1
|
Dornelas JCM, Paixão VM, Carmo PHF, Costa MC, Gomes ECQ, de Resende-Stoianoff MA, Santos DA. Influence of the agrochemical benomyl on Cryptococcus gattii-plant interaction in vitro and in vivo. Braz J Microbiol 2024; 55:2463-2471. [PMID: 38963475 PMCID: PMC11405651 DOI: 10.1007/s42770-024-01440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Cryptococcus gattii, an environmental fungus, is one of the agents of cryptococcosis. The influence of agrochemicals on fungal resistance to antifungals is widely discussed. However, the effects of benomyl (BEN) on fungal interaction with different hosts is still to be understood. Here we studied the influence of adaptation to BEN in the interaction with a plant model, phagocytes and with Tenebrio molitor. First, the strain C. gattii L24/01 non-adapted (NA), adapted (A) to BEN, and adapted with further culture on drug-free media (10p) interact with Nicotiana benthamiana, with a peak in the yeast burden on the 7th day post-inoculation. C. gattii L24/01 A and 10p provided lower fungal burden, but these strains increased cell diameter and capsular thickness after the interaction, together with decreased fungal growth. The strains NA and A showed reduced ergosterol levels, while 10p exhibited increased activity of laccase and urease. L24/01 A recovered from N. benthamiana was less engulfed by murine macrophages, with lower production of reactive oxygen species. This phenotype was accompanied by increased ability of this strain to grow inside macrophages. Otherwise, L24/01 A showed reduced virulence in the T. molitor larvae model. Here, we demonstrate that the exposure to BEN, and interaction with plants interfere in the morphophysiology and virulence of the C. gattii.
Collapse
Affiliation(s)
- João C M Dornelas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Vivian M Paixão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Paulo H F Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Marliete C Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Eldon C Q Gomes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Maria Aparecida de Resende-Stoianoff
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
2
|
Huang Y, Zhang Y, Yang S, Lu H, Yu H, Wang X, Jia X, Tang D, Wu L, Huang S, Yang P. Epidemiology of cryptococcal meningitis and fluconazole heteroresistance in Cryptococcus neoformans isolates from a teaching hospital in southwestern China. Microbiol Spectr 2024; 12:e0072524. [PMID: 39007718 DOI: 10.1128/spectrum.00725-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Cryptococcal meningitis (CM), a common and serious opportunistic infection mostly caused by Cryptococcus neoformans, is primarily treated with fluconazole. Nevertheless, Cryptococcus neoformans strains that undergo repeated exposure to azoles can gradually acquire heteroresistance to fluconazole. The management of this specific CM infection poses a substantial challenge. Determining a globally accepted definition for fluconazole heteroresistance and developing effective and prompt methods for identifying heteroresistance is of utmost importance. We collected data on the clinical and epidemiological characteristics of patients diagnosed with CM. All the available Cryptococcus neoformans strains isolated from these patients were collected and subjected to antifungal susceptibility testing and evaluation of fluconazole heteroresistance. AIDS was present in 40.5% of the patients, whereas 24.1% did not have any underlying diseases. Patients with chronic diseases or impaired immune systems are susceptible to infection by Cryptococcus neoformans, a fungus that frequently (39.6%, 19/48) shows heteroresistance to fluconazole, as confirmed by population analysis profile (PAP).IMPORTANCEFluconazole heteroresistance poses a significant threat to the efficacy of fluconazole in treating cryptococcal meningitis (CM). Unfortunately, the standard broth microdilution method often misses the subtle percentages of subpopulations exhibiting heteroresistance. While the population analysis profile (PAP) method is esteemed as the gold standard, its time-consuming and labor-intensive nature makes it impractical for routine clinical use. In contrast, the Kirby-Bauer (KB) disk diffusion method offers a simple and effective screening solution. Our study highlights the value of KB over PAP and minimum inhibitory concentration (MIC) by demonstrating that when adjusting the inoculum concentration to 1.0 McFarland and subjecting samples to a 72-hour incubation period at 35°C, the KB method closely mirrors the outcomes of the PAP approach in detecting fluconazole heteroresistance. This optimization of the KB method not only enhances assay efficiency but also provides a blueprint for developing a timely and effective strategy for identifying heteroresistance.
Collapse
Affiliation(s)
- Yunfei Huang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongqi Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuangshuang Yang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongling Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanbing Yu
- Department of Laboratory Medicine, Fujian Key Clinical Specialty of Laboratory Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xingyue Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojiong Jia
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dijiao Tang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linhong Wu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shifeng Huang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Gonçalves VN, Amorim SS, da Costa MC, de Assis Santos D, Convey P, Rosa LH. Pathogenic potential of an environmental Aspergillus fumigatus strain recovered from soil of Pygoscelis papua (Gentoo penguins) colony in Antarctica. Braz J Microbiol 2024; 55:1521-1528. [PMID: 38649623 PMCID: PMC11153445 DOI: 10.1007/s42770-024-01326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
Aspergillus fumigatus is a common opportunistic pathogen in different animals, including birds such as penguins. For the first time, a fungal strain identified as A. fumigatus was isolated from soil in the nests of gentoo penguins, Pygoscelis papua, on Livingston Island, South Shetland Islands (maritime Antarctica). This isolate (A. fumigatus UFMGCB 11829) displayed a series of potentially pathogenic characteristics in vitro. We evaluated its detailed molecular taxonomy and submitted the A. fumigatus UFMGCB 11829 Antarctic strain to in vivo pathogenic modelling. The isolate was confirmed to represent A. fumigatus morphological and phylogenetic analysis showed that it was closely related to A. fumigatus sequences reported from animals, immunosuppressed humans, storage grains, plants and soils. The strain displayed the best mycelial growth and conidia production at 37 ºC; however, it was also able to grow and produce conidia at 15º, demonstrating its capability to survive and colonize penguin nest at least in the summer season in maritime Antarctica. In pathogenicity tests, healthy mice did not showed symptoms of infection; however, 50% lethality was observed in immunosuppressed mice that were inoculated with 106 and 107 spores. Lethality increased to 100% when inoculated with 108 spores. Our data highlight the potential pathogenicity of opportunistic A. fumigatus that may be present in the Antarctic, and the risks of both their further transfer within Antarctica and outwards to other continents, risks which may be exacerbated due global climatic changes.
Collapse
Affiliation(s)
- Vívian Nicolau Gonçalves
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Soraya Sander Amorim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Marliete Carvalho da Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Daniel de Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, Auckland Park 2006, PO Box 524, Johannesburg, South Africa
- Biodiversity of Antarctic and Sub-Antarctic Ecosystems, Santiago, Chile
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
4
|
Kakizaki MIT, Melhem MDESC. CRYPTOCOCCOSIS: A bibliographic narrative review on antifungal resistance. AN ACAD BRAS CIENC 2023; 95:e20220862. [PMID: 37466540 DOI: 10.1590/0001-3765202320220862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 07/20/2023] Open
Abstract
Cryptococcosis is an infectious fungal disease widely studied for its epidemiological importance in the context of public health, given the high morbidity and mortality associated with this invasive fungal infection. Many cases of the disease present clinical resistance and progress to death, even in the presence of antifungal therapy. The prolonged use of triazole drugs to maintain the treatment of cryptococcosis in AIDS patients, can lead to selective pressure from mutant strains, among other resistance mechanisms, justifying the poor clinical evolution of some cases. In this study, a narrative review of the literature on the occurrence of antifungal resistance in cryptococcosis agents was performed. Publications from 2010 to 2022 that address this topic were selected using Google Scholars and Scopus website. Data from the studies were analyzed for the values of minimum inhibitory concentration (MIC) of drugs used in the management of cryptococcosis. The review showed that the highest MIC values occurred for voriconazole, especially against C. neoformans. It is concluded that there is a lack of studies with statistical analysis of the data obtained, in order to provide a better dimensioning of the resistance rates of cryptococcosis agents to different antifungal agents, both in geographical and temporal context.
