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Reza Rofougaran
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; Department of Biochemistry, Institute of Biochemistry and Biophysics, P.O. Box 13145-1384, Tehran University, Tehran, Iran
| | - Lars Thelander
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
22
|
Jacobs RT, Nare B, Phillips MA. State of the art in African trypanosome drug discovery. Curr Top Med Chem 2011; 11:1255-74. [PMID: 21401507 PMCID: PMC3101707 DOI: 10.2174/156802611795429167] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
Abstract
African sleeping sickness is endemic in sub-Saharan Africa where the WHO estimates that 60 million people are at risk for the disease. Human African trypanosomiasis (HAT) is 100% fatal if untreated and the current drug therapies have significant limitations due to toxicity and difficult treatment regimes. No new chemical agents have been approved since eflornithine in 1990. The pentamidine analog DB289, which was in late stage clinical trials for the treatment of early stage HAT recently failed due to toxicity issues. A new protocol for the treatment of late-stage T. brucei gambiense that uses combination nifurtomox/eflornithine (NECT) was recently shown to have better safety and efficacy than eflornithine alone, while being easier to administer. This breakthrough represents the only new therapy for HAT since the approval of eflornithine. A number of research programs are on going to exploit the unusual biochemical pathways in the parasite to identify new targets for target based drug discovery programs. HTS efforts are also underway to discover new chemical entities through whole organism screening approaches. A number of inhibitors with anti-trypanosomal activity have been identified by both approaches, but none of the programs are yet at the stage of identifying a preclinical candidate. This dire situation underscores the need for continued effort to identify new chemical agents for the treatment of HAT.
Collapse
Affiliation(s)
- Robert T. Jacobs
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Bakela Nare
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, Texas 75390-9041
| |
Collapse
|
23
|
Evaluation of nucleoside hydrolase inhibitors for treatment of African trypanosomiasis. Antimicrob Agents Chemother 2010; 54:1900-8. [PMID: 20194690 DOI: 10.1128/aac.01787-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this paper, we present the biochemical and biological evaluation of N-arylmethyl-substituted iminoribitol derivatives as potential chemotherapeutic agents against trypanosomiasis. Previously, a library of 52 compounds was designed and synthesized as potent and selective inhibitors of Trypanosoma vivax inosine-adenosine-guanosine nucleoside hydrolase (IAG-NH). However, when the compounds were tested against bloodstream-form Trypanosoma brucei brucei, only one inhibitor, N-(9-deaza-adenin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (UAMC-00363), displayed significant activity (mean 50% inhibitory concentration [IC(50)] +/- standard error, 0.49 +/- 0.31 microM). Validation in an in vivo model of African trypanosomiasis showed promising results for this compound. Several experiments were performed to investigate why only UAMC-00363 showed antiparasitic activity. First, the compound library was screened against T. b. brucei IAG-NH and inosine-guanosine nucleoside hydrolase (IG-NH) to confirm the previously demonstrated inhibitory effects of the compounds on T. vivax IAG-NH. Second, to verify the uptake of these compounds by T. b. brucei, their affinities for the nucleoside P1 and nucleoside/nucleobase P2 transporters of T. b. brucei were tested. Only UAMC-00363 displayed significant affinity for the P2 transporter. It was also shown that UAMC-00363 is concentrated in the cell via at least one additional transporter, since P2 knockout mutants of T. b. brucei displayed no resistance to the compound. Consequently, no cross-resistance to the diamidine or the melaminophenyl arsenical classes of trypanocides is expected. Third, three enzymes of the purine salvage pathway of procyclic T. b. brucei (IAG-NH, IG-NH, and methylthioadenosine phosphorylase [MTAP]) were investigated using RNA interference. The findings from all these studies showed that it is probably not sufficient to target only the nucleoside hydrolase activity to block the purine salvage pathway of T. b. brucei and that, therefore, it is possible that UAMC-00363 acts on an additional target.