Collapse
Affiliation(s)
- Maria Ismênia T Kakizaki
- Instituto de Assistência Médica ao Servidor Público Estadual: Iamspe, Setor de Oncologia e Hematologia, Rua Pedro de Toledo, 1800, Vila Clementino, 04039-901 São Paulo, SP, Brazil
| | - Marcia DE S C Melhem
- Departmento de Micologia, Associado de pesquisa sênior, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
- Universidade Federal do Mato Grosso do Sul, Departamento de Medicina, Av. Costa e Silva, s/n, Pioneiros, 79070-900 Campo Grande, MS, Brazil
| |
Collapse
|
5
|
The Dynamics of Cryptococcus neoformans Cell and Transcriptional Remodeling during Infection. Cells 2022; 11:cells11233896. [PMID: 36497155 PMCID: PMC9740611 DOI: 10.3390/cells11233896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The phenotypic plasticity of Cryptococcus neoformans is widely studied and demonstrated in vitro, but its influence on pathogenicity remains unclear. In this study, we investigated the dynamics of cryptococcal cell and transcriptional remodeling during pulmonary infection in a murine model. We showed that in Cryptococcus neoformans, cell size reduction (cell body ≤ 3 µm) is important for initial adaptation during infection. This change was associated with reproductive fitness and tissue invasion. Subsequently, the fungus develops mechanisms aimed at resistance to the host’s immune response, which is determinant for virulence. We investigated the transcriptional changes involved in this cellular remodeling and found an upregulation of transcripts related to ribosome biogenesis at the beginning (6 h) of infection and a later (10 days) upregulation of transcripts involved in the inositol pathway, energy production, and the proteasome. Consistent with a role for the proteasome, we found that its inhibition delayed cell remodeling during infection with the H99 strain. Altogether, these results further our understanding of the infection biology of C. neoformans and provide perspectives to support therapeutic and diagnostic targets for cryptococcosis.
Collapse
|
6
|
Abstract
Cryptococcosis is a disease caused by the pathogenic fungi Cryptococcus neoformans and Cryptococcus gattii, both environmental fungi that cause severe pneumonia and may even lead to cryptococcal meningoencephalitis. Although C. neoformans affects more fragile individuals, such as immunocompromised hosts through opportunistic infections, C. gattii causes a serious indiscriminate primary infection in immunocompetent individuals. Typically seen in tropical and subtropical environments, C. gattii has increased its endemic area over recent years, largely due to climatic factors that favor contagion in warmer climates. It is important to point out that not only C. gattii, but the Cryptococcus species complex produces a polysaccharidic capsule with immunomodulatory properties, enabling the pathogenic species of Cryptococccus to subvert the host immune response during the establishment of cryptococcosis, facilitating its dissemination in the infected organism. C. gattii causes a more severe and difficult-to-treat infection, with few antifungals eliciting an effective response during chronic treatment. Much of the immunopathology of this cryptococcosis is still poorly understood, with most studies focusing on cryptococcosis caused by the species C. neoformans. C. gattii became more important in the epidemiological scenario with the outbreaks in the Pacific Northwest of the United States, which resulted in phylogenetic studies of the virulent variant responsible for the severe infection in the region. Since then, the study of cryptococcosis caused by C. gattii has helped researchers understand the immunopathological aspects of different variants of this pathogen.
Collapse
|
7
|
de Oliveira L, Melhem MDSC, Buccheri R, Chagas OJ, Vidal JE, Diaz-Quijano FA. Early clinical and microbiological predictors of outcome in hospitalized patients with cryptococcal meningitis. BMC Infect Dis 2022; 22:138. [PMID: 35139801 PMCID: PMC8830130 DOI: 10.1186/s12879-022-07118-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cryptococcal meningitis causes high mortality in immunocompromised and immunocompetent patients. The objective of this study was to identify early predictors of clinical outcome, available at the first days of hospitalization, in patients with cryptococcal meningitis in a tertiary center in Brazil. Methods Ninety-six cases of cryptococcal meningitis with clinical, epidemiological and laboratory data, and identification and antifungal susceptibility of the strains were analyzed. Quantitative CSF yeast counts were performed by direct microscopic exam with a Fuchs-Rosenthal cell counting chamber using an institutional protocol. Univariable and multiple analyses using logistic regression were performed to identify predictors, available at the beginning of hospitalization, of in-hospital mortality. Moreover, we performed a secondary analysis for a composite outcome defined by hospital mortality and intensive care unit transfer. Results The species and the antifungal susceptibility were not associated with the outcomes evaluated. The variables significantly associated with the mortality were age (OR = 1.08, 95% CI 1.02–1.15), the cerebrospinal fluid (CSF) yeasts count (OR = 1.65, 95% CI 1.20–2.27), systemic arterial hypertension (OR = 22.63, 95% CI 1.64–312.91) and neurological impairment identified by computed tomography (OR = 41.73, 95% CI 3.10–561.65). At the secondary analysis, CSF yeast count was also associated with the composite outcome, in addition to the culture of Cryptococcus spp. from bloodstream and cerebral toxoplasmosis. The associations were consistent with survival models evaluated. Conclusions Age and CSF yeast count were independently associated with in-hospital mortality of patients with cryptococcal meningitis but Cryptococcus species identification and antifungal susceptibility were not associated with the outcomes. Quantitative CSF yeast counts used in this study can be evaluated and implemented in other low and middle-income settings. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07118-7.
Collapse
Affiliation(s)
- Lidiane de Oliveira
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP, CEP 01246-904, Brazil.
| | - Marcia de Souza Carvalho Melhem
- Mycology Unit of Adolfo Lutz Institute, Public Health Reference Laboratory, Secretary of Health, Av. Dr.Arnaldo, 351, São Paulo, SP, CEP 05411-000, Brazil.,School of Medicine, Federal University of Mato Grosso do Sul, Bairro Universitário, Av. Costa e Silva, s/no, Campo Grande, MS, CEP 79070-900, Brazil
| | - Renata Buccheri
- Department of Neurology, Emílio Ribas Institute of Infectious Diseases, Av. Dr. Arnaldo 165, São Paulo, SP, CEP 05411-000, Brazil
| | - Oscar José Chagas
- Department of Neurology, Emílio Ribas Institute of Infectious Diseases, Av. Dr. Arnaldo 165, São Paulo, SP, CEP 05411-000, Brazil
| | - José Ernesto Vidal
- Department of Neurology, Emílio Ribas Institute of Infectious Diseases, Av. Dr. Arnaldo 165, São Paulo, SP, CEP 05411-000, Brazil.,Department of Infectious Diseases, Hospital das Clinicas, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, São Paulo, SP, CEP 01246-904, Brazil
| | - Fredi Alexander Diaz-Quijano
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP, CEP 01246-904, Brazil
| |
Collapse
|
8
|
Bastos RW, Rossato L, Goldman GH, Santos DA. Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathog 2021; 17:e1010073. [PMID: 34882756 PMCID: PMC8659312 DOI: 10.1371/journal.ppat.1010073] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are underestimated threats that affect over 1 billion people, and Candida spp., Cryptococcus spp., and Aspergillus spp. are the 3 most fatal fungi. The treatment of these infections is performed with a limited arsenal of antifungal drugs, and the class of the azoles is the most used. Although these drugs present low toxicity for the host, there is an emergence of therapeutic failure due to azole resistance. Drug resistance normally develops in patients undergoing azole long-term therapy, when the fungus in contact with the drug can adapt and survive. Conversely, several reports have been showing that resistant isolates are also recovered from patients with no prior history of azole therapy, suggesting that other routes might be driving antifungal resistance. Intriguingly, antifungal resistance also happens in the environment since resistant strains have been isolated from plant materials, soil, decomposing matter, and compost, where important human fungal pathogens live. As the resistant fungi can be isolated from the environment, in places where agrochemicals are extensively used in agriculture and wood industry, the hypothesis that fungicides could be driving and selecting resistance mechanism in nature, before the contact of the fungus with the host, has gained more attention. The effects of fungicide exposure on fungal resistance have been extensively studied in Aspergillus fumigatus and less investigated in other human fungal pathogens. Here, we discuss not only classic and recent studies showing that environmental azole exposure selects cross-resistance to medical azoles in A. fumigatus, but also how this phenomenon affects Candida and Cryptococcus, other 2 important human fungal pathogens found in the environment. We also examine data showing that fungicide exposure can select relevant changes in the morphophysiology and virulence of those pathogens, suggesting that its effect goes beyond the cross-resistance.
Collapse
Affiliation(s)
- Rafael W. Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Luana Rossato
- Federal University of Grande Dourados, Dourados-MS, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Daniel A. Santos
- Laboratory of Mycology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| |
Collapse
|
9
|
Carneiro HCS, Bastos RW, Ribeiro NQ, Gouveia-Eufrasio L, Costa MC, Magalhães TFF, Oliveira LVN, Paixão TA, Joffe LS, Rodrigues ML, Araújo GRDS, Frases S, Ruiz JC, Marinho P, Abrahão JS, Resende-Stoianoff MA, Carter D, Santos DA. Hypervirulence and cross-resistance to a clinical antifungal are induced by an environmental fungicide in Cryptococcus gattii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140135. [PMID: 32927573 DOI: 10.1016/j.scitotenv.2020.140135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The increasing human population requires ongoing efforts in food production. This is frequently associated with an increased use of agrochemicals, leading to environmental contamination and altering microbial communities, including human fungal pathogens that reside in the environment. Cryptococcus gattii is an environmental yeast and is one of the etiological agents of cryptococcosis. Benomyl (BEN) is a broad-spectrum fungicide used on several crops. To study the effects of agrochemicals on fungal pathogens, we first evaluated the susceptibility of C. gattii to BEN and the interactions with clinical antifungals. Antagonistic interaction between BEN and fluconazole was seen and was strain- and concentration-dependent. We then induced BEN-resistance by culturing strains in increasing drug concentrations. One strain demonstrated to be more resistant and showed increased multidrug efflux pump gene (MDR1) expression and increased rhodamine 6G efflux, leading to cross-resistance between BEN and fluconazole. Morphologically, BEN-adapted cells had a reduced polysaccharide capsule; an increased surface/volume ratio; increased growth rate in vitro and inside macrophages and also higher ability in crossing an in vitro model of blood-brain-barrier. BEN-adapted strain demonstrated to be hypervirulent in mice, leading to severe symptoms of cryptococcosis, early mortality and higher fungal burden in the organs, particularly the brain. The parental strain was avirulent in murine model. In vivo cross-resistance between BEN and fluconazole was observed, with mice infected with the adapted strain unable to present any improvement in survival and behavior when treated with this antifungal. Furthermore, BEN-adapted cells cultured in drug-free media maintained the hypervirulent and cross-resistant phenotype, suggesting a persistent effect of BEN on C. gattii. In conclusion, exposure to BEN induces cross-resistance with fluconazole and increases the virulence of C. gattii. Altogether, our results indicate that agrochemicals may lead to unintended consequences on non-target species and this could result in severe healthy problems worldwide.
Collapse
Affiliation(s)
- Hellem Cristina Silva Carneiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Rafael Wesley Bastos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Noelly Queiroz Ribeiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Ludmila Gouveia-Eufrasio
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Centro de Pesquisa Rene Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Brazil
| | - Marliete Carvalho Costa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Thais Furtado Ferreira Magalhães
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lorena Vívien Neves Oliveira
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tatiane Alves Paixão
- Departamento Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, Brazil; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Paula Marinho
- Laboratório de vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Maria Aparecida Resende-Stoianoff
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Dee Carter
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW, Australia
| | - Daniel Assis Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| |
Collapse
|
10
|
de Faria LV, do Carmo PHF, da Costa MC, Peres NTA, Rodrigues Chagas IA, Furst C, Ferreira GF, Costa AO, Santos DA. Acanthamoeba castellanii as an alternative interaction model for the dermatophyte Trichophyton rubrum. Mycoses 2020; 63:1331-1340. [PMID: 32869415 DOI: 10.1111/myc.13173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trichophyton rubrum (Tr) is the main aetiological agent of human dermatophytosis, being isolated from the environment and keratinised tissues. In the environment, Tr can interact with other organisms, such as free-living amoebas (FLA), which can act as an alternative host system to study the interaction between microbes and phagocytic cells. OBJECTIVES To characterise the Acanthamoeba castellanii (ALX)-Tr interaction. METHODS Interaction was characterised in three conditions: trophozoites (PYG), late (PYG/NES) and early (NES) encystation stimulus, evaluating encystation kinetics, phagocytosis, exocytosis and fungicidal activity dynamics. RESULTS Tr was able to induce ALX encystation and be internalised by ALX. The number of internalised conidia was high at 1 hour, and ALX presented fungicidal activity with increased intracellular ROS production and exocytosis. In PYG/NES, phagocytosis and ROS production were reduced, with decreased ALX's fungicidal activity. However, in NES there was an increased fungal engulfment, and a reduced ROS production and higher fungal burden. Furthermore, exogenous mannose decreased phagocytosis of Tr conidia, and divalent cations induced ROS production and increased ALX's fungicidal activity. Interestingly, phagocytosis was reduced in the presence of cytoskeleton inhibitor, but exocytosis was increased, suggesting that Tr conidia may have alternative pathways to escape ALX's cells. CONCLUSION A castellanii is a proper model for studying Tr-FLA interaction, since ALX can engulf, produce ROS and kill Tr, and all these parameters are influenced by an encystation stimulus and divalent cations. Moreover, this interaction is likely to occur in the environment implicating in the adaptation to environmental stressful conditions in both organisms.
Collapse
Affiliation(s)
- Lucas V de Faria
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo H F do Carmo
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C da Costa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nalu T A Peres
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela A Rodrigues Chagas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cinthia Furst
- Departamento de Patologia, Centro Ciências da Saúde, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Gabriella F Ferreira
- Programa Multicêntrico de Pós Graduação em Bioquímica e Biologia Molecular, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Adriana O Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Folly MLC, Ferreira GF, Salvador MR, Sathler AA, da Silva GF, Santos JCB, Dos Santos JRA, Nunes Neto WR, Rodrigues JFS, Fernandes ES, da Silva LCN, de Freitas GJC, Denadai ÂM, Rodrigues IV, Mendonça LM, Monteiro AS, Santos DA, Cabrera GM, Siless G, Lang KL. Evaluation of in vitro Antifungal Activity of Xylosma prockia (Turcz.) Turcz. (Salicaceae) Leaves Against Cryptococcus spp. Front Microbiol 2020; 10:3114. [PMID: 32117083 PMCID: PMC7015862 DOI: 10.3389/fmicb.2019.03114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/24/2019] [Indexed: 01/18/2023] Open
Abstract
Cryptococcus species are responsible for important systemic mycosis and are estimated to cause millions of new cases annually. The available therapy is limited due to the high toxicity and the increasing rates of yeast resistance to antifungal drugs. Popularly known as “sucará,” Xylosma prockia (Turcz.) Turcz. (Salicaceae) is a native plant from Brazil with little information on its pharmacological potential. In this work, we evaluated in vitro anticryptococcal effects of the leaf ethanolic extract of X. prockia and its fractions against Cryptococcus gattii and Cryptococcus neoformans. We also evaluated phenotypic alterations caused by ethyl acetate fraction (EAF) (chosen according to its biological results). The liquid chromatography–mass spectrometry (LC-MS) analysis of EAF demonstrated the presence of phenolic metabolites that belong to three structurally related groups as majority compounds: caffeoylquinic acid, coumaroyl-glucoside, and caffeoyl-glucoside/deoxyhexosyl-caffeoyl glucoside derivatives. The minimum inhibitory concentration (MIC) values against C. gattii and C. neoformans ranged from 8 to 64 mg/L and from 0.5 to 8 mg/L, for ethanolic extract and EAF, respectively. The EAF triggered an oxidative burst and promoted lipid peroxidation. EAF also induced a reduction of ergosterol content in the pathogen cell membrane. These effects were not associated with alterations in the cell surface charge or in the thermodynamic fingerprint of the molecular interaction between EAF and the yeasts evaluated. Cytotoxic experiments with peripheral blood mononuclear cells (PBMCs) demonstrated that EAF was more selective for yeasts than was PBMCs. The results may provide evidence that X. prockia leaf extract might indeed be a potential source of antifungal agents.