Collapse
|
24
|
Link A, Heidler P, Kaiser M, Brun R. Synthesis of a series of N6-substituted adenosines with activity against trypanosomatid parasites. Eur J Med Chem 2009; 44:3665-71. [DOI: 10.1016/j.ejmech.2009.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 11/28/2022]
|
25
|
Kuettel S, Mosimann M, Mäser P, Kaiser M, Brun R, Scapozza L, Perozzo R. Adenosine Kinase of T. b. Rhodesiense identified as the putative target of 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine using chemical proteomics. PLoS Negl Trop Dis 2009; 3:e506. [PMID: 19707572 PMCID: PMC2724708 DOI: 10.1371/journal.pntd.0000506] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 07/23/2009] [Indexed: 11/20/2022] Open
Abstract
Background Human African trypanosomiasis (HAT), a major parasitic disease spread in Africa, urgently needs novel targets and new efficacious chemotherapeutic agents. Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) exhibits specific antitrypanosomal activity with an IC50 of 1.0 µM on Trypanosoma brucei rhodesiense (T. b. rhodesiense), the causative agent of the acute form of HAT. Methodology/Principal Findings In this work we show adenosine kinase of T. b. rhodesiense (TbrAK), a key enzyme of the parasite purine salvage pathway which is vital for parasite survival, to be the putative intracellular target of compound 1 using a chemical proteomics approach. This finding was confirmed by RNA interference experiments showing that down-regulation of adenosine kinase counteracts compound 1 activity. Further chemical validation demonstrated that compound 1 interacts specifically and tightly with TbrAK with nanomolar affinity, and in vitro activity measurements showed that compound 1 is an enhancer of TbrAK activity. The subsequent kinetic analysis provided strong evidence that the observed hyperactivation of TbrAK is due to the abolishment of the intrinsic substrate-inhibition. Conclusions/Significance The results suggest that TbrAK is the putative target of this compound, and that hyperactivation of TbrAK may represent a novel therapeutic strategy for the development of trypanocides. Human African trypanosomiasis (HAT), a devastating and fatal parasitic disease endemic in sub-Saharan Africa, urgently needs novel targets and efficacious chemotherapeutic agents. Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine exhibits specific antitrypanosomal activity toward T. b. rhodesiense, the causative agent of the acute form of HAT. Here we applied a chemical proteomics approach to find the cellular target of this compound. Adenosine kinase, a key enzyme of the parasite purine salvage pathway, was isolated and identified as compound binding partner. Direct binding assays using recombinant protein, and tests on an adenosine kinase knock-down mutant of the parasite produced by RNA interference confirmed TbrAK as the putative target. Kinetic analyses showed that the title compound is an activator of adenosine kinase and that the observed hyperactivation of TbrAK is due to the abolishment of the intrinsic substrate-inhibition. Whereas hyperactivation as a mechanism of action is well known from drugs targeting cell signaling, this is a novel and hitherto unexplored concept for compounds targeting metabolic enzymes, suggesting that hyperactivation of TbrAK may represent a novel therapeutic strategy for the development of trypanocides.
Collapse
Affiliation(s)
- Sabine Kuettel
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Marc Mosimann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Pascal Mäser
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Marcel Kaiser
- Parasite Chemotherapy, Swiss Tropical Institute, Basel, Switzerland
| | - Reto Brun
- Parasite Chemotherapy, Swiss Tropical Institute, Basel, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- * E-mail: (LS); (RP)
| | - Remo Perozzo
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- * E-mail: (LS); (RP)
| |
Collapse
|
26
|
Vodnala SK, Ferella M, Lundén-Miguel H, Betha E, van Reet N, Amin DN, Öberg B, Andersson B, Kristensson K, Wigzell H, Rottenberg ME. Preclinical assessment of the treatment of second-stage African trypanosomiasis with cordycepin and deoxycoformycin. PLoS Negl Trop Dis 2009; 3:e495. [PMID: 19652702 PMCID: PMC2713411 DOI: 10.1371/journal.pntd.0000495] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 07/01/2009] [Indexed: 01/08/2023] Open
Abstract
Background There is an urgent need to substitute the highly toxic compounds still in use for treatment of the encephalitic stage of human African trypanosomiasis (HAT). We here assessed the treatment with the doublet cordycepin and the deaminase inhibitor deoxycoformycin for this stage of infection with Trypanosoma brucei (T.b.). Methodology/Principal Findings Cordycepin was selected as the most efficient drug from a direct parasite viability screening of a compound library of nucleoside analogues. The minimal number of doses and concentrations of the drugs effective for treatment of T.b. brucei infections in mice were determined. Oral, intraperitoneal or subcutaneous administrations of the compounds were successful for treatment. The doublet was effective for treatment of late stage experimental infections with human pathogenic T.b. rhodesiense and T.b. gambiense isolates. Late stage infection treatment diminished the levels of inflammatory cytokines in brains of infected mice. Incubation with cordycepin resulted in programmed cell death followed by secondary necrosis of the parasites. T.b. brucei strains developed resistance to cordycepin after culture with increasing concentrations of the compound. However, cordycepin-resistant parasites showed diminished virulence and were not cross-resistant to other drugs used for treatment of HAT, i.e. pentamidine, suramin and melarsoprol. Although resistant parasites were mutated in the gene coding for P2 nucleoside adenosine transporter, P2 knockout trypanosomes showed no altered resistance to cordycepin, indicating that absence of the P2 transporter is not sufficient to render the trypanosomes resistant to the drug. Conclusions/Significance Altogether, our data strongly support testing of treatment with a combination of cordycepin and deoxycoformycin as an alternative for treatment of second-stage and/or melarsoprol-resistant HAT. There is an urgent need to substitute the highly toxic arsenic compounds still in use for treatment of the encephalitic stage of African trypanosomiasis, a disease caused by infection with Trypanosoma brucei. We exploited the inability of trypanosomes to engage in de novo purine synthesis as a therapeutic target. Cordycepin was selected from a trypanocidal screen of a 2200-compound library. When administered together with the adenosine deaminase inhibitor deoxycoformycin, cordycepin cured mice inoculated with the human pathogenic subspecies T. brucei rhodesiense or T. brucei gambiense even after parasites had penetrated into the brain. Successful treatment was achieved by intraperitoneal, oral or subcutaneous administration of the compounds. Treatment with the doublet also diminished infection-induced cerebral inflammation. Cordycepin induced programmed cell death of the parasites. Although parasites grown in vitro with low doses of cordycepin gradually developed resistance, the resistant parasites lost virulence and showed no cross-resistance to trypanocidal drugs in clinical use. Our data strongly support testing cordycepin and deoxycoformycin as an alternative for treatment of second-stage and/or melarsoprol-resistant HAT.