Collapse
Affiliation(s)
- Mariany L C Folly
- Multicentric Program in Biochemistry and Molecular Biology, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - Gabriella F Ferreira
- Multicentric Program in Biochemistry and Molecular Biology, Federal University of Juiz de Fora, Governador Valadares, Brazil.,Department of Pharmacy, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - Maiara R Salvador
- Multicentric Program in Biochemistry and Molecular Biology, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - Ana A Sathler
- Department of Pharmacy, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - Guilherme F da Silva
- Department of Pharmacy, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | | | | | | | | | | | | | | | - Ângelo M Denadai
- Multicentric Program in Biochemistry and Molecular Biology, Federal University of Juiz de Fora, Governador Valadares, Brazil.,Department of Pharmacy, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - Ivanildes V Rodrigues
- Department of Pharmacy, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - Leonardo M Mendonça
- Department of Pharmacy, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | | | - Daniel Assis Santos
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela M Cabrera
- Department of Organic Chemistry, UMYMFOR-CONICET, FCEN, University of Buenos Aires, Buenos Aires, Argentina
| | - Gastón Siless
- Department of Organic Chemistry, UMYMFOR-CONICET, FCEN, University of Buenos Aires, Buenos Aires, Argentina
| | - Karen L Lang
- Multicentric Program in Biochemistry and Molecular Biology, Federal University of Juiz de Fora, Governador Valadares, Brazil.,Department of Pharmacy, Federal University of Juiz de Fora, Governador Valadares, Brazil
| |
Collapse
|
12
|
Costa MC, de Barros Fernandes H, Gonçalves GKN, Santos APN, Ferreira GF, de Freitas GJC, do Carmo PHF, Hubner J, Emídio ECP, Santos JRA, Dos Santos JL, Dos Reis AM, Fagundes CT, da Silva AM, Santos DA. 17-β-Estradiol increases macrophage activity through activation of the G-protein-coupled estrogen receptor and improves the response of female mice to Cryptococcus gattii. Cell Microbiol 2020; 22:e13179. [PMID: 32017324 DOI: 10.1111/cmi.13179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/03/2019] [Accepted: 01/26/2020] [Indexed: 11/29/2022]
Abstract
Cryptococcus gattii (Cg) is one of the agents of cryptococcosis, a severe systemic mycosis with a higher prevalence in men than women, but the influence of the female sex hormone, 17-β-estradiol (E2), on cryptococcosis remains unclear. Our study shows that female mice presented delayed mortality, increased neutrophil recruitment in bronchoalveolar lavage fluid, and reduced fungal load after 24 hr of infection compared to male and ovariectomised female mice (OVX). E2 replacement restored OVX female survival. Female macrophages have more efficient fungicidal activity, which was increased by E2 and reversed by the antagonist of G-protein-coupled oestrogen receptor (GPER), which negatively modulates PI3K activation. Furthermore, E2 induces a reduction in Cg cell diameter, cell charge, and antioxidant peroxidase activity. In conclusion, female mice present improved control of Cg infection, and GPER is important for E2 modulation of the female response.
Collapse
Affiliation(s)
- Marliete C Costa
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | | | - Gleisy K N Gonçalves
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Anderson P N Santos
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Gabriella F Ferreira
- Campus Governador Valadares, Programa Multicêntrico de Pós Graduação em Bioquímica e Biologia Molecular-UFJF, Juiz de Fora, Brazil
| | - Gustavo J C de Freitas
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Paulo H F do Carmo
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Jôsy Hubner
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Elúzia C P Emídio
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | | | | | - Adelina M Dos Reis
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Caio T Fagundes
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Aristóbolo M da Silva
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Bastos RW, Freitas GJC, Carneiro HCS, Oliveira LVN, Gouveia-Eufrasio L, Santos APN, Moyrand F, Maufrais C, Janbon G, Santos DA. From the environment to the host: How non-azole agrochemical exposure affects the antifungal susceptibility and virulence of Cryptococcus gattii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:516-523. [PMID: 31121401 DOI: 10.1016/j.scitotenv.2019.05.094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Agrochemicals such as the non-azoles, used to improve crop productivity, poses severe undesirable effects on the environment and human health. In addition, they induce cross-resistance (CR) with clinical drugs in pathogenic fungi. However, till date emphasis has been given to the role of azoles on the induction of CR. Herein, we analyzed the effect of a non-azole agrochemical, pyraclostrobin (PCT), on the antifungal susceptibility and virulence of the human and animal pathogens Cryptococcus gattii and C. neoformans. We determined the minimum inhibitory concentration (MIC) of fluconazole (FLC), itraconazole, ravuconazole, amphotericin B, and PCT on colonies: (i) that were not exposed to PCT (non-adapted-NA-cultures), (ii) were exposed at the maximum concentration of PCT (adapted-A-cultures) and (iii) the adapted colonies after cultivation 10 times in PCT-free media (10 passages-10p-cultures). Our results showed that exposure to PCT induced both temporary and permanent CR to clinical azoles in a temperature-dependent manner. With the objective to understand the mechanism of induction of CR through non-azoles, the transcriptomes of NA and 10p cells from C. gattii R265 were analyzed. The transcriptomic analysis showed that expression of the efflux-pump genes (AFR1 and MDR1) and PCT target was higher in resistant 10p cells than that in NA. Moreover, the virulence of 10p cells was reduced as compared to NA cells in mice, as observed by the differential gene expression analysis of genes related to ion-metabolism. Additionally, we observed that FLC could not increase the survival rate of mice infected with 10p cells, confirming the occurrence of permanent CR in vivo. The findings of the present study demonstrate that the non-azole agrochemical PCT can induce permanent CR to clinical antifungals through increased expression of efflux pump genes in resistant cells and that such phenomenon also manifests in vivo.
Collapse
Affiliation(s)
- Rafael Wesley Bastos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo José Cota Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hellem Cristina Silva Carneiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lorena Vívien Neves Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ludmila Gouveia-Eufrasio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Philip Nonato Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Guilhem Janbon
- Département de Mycologie, Institut Pasteur, Paris, France
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Affiliation(s)
- Victor I. Band
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - David S. Weiss
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lima MR, Ferreira GF, Nunes Neto WR, Monteiro JDM, Santos ÁRC, Tavares PB, Denadai ÂML, Bomfim MRQ, dos Santos VL, Marques SG, de Souza Monteiro A. Evaluation of the interaction between polymyxin B and Pseudomonas aeruginosa biofilm and planktonic cells: reactive oxygen species induction and zeta potential. BMC Microbiol 2019; 19:115. [PMID: 31142260 PMCID: PMC6542102 DOI: 10.1186/s12866-019-1485-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/10/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Although the most widely accepted mechanism of action for polymyxins is related to bacterial lysis via disruption, we hypothesized that this antimicrobial drug class could have other effects on Pseudomonas aeruginosa planktonic and sessile cells. Little is known regarding oxidative burst and zeta potential (ZP) data associated with the interaction between polymyxin B and P. aeruginosa cells. The present study evaluated endogenous reactive oxygen species (ROS) production and changes in the net charges of biofilm and planktonic cells in response to polymyxin B. RESULTS Polymyxin B induced concentration-dependent killing at all concentrations tested in planktonic and sessile cells from P. aeruginosa strains. Sublethal concentrations of polymyxin B induced oxidative burst. ROS production was higher in resistant planktonic cells than in biofilm cells but this was not observed for susceptible cells. Moreover, no net surface charge alterations were observed in planktonic cells from a susceptible strain treated with polymyxin B, but a significant increase of ZP was noted in planktonic cells from a resistant strain. CONCLUSION Oxidative burst generated by planktonic and sessile cells from P. aeruginosa strains against polymyxin B indicates that ROS may have an important role in the mechanism of action of this drug. ZP data revealed that electrostatic interactions of the cationic peptide with the anionic surface of the cells are strain-dependent. Therefore, we suggested that the intracellular effects of polymyxin B should be further investigated to understand polymyxin B-induced stress in P. aeruginosa.
Collapse
Affiliation(s)
- Marlucy Rodrigues Lima
- Faculdade de Ciências da Saúde, Universidade Vale do Rio Doce, Governador Valadares, MG Brazil
| | - Gabriella Freitas Ferreira
- Departamento de Farmácia, Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Federal de Juiz de Fora, UFJF, Campus Governador Valadares - MG. R. Manoel Byrro, 241 - Vila Bretas, Governador Valadares, MG 35032-620 Brazil
| | | | | | - Áquila Rodrigues Costa Santos
- Departamento de Farmácia, Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Federal de Juiz de Fora, UFJF, Campus Governador Valadares - MG. R. Manoel Byrro, 241 - Vila Bretas, Governador Valadares, MG 35032-620 Brazil
| | | | - Ângelo Márcio Leite Denadai
- Departamento de Farmácia, Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Federal de Juiz de Fora, UFJF, Campus Governador Valadares - MG. R. Manoel Byrro, 241 - Vila Bretas, Governador Valadares, MG 35032-620 Brazil
| | | | - Vera Lúcia dos Santos
- Departamento de Microbiologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Sirlei Garcia Marques
- Hospital Universitário da Universidade Federal do Maranhão, São Luís, MA Brazil
- Laboratório Cedro, São Luís, MA Brazil
| | | |
Collapse
|
16
|
Brito-Santos F, Reis RS, Coelho RA, Almeida-Paes R, Pereira SA, Trilles L, Meyer W, Wanke B, Lazéra MDS, Gremião IDF. Cryptococcosis due to Cryptococcus gattii VGII in southeast Brazil: The One Health approach revealing a possible role for domestic cats. Med Mycol Case Rep 2019; 24:61-64. [PMID: 31061785 PMCID: PMC6487353 DOI: 10.1016/j.mmcr.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/14/2019] [Accepted: 04/11/2019] [Indexed: 11/23/2022] Open
Abstract
Two cats infected by C. gattii, presented lesions on the nasal region and respiratory signs. Strains were typed as molecular type VGII, mating type alpha, MLST subtypes ST442 and ST185. Since Rio de Janeiro is known as an endemic area for C. neoformans VNI, these cases might be a warning for a possible emergence of C. gattii VGII in southeast Brazil.
Collapse
Affiliation(s)
- Fábio Brito-Santos
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Rosani Santos Reis
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Rowena Alves Coelho
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Sandro Antônio Pereira
- Laboratory of Clinical Research on Dermatozoonosis in Domestic Animals, National Institute of Infectious Diseases Evandro Chagas (INI), FIOCRUZ, Rio de Janeiro, Brazil
| | - Luciana Trilles
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Wieland Meyer
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil.,Molecular Mycology Research Laboratory, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Bodo Wanke
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Márcia Dos Santos Lazéra
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Isabella Dib Ferreira Gremião
- Laboratory of Clinical Research on Dermatozoonosis in Domestic Animals, National Institute of Infectious Diseases Evandro Chagas (INI), FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Cebrero-Cangueiro T, Álvarez-Marín R, Labrador-Herrera G, Smani Y, Cordero-Matía E, Pachón J, Pachón-Ibáñez ME. In vitro Activity of Pentamidine Alone and in Combination With Aminoglycosides, Tigecycline, Rifampicin, and Doripenem Against Clinical Strains of Carbapenemase-Producing and/or Colistin-Resistant Enterobacteriaceae. Front Cell Infect Microbiol 2018; 8:363. [PMID: 30406040 PMCID: PMC6201057 DOI: 10.3389/fcimb.2018.00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Enterobacteriaceae cause different types of community- and hospital-acquired infections. Moreover, the spread of multidrug-resistant Enterobacteriaceae is a public health problem and the World Health Organization pointed them among the pathogens in which the search of new antibiotics is critical. The objective of this study was to analyze the in vitro activity of pentamidine alone and in combination with gentamicin, tobramycin, amikacin, tigecycline, rifampicin, or doripenem against eight clinical strains of carbapenemase-producing and/or colistin-resistant Enterobacteriaceae: five carbapenemase-producing Klebsiella pneumoniae, one carbapenemase-producing Escherichia coli, and two colistin-resistant Enterobacter cloacae. MIC and MBC were determined following standard protocols. MIC results were interpreted for all the antibiotics according to the EUCAST breakpoints but for rifampicin in which the French FSM breakpoint was used. Bactericidal and synergistic activity of pentamidine alone and in combination with antibiotics at concentrations of 1xMIC was measured by time-kill curves. For one selected strain, K. pneumoniae OXA-48/CTX-M-15 time-kill curves were performed also at 1/2xMIC of pentamidine. All studies were performed in triplicate. Pentamidine MIC range was 200-800 μg/mL. The 50, 12.5, 62.5, 87.5, and 62.5% of the strains were susceptible to gentamicin, tobramycin, amikacin, tigecycline, and doripenem, respectively. Only the two E. cloacae strains were susceptible to rifampicin. Pentamidine alone at 1xMIC showed bactericidal activity against all strains, except for the E. cloacae 32 strain. The bactericidal activity of pentamidine alone was also observed in combination. The combinations of pentamidine were synergistic against E. cloacae 32 with amikacin and tobramycin at 24 h and with tigecycline at 8 h. Pentamidine plus rifampicin was the combination that showed synergistic activity against more strains (five out of eight). Pentamidine plus doripenem did not show synergy against any strain. At 1/2xMIC, pentamidine was synergistic with all the studied combinations against the K. pneumoniae OXA-48/CTX-M-15 strain. In summary, pentamidine alone and in combination shows in vitro activity against carbapenemase-producing and/or colistin-resistant Enterobacteriaceae. Pentamidine appears to be a promising option to treat infections caused by these pathogens.
Collapse
Affiliation(s)
- Tania Cebrero-Cangueiro
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Rocío Álvarez-Marín
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Gema Labrador-Herrera
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Elisa Cordero-Matía
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| |
Collapse
|
18
|
Costa MC, Mata LM, Ribeiro NDQ, Santos APN, Oliveira LVN, Vilela RVR, Cardoso VN, Fernandes SOA, Santos DA. A new method for studying cryptococcosis in a murine model using 99mTc-Cryptococcus gattii. Med Mycol 2018; 56:479-484. [PMID: 28992125 DOI: 10.1093/mmy/myx060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/13/2017] [Indexed: 11/12/2022] Open
Abstract
Cryptococcus gattii is one of the etiologic agents of cryptococcosis, a systemic mycosis that occurs in healthy and immunosuppressed humans and animals worldwide. Primary pulmonary infection caused by C. gattii is usually followed by fungal dissemination to the central nervous system, resulting in high mortality rates. In this context, animal models of cryptococcosis are useful in the study of fungal pathogenesis and host response against the pathogen, and for testing novel therapeutic options. The most frequently applied method to study fungal dissemination from the lungs to other organs is by culturing tissues, which is not accurate for the detection and quantification of fungal load at early stages of the infection. To overcome this problem, the purpose of this study was to develop a new method for the quantification of Cryptococcus dissemination. One C. gattii strain was efficiently radiolabeled with technetium-99m (99mTc), without affecting viability of the cells. Further, the 99mTc-C. gattii (111 MBq) strain was used to infect mice by intratracheal and intravenous route for biodistribution studies. 99mTc-C. gattii was successfully used in detection of the yeast in the brain of mice 6 hours postinoculation, while the detection using colony forming units was possible only 24 hours postinfection. Our results provided an alternative method that could be applied in further investigations regarding the efficacy of antifungals, fungal virulence, and host-pathogen interactions.
Collapse
Affiliation(s)
| | - Lays Murta Mata
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia-UFMG
| | | | | | | | - Raquel Virgínia Rocha Vilela
- Laboratório de Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - UFMG
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia-UFMG
| | | | | |
Collapse
|
19
|
A phenylthiazole derivative demonstrates efficacy on treatment of the cryptococcosis & candidiasis in animal models. Future Sci OA 2018; 4:FSO305. [PMID: 30057783 PMCID: PMC6060395 DOI: 10.4155/fsoa-2018-0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Aim: In this work we test 2-(2-(cyclohexylmethylene)hydrazinyl)-4-phenylthiazole (CHT) against Cryptococcus spp. and Candida albicans. Methods: The ability of CHT to act in biofilm and also to interfere with C. albicans adhesion was evaluated, as well as the efficiency of the CHT in cryptococcosis and candidiasis invertebrate and murine models. Results & conclusion: In the present work we verified that CHT is found to inhibit Cryptococcus and C. albicans affecting biofilm in both and inhibited adhesion of Candida to human buccal cells. When we evaluated in vivo, CHT prolonged survival of Galleria mellonella after infections with Cryptococcusgattii, Cryptococcusneoformans or C. albicans and promoted a reduction in the fungal burden to the organs in the murine models. These results demonstrate CHT therapeutic potential. Candida spp. and Cryptococcus spp. cause thousands of deaths each year. In general, antifungal drugs have several limitations to their use, and there are a limited number of these drugs available to be used in the treatments of fungal diseases. This work contributes to the search for new antifungal drugs for the treatment of candidiasis and cryptococcosis, aiming in the future, after all necessary tests, to serve as a basis for the production of drugs that could be used in the treatment of patients with these fungal diseases.