Collapse
Affiliation(s)
- Suman K. Vodnala
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Marcela Ferella
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Hilda Lundén-Miguel
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Evans Betha
- Tropical Diseases Research Center, Ndola Central, Ndola, Zambia
| | | | - Daniel Ndem Amin
- Department of Neurosciences, Karolinska Institute, Stockholm, Sweden
| | | | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | - Hans Wigzell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Martin E. Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
27
|
Solaroli N, Panayiotou C, Johansson M, Karlsson A. Identification of two active functional domains of human adenylate kinase 5. FEBS Lett 2009; 583:2872-6. [DOI: 10.1016/j.febslet.2009.07.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 07/23/2009] [Accepted: 07/27/2009] [Indexed: 11/25/2022]
|
28
|
Zohrabi-Kalantari V, Heidler P, Kaiser M, Brun R, Kamper C, Link A. Inhibitors of adenosine consuming parasites through polymer-assisted N-acylation of N6-substituted 5′-amino-5′-deoxyadenosines. Mol Divers 2009; 14:307-20. [DOI: 10.1007/s11030-009-9176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/05/2009] [Indexed: 11/29/2022]
|
29
|
An adenosine kinase exists in Xanthomonas campestris pathovar campestris and is involved in extracellular polysaccharide production, cell motility, and virulence. J Bacteriol 2009; 191:3639-48. [PMID: 19329636 DOI: 10.1128/jb.00009-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenosine kinase (ADK) is a purine salvage enzyme and a typical housekeeping enzyme in eukaryotes which catalyzes the phosphorylation of adenosine to form AMP. Since prokaryotes synthesize purines de novo and no endogenous ADK activity is detectable in Escherichia coli, ADK has long been considered to be rare in bacteria. To date, only two prokaryotes, both of which are gram-positive bacteria, have been reported to contain ADK. Here we report that the gram-negative bacterium Xanthomonas campestris pathovar campestris, the causal agent of black rot of crucifers, possesses a gene (designated adk(Xcc)) encoding an ADK (named ADK(Xcc)), and we demonstrate genetically that the ADK(Xcc) is involved in extracellular polysaccharide (EPS) production, cell motility, and pathogenicity of X. campestris pv. campestris. adk(Xcc) was overexpressed as a His(6)-tagged protein in E. coli, and the purified His(6)-tagged protein exhibited ADK activity. Mutation of adk(Xcc) did not affect bacterial growth in rich and minimal media but led to an accumulation of intracellular adenosine and diminutions of intracellular ADK activity and ATP level, as well as EPS. The adk(Xcc) mutant displayed significant reductions in bacterial growth and virulence in the host plant.
Collapse
|
30
|
Vodnala M, Fijolek A, Rofougaran R, Mosimann M, Mäser P, Hofer A. Adenosine kinase mediates high affinity adenosine salvage in Trypanosoma brucei. J Biol Chem 2007; 283:5380-8. [PMID: 18167353 DOI: 10.1074/jbc.m705603200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
African sleeping sickness is caused by Trypanosoma brucei. This extracellular parasite lacks de novo purine biosynthesis, and it is therefore dependent on exogenous purines such as adenosine that is taken up from the blood and other body fluids by high affinity transporters. The general belief is that adenosine needs to be cleaved to adenine inside the parasites in order to be used for purine nucleotide synthesis. We have found that T. brucei also can salvage this nucleoside by adenosine kinase (AK), which has a higher affinity to adenosine than the cleavage-dependent pathway. The recombinant T. brucei AK (TbAK) preferably used ATP or GTP to phosphorylate both natural and synthetic nucleosides in the following order of catalytic efficiencies: adenosine > cordycepin > deoxyadenosine > adenine arabinoside (Ara-A) > inosine > fludarabine (F-Ara-A). TbAK differed from the AK of the related intracellular parasite Leishmania donovani by having a high affinity to adenosine (K m = 0.04-0.08 microm depending on [phosphate]) and by being negatively regulated by adenosine (K i = 8-14 microm). These properties make the enzyme functionally related to the mammalian AKs, although a phylogenetic analysis grouped it together with the L. donovani enzyme. The combination of a high affinity AK and efficient adenosine transporters yields a strong salvage system in T. brucei, a potential Achilles' heel making the parasites more sensitive than mammalian cells to adenosine analogs such as Ara-A. Studies of wild-type and AK knockdown trypanosomes showed that Ara-A inhibited parasite proliferation and survival in an AK-dependent manner by affecting nucleotide levels and by inhibiting nucleic acid biosynthesis.
Collapse
Affiliation(s)
- Munender Vodnala
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|