Collapse
|
20
|
Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E. The status of cryptococcosis in Latin America. Mem Inst Oswaldo Cruz 2018; 113:e170554. [PMID: 29641639 PMCID: PMC5888000 DOI: 10.1590/0074-02760170554] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
Cryptococcosis is a life-threatening fungal infection caused by the encapsulated
yeasts Cryptococcus neoformans and C. gattii,
acquired from the environment. In Latin America, as occurring
worldwide, C. neoformans causes more than 90% of the cases of
cryptococcosis, affecting predominantly patients with HIV, while C.
gattii generally affects otherwise healthy individuals. In this
region, cryptococcal meningitis is the most common presentation, with
amphotericin B and fluconazole being the antifungal drugs of choice. Avian
droppings are the predominant environmental reservoir of C.
neoformans, while C. gattii is associated with
several arboreal species. Importantly, C. gattii has a high
prevalence in Latin America and has been proposed to be the likely origin of
some C. gattii populations in North America. Thus, in the
recent years, significant progress has been made with the study of the basic
biology and laboratory identification of cryptococcal strains, in understanding
their ecology, population genetics, host-pathogen interactions, and the clinical
epidemiology of this important mycosis in Latin America.
Collapse
Affiliation(s)
- Carolina Firacative
- Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jairo Lizarazo
- Internal Medicine Department, Hospital Universitario Erasmo Meoz, Universidad de Pamplona, Cúcuta, Colombia
| | - María Teresa Illnait-Zaragozí
- Diagnosis and Reference Centre, Bacteriology-Mycology Department Research, Tropical Medicine Institute Pedro Kourí, Havana, Cuba
| | | | | |
Collapse
|
21
|
Sykes JE, Hodge G, Singapuri A, Yang ML, Gelli A, Thompson GR. In vivo development of fluconazole resistance in serial Cryptococcus gattii isolates from a cat. Med Mycol 2018; 55:396-401. [PMID: 28339594 DOI: 10.1093/mmy/myw104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/22/2016] [Indexed: 11/14/2022] Open
Abstract
Elevated fluconazole minimum inhibitory concentrations (MICs) are more frequently observed in Cryptococcus gattii compared to C. neoformans isolates; however, the development of in vivo resistance and the molecular mechanisms responsible have not been reported for this species. We report a case of Cryptococcus gattii (molecular type VGIII) that developed reduced susceptibility to fluconazole during therapy and delineate the molecular mechanisms responsible. Multilocus sequence typing and quantitative DNA analysis of the pre- and post-treatment isolates was performed using well-characterized methods. Pre- and post-treatment clinical isolates were confirmed isogenic, and no differences in ERG11 or PDR11 sequences were found. qPCR found an overexpression of ERG11 and the efflux pump PDR11 in the resistant isolate compared to the isolate collected prior to initiation of antifungal therapy. Reversion to wild-type susceptibility was observed when maintained in antifungal-free media confirming the in vivo development of heteroresistance. The in vivo development of heteroresistance to fluconazole in our patient with C. gattii is secondary to overexpression of the efflux pump PDR11 and the drug target ERG11. Additional work in other clinical isolates with elevated fluconazole MICs is warranted to evaluate the frequency of heteroresistance versus point mutations as a cause of resistance.
Collapse
Affiliation(s)
- Jane E Sykes
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis
| | - Greg Hodge
- Department of Medical Microbiology and Immunology, One Shields Avenue, Tupper Hall, University of California, Davis
| | - Anil Singapuri
- Department of Medical Microbiology and Immunology, One Shields Avenue, Tupper Hall, University of California, Davis
| | - Mai Lee Yang
- Department of Medical Microbiology and Immunology, One Shields Avenue, Tupper Hall, University of California, Davis
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, Davis, California
| | - George R Thompson
- Department of Medical Microbiology and Immunology, One Shields Avenue, Tupper Hall, University of California, Davis.,Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, 4150 V Street, Suite G500; University of California, Davis
| |
Collapse
|
22
|
Environmental Triazole Induces Cross-Resistance to Clinical Drugs and Affects Morphophysiology and Virulence of Cryptococcus gattii and C. neoformans. Antimicrob Agents Chemother 2017; 62:AAC.01179-17. [PMID: 29109169 DOI: 10.1128/aac.01179-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus gattii and Cryptococcus neoformans are environmental fungi that cause cryptococcosis, which is usually treated with amphotericin B and fluconazole. However, therapeutic failure is increasing because of the emergence of resistant strains. Because these species are constantly isolated from vegetal materials and the usage of agrochemicals is growing, we postulate that pesticides could be responsible for the altered susceptibility of these fungi to clinical drugs. Therefore, we evaluated the influence of the pesticide tebuconazole on the susceptibility to clinical drugs, morphophysiology, and virulence of C. gattii and C. neoformans strains. The results showed that tebuconazole exposure caused in vitro cross-resistance (CR) between the agrochemical and clinical azoles (fluconazole, itraconazole, and ravuconazole) but not with amphotericin B. In some strains, CR was observed even after the exposure ceased. Further, tebuconazole exposure changed the morphology, including formation of pseudohyphae in C. neoformans H99, and the surface charge of the cells. Although the virulence of both species previously exposed to tebuconazole was decreased in mice, the tebuconazole-exposed colonies recovered from the lungs were more resistant to azole drugs than the nonexposed cells. This in vivo CR was confirmed when fluconazole was not able to reduce the fungal burden in the lungs of mice. The tolerance to azoles could be due to increased expression of the ERG11 gene in both species and of efflux pump genes (AFR1 and MDR1) in C. neoformans Our study data support the idea that agrochemical usage can significantly affect human pathogens present in the environment by affecting their resistance to clinical drugs.
Collapse
|
23
|
Alves JCO, Ferreira GF, Santos JR, Silva LCN, Rodrigues JFS, Neto WRN, Farah EI, Santos ÁRC, Mendes BS, Sousa LVNF, Monteiro AS, Dos Santos VL, Santos DA, Perez AC, Romero TRL, Denadai ÂML, Guzzo LS. Eugenol Induces Phenotypic Alterations and Increases the Oxidative Burst in Cryptococcus. Front Microbiol 2017; 8:2419. [PMID: 29270159 PMCID: PMC5726113 DOI: 10.3389/fmicb.2017.02419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
Eugenol is a phenolic compound and the main constituent of the essential oil of clove India. Although there are reports of some pharmacological effects of eugenol, this study is the first that proposes to evaluate the antifungal effects of this phenol against both Cryptococcus gattii and C. neoformans cells. The effect of eugenol against yeast cells was analyzed for drug susceptibility, alterations in cell diameter, capsule properties, amounts of ergosterol, oxidative burst, and thermodynamics data. Data demonstrated that there is no interaction between eugenol and fluconazole and amphotericin B. Eugenol reduced the cell diameter and the capsule size, increased cell surface/volume, changed positively the cell surface charge of cryptococcal cells. We also verified increased levels of reactive oxygen species without activation of antioxidant enzymes, leading to increased lipid peroxidation, mitochondrial membrane depolarization and reduction of lysosomal integrity in cryptococcal cells. Additionally, the results showed that there is no significant molecular interaction between eugenol and C. neoformans. Morphological alterations, changes of cellular superficial charges and oxidative stress play an important role in antifungal activity of eugenol against C. gattii and C. neoformans that could be used as an auxiliary treatment to cutaneous cryptococcosis.
Collapse
Affiliation(s)
- Júnia C O Alves
- Faculdade de Ciências da Saúde, Universidade Vale do Rio Doce, Governador Valadares, Brazil
| | - Gabriella F Ferreira
- Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| | | | - Luís C N Silva
- Centro de Ciências da Saúde, Universidade CEUMA, São Luís, Brazil
| | | | - Wallace R N Neto
- Centro de Ciências da Saúde, Universidade CEUMA, São Luís, Brazil
| | | | - Áquila R C Santos
- Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| | - Brenda S Mendes
- Faculdade de Ciências da Saúde, Universidade Vale do Rio Doce, Governador Valadares, Brazil
| | - Lourimar V N F Sousa
- Faculdade de Ciências da Saúde, Universidade Vale do Rio Doce, Governador Valadares, Brazil
| | | | - Vera L Dos Santos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel A Santos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrea C Perez
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago R L Romero
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ângelo M L Denadai
- Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| | - Luciana S Guzzo
- Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| |
Collapse
|
24
|
Ecoepidemiology of Cryptococcus gattii in Developing Countries. J Fungi (Basel) 2017; 3:jof3040062. [PMID: 29371578 PMCID: PMC5753164 DOI: 10.3390/jof3040062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cryptococcosis is a systemic infection caused by species of the encapsulated yeast Cryptococcus. The disease may occur in immunocompromised and immunocompetent hosts and is acquired by the inhalation of infectious propagules present in the environment. Cryptococcus is distributed in a plethora of ecological niches, such as soil, pigeon droppings, and tree hollows, and each year new reservoirs are discovered, which helps researchers to better understand the epidemiology of the disease. In this review, we describe the ecoepidemiology of the C. gattii species complex focusing on clinical cases and ecological reservoirs in developing countries from different continents. We also discuss some important aspects related to the antifungal susceptibility of different species within the C. gattii species complex and bring new insights on the revised Cryptococcus taxonomy.
Collapse
|
25
|
Oliveira LVN, Costa MC, Magalhães TFF, Bastos RW, Santos PC, Carneiro HCS, Ribeiro NQ, Ferreira GF, Ribeiro LS, Gonçalves APF, Fagundes CT, Pascoal-Xavier MA, Djordjevic JT, Sorrell TC, Souza DG, Machado AMV, Santos DA. Influenza A Virus as a Predisposing Factor for Cryptococcosis. Front Cell Infect Microbiol 2017; 7:419. [PMID: 29018774 PMCID: PMC5622999 DOI: 10.3389/fcimb.2017.00419] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus (IAV) infects millions of people annually and predisposes to secondary bacterial infections. Inhalation of fungi within the Cryptococcus complex causes pulmonary disease with secondary meningo-encephalitis. Underlying pulmonary disease is a strong risk factor for development of C. gattii cryptococcosis though the effect of concurrent infection with IAV has not been studied. We developed an in vivo model of Influenza A H1N1 and C. gattii co-infection. Co-infection resulted in a major increase in morbidity and mortality, with severe lung damage and a high brain fungal burden when mice were infected in the acute phase of influenza multiplication. Furthermore, IAV alters the host response to C. gattii, leading to recruitment of significantly more neutrophils and macrophages into the lungs. Moreover, IAV induced the production of type 1 interferons (IFN-α4/β) and the levels of IFN-γ were significantly reduced, which can be associated with impairment of the immune response to Cryptococcus during co-infection. Phagocytosis, killing of cryptococci and production of reactive oxygen species (ROS) by IAV-infected macrophages were reduced, independent of previous IFN-γ stimulation, leading to increased proliferation of the fungus within macrophages. In conclusion, IAV infection is a predisposing factor for severe disease and adverse outcomes in mice co-infected with C. gattii.
Collapse
Affiliation(s)
- Lorena V N Oliveira
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C Costa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thaís F F Magalhães
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael W Bastos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia C Santos
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hellem C S Carneiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Noelly Q Ribeiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriella F Ferreira
- Departamento de Farmácia, Universidade Federal de Juiz de Fora-Campus Governador Valadares, Centro, Governador Valadares, Brazil
| | - Lucas S Ribeiro
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana P F Gonçalves
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Caio T Fagundes
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo A Pascoal-Xavier
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Julianne T Djordjevic
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney and Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney and Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Daniele G Souza
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre M V Machado
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
26
|
Santos JRA, Ribeiro NQ, Bastos RW, Holanda RA, Silva LC, Queiroz ER, Santos DA. High-dose fluconazole in combination with amphotericin B is more efficient than monotherapy in murine model of cryptococcosis. Sci Rep 2017; 7:4661. [PMID: 28680034 PMCID: PMC5498649 DOI: 10.1038/s41598-017-04588-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/17/2017] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus spp., the causative agents of cryptococcosis, are responsible for deaths of hundreds of thousands of people every year worldwide. The drawbacks of available therapeutic options are aggravated by the increased resistance of yeast to the drugs, resulting in inefficient therapy. Also, the antifungal 5FC is not available in many countries. Therefore, a combination of antifungal drugs may be an interesting option, but in vitro and theoretical data point to the possible antagonism between the main antifungals used to treat cryptococcosis, i.e., fluconazole (FLC), and amphotericin B (AMB). Therefore, in vivo studies are necessary to test the above hypothesis. In this study, the efficacy of FLC and AMB at controlling C. gattii infection was evaluated in a murine model of cryptococcosis caused by C. gattii. The infected mice were treated with FLC + AMB combinations and showed a significant improvement in survival as well as reduced morbidity, reduced lung fungal burden, and the absence of yeast in the brain when FLC was used at higher doses, according to the Tukey test and principal component analysis. Altogether, these results indicate that combinatorial optimization of antifungal therapy can be an option for effective control of cryptococcosis.
Collapse
Affiliation(s)
- Julliana Ribeiro Alves Santos
- Mestrado em Biologia Parasitária - Universidade CEUMA (UNICEUMA), São Luís, Maranhão, Brazil. .,Mestrado em Meio Ambiente - Universidade CEUMA (UNICEUMA), São Luís, Maranhão, Brazil.
| | - Noelly Queiroz Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Wesley Bastos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Letícia Chagas Silva
- Mestrado em Meio Ambiente - Universidade CEUMA (UNICEUMA), São Luís, Maranhão, Brazil
| | - Estela Rezende Queiroz
- Departamento de Química, Universidade Federal de Lavras (UFLA), Campus 17 Universitário, Lavras- MG, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
27
|
Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses 2017; 60:562-568. [PMID: 28660647 DOI: 10.1111/myc.12639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 05/10/2017] [Indexed: 11/27/2022]
Abstract
The concept of heteroresistance refers to the heterogeneous susceptibility to an antimicrobial drug in a microorganism population, meaning that some clones may be resistant and others are susceptible. This phenomenon has been widely studied in bacteria, but little attention has been given to its expression in fungi. We review the available literature on heteroresistance in fungi and invite the reader to recognise this phenomenon as a fungal mechanism to adapt to environmental stress, which may interfere both in resistance and virulence. Finally, heteroresistance may explain the treatment failures to eradicate mycosis in some patients treated with a seemingly appropriate antifungal.
Collapse
Affiliation(s)
- Gabriella F Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Governador Valadares, Brazil.,Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Governador Valadares, Brazil
| |
Collapse
|
28
|
Jandú JJ, Costa MC, Santos JRA, Andrade FM, Magalhães TF, Silva MV, Castro MCAB, Coelho LCBB, Gomes AG, Paixão TA, Santos DA, Correia MTS. Treatment with pCramoll Alone and in Combination with Fluconazole Provides Therapeutic Benefits in C. gattii Infected Mice. Front Cell Infect Microbiol 2017; 7:211. [PMID: 28596945 PMCID: PMC5442327 DOI: 10.3389/fcimb.2017.00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/09/2017] [Indexed: 01/17/2023] Open
Abstract
Cryptococcus gattii is one of the main causative agents of cryptococcosis in immunocompetent individuals. Treatment of the infection is based on the use of antimycotics, however, the toxicity of these drugs and the increase of drug-resistant strains have driven the search for more effective and less toxic therapies for cryptococcosis. pCramoll are isolectins purified from seeds of Cratylia mollis, a native forage plant from Brazil, which has become a versatile tool for biomedical application. We evaluated the effect of pCramoll alone and in combination with fluconazole for the treatment of mice infected with C. gatti. pCramoll alone or in combination with fluconazole increased the survival, reduced the morbidity and improved mice behavior i.e., neuropsychiatric state, motor behavior, autonomic function, muscle tone and strength and reflex/sensory function. These results were associated with (i) decreased pulmonary and cerebral fungal burden and (ii) increased inflammatory infiltrate and modulatory of IFNγ, IL-6, IL-10, and IL-17A cytokines in mice treated with pCramoll. Indeed, bone marrow-derived macrophages pulsed with pCramoll had increased ability to engulf C. gattii, with an enhanced production of reactive oxygen species and decrease of intracellular fungal proliferation. These findings point toward the use of pCramoll in combination with fluconazole as a viable, alternative therapy for cryptococcosis management.
Collapse
Affiliation(s)
- Jannyson J Jandú
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| | - Marliete C Costa
- Departamento de Microbiologia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | | | - Fernanda M Andrade
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| | - Thais F Magalhães
- Departamento de Microbiologia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Márcia V Silva
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| | - Maria C A B Castro
- Núcleo de Enfermagem, Universidade Federal de PernambucoVitória de Santo Antão, Brazil.,Laboratório de Imunogenética, Centro de Pesquisas Aggeu MagalhãesRecife, Brazil
| | - Luanna C B B Coelho
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| | - Aline G Gomes
- Departamento de Patologia Geral, Instituto Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Tatiane A Paixão
- Departamento de Patologia Geral, Instituto Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Maria T S Correia
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| |
Collapse
|
29
|
Fontes ACL, Bretas Oliveira D, Santos JRA, Carneiro HCS, Ribeiro NDQ, Oliveira LVND, Barcellos VA, Paixão TA, Abrahão JS, Resende-Stoianoff MA, Vainstein MH, Santos DA. A subdose of fluconazole alters the virulence of Cryptococcus gattii during murine cryptococcosis and modulates type I interferon expression. Med Mycol 2016; 55:203-212. [PMID: 27486215 DOI: 10.1093/mmy/myw056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 03/01/2016] [Accepted: 05/15/2016] [Indexed: 12/20/2022] Open
Abstract
Cryptococcosis is an invasive infection caused by yeast-like fungus of the genera Cryptococcus spp. The antifungal therapy for this disease provides some toxicity and the incidence of infections caused by resistant strains increased. Thus, we aimed to assess the consequences of fluconazole subdoses during the treatment of cryptococcosis in the murine inflammatory response and in the virulence factors of Cryptococcus gattii. Mice infected with Cryptococcus gattii were treated with subdoses of fluconazole. We determined the behavior of mice and type 1 interferon expression during the treatment; we also studied the virulence factors and susceptibility to fluconazole for the colonies recovered from the animals. A subdose of fluconazole prolonged the survival of mice, but the morbidity of cryptococcosis was higher in treated animals. These data were linked to the increase in: (i) fluconazole minimum inhibitory concentration, (ii) capsule size and (iii) melanization of C. gattii, which probably led to the increased expression of type I interferons in the brains of mice but not in the lungs. In conclusion, a subdose of fluconazole altered fungal virulence factors and susceptibility to this azole, leading to an altered inflammatory host response and increased morbidity.
Collapse
Affiliation(s)
- Alide Caroline Lima Fontes
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Danilo Bretas Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.,Universidade Federal do Vale do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Juliana Ribeiro Alves Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.,Laboratório de Micologia, Universidade Ceuma (UNICEUMA), São Luís, Maranhão, Brazil
| | - Hellem Cristina Silva Carneiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Noelly de Queiroz Ribeiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lorena Vívien Neves de Oliveira
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Vanessa Abreu Barcellos
- Laboratório de Biologia de fungos de importância médica e biotecnológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jonatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Maria Aparecida Resende-Stoianoff
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marilene Henning Vainstein
- Laboratório de Biologia de fungos de importância médica e biotecnológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Daniel Assis Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
30
|
Santos JRA, César IC, Costa MC, Ribeiro NQ, Holanda RA, Ramos LH, Freitas GJC, Paixão TA, Pianetti GA, Santos DA. Pharmacokinetics/pharmacodynamic correlations of fluconazole in murine model of cryptococcosis. Eur J Pharm Sci 2016; 92:235-43. [PMID: 27235581 DOI: 10.1016/j.ejps.2016.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/20/2016] [Accepted: 05/24/2016] [Indexed: 01/15/2023]
Abstract
The emergence of fluconazole-resistant Cryptococcus gattii is a global concern, since this azole is the main antifungal used worldwide to treat patients with cryptococcosis. Although pharmacokinetic (PK) and pharmacodynamic (PD) indices are useful predictive factors for therapeutic outcomes, there is a scarcity of data regarding PK/PD analysis of antifungals in cryptococcosis caused by resistant strains. In this study, PK/PD parameters were determined in a murine model of cryptococcosis caused by resistant C. gattii. We developed and validated a suitable liquid chromatography-electrospray ionization tandem mass spectrometry method for PK studies of fluconazole in the serum, lungs, and brain of uninfected mice. Mice were infected with susceptible or resistant C. gattii, and the effects of different doses of fluconazole on the pulmonary and central nervous system fungal burden were determined. The peak levels in the serum, lungs, and brain were achieved within 0.5h. The AUC/MIC index (area under the curve/minimum inhibitory concentration) was associated with the outcome of anti-cryptococcal therapy. Interestingly, the maximum concentration of fluconazole in the brain was lower than the MIC for both strains. In addition, the treatment of mice infected with the resistant strain was ineffective even when high doses of fluconazole were used or when amphotericin B was tested, confirming the cross-resistance between these drugs. Altogether, our novel data provide the correlation of PK/PD parameters with antifungal therapy during cryptococcosis caused by resistant C. gattii.
Collapse
Affiliation(s)
- Julliana Ribeiro Alves Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Micologia, Universidade Ceuma (UNICEUMA), São Luís, Maranhão, Brazil
| | - Isabela Costa César
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Noelly Queiroz Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Assunção Holanda
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lais Hott Ramos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo José Cota Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gerson Antônio Pianetti
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Costa MC, Santos JRA, Ribeiro MJA, Freitas GJCD, Bastos RW, Ferreira GF, Miranda AS, Arifa RDN, Santos PC, Martins FDS, Paixão TA, Teixeira AL, Souza DG, Santos DA. The absence of microbiota delays the inflammatory response to Cryptococcus gattii. Int J Med Microbiol 2016; 306:187-95. [PMID: 27083265 DOI: 10.1016/j.ijmm.2016.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 01/08/2023] Open
Abstract
The inflammatory response plays a crucial role in infectious diseases, and the intestinal microbiota is linked to maturation of the immune system. However, the association between microbiota and the response against fungal infections has not been elucidated. Our aim was to evaluate the influence of microbiota on Cryptococcus gattii infection. Germ-free (GF), conventional (CV), conventionalized (CVN-mice that received feces from conventional animals), and LPS-stimulated mice were infected with C. gattii. GF mice were more susceptible to infection, showing lower survival, higher fungal burden in the lungs and brain, increased behavioral changes, reduced levels of IFN-γ, IL-1β and IL-17, and lower NFκBp65 phosphorylation compared to CV mice. Low expression of inflammatory cytokines was associated with smaller yeast cells and polysaccharide capsules (the main virulence factor of C. gattii) in the lungs, and less tissue damage. Furthermore, macrophages from GF mice showed reduced ability to engulf, produce ROS, and kill C. gattii. Restoration of microbiota (CVN mice) or LPS administration made GF mice more responsive to infection, which was associated with increased survival and higher levels of inflammatory mediators. This study is the first to demonstrate the influence of microbiota in the host response against C. gattii.
Collapse
Affiliation(s)
- Marliete Carvalho Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Julliana Ribeiro Alves Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Maira Juliana Andrade Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Gustavo José Cota de Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Rafael Wesley Bastos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Gabriella Freitas Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; Departamento de Farmácia, Universidade Federal de Juiz de Fora-Campus Governador Valadares, Governador Valadares, MG 35020-220, Brazil
| | - Aline Silva Miranda
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30130-100 Brazil
| | - Raquel Duque Nascimento Arifa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Patrícia Campi Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Flaviano Dos Santos Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Antonio Lúcio Teixeira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30130-100 Brazil
| | - Danielle G Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|