1
|
Kim D, Shin JI, Yoo IY, Jo S, Chu J, Cho WY, Shin SH, Chung YJ, Park YJ, Jung SH. GenoMycAnalyzer: a web-based tool for species and drug resistance prediction for Mycobacterium genomes. BMC Genomics 2024; 25:387. [PMID: 38643090 PMCID: PMC11031912 DOI: 10.1186/s12864-024-10320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect drug resistance, and further guide treatment options. RESULTS We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evaluated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Compared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% for rifampicin (95% CI 94.8-96.7%) to 79.6% for pyrazinamide (95% CI 76.9-82.2%), whereas those for second-line drugs ranged from 98.2% for levofloxacin (95% CI 90.1-100.0%) to 74.9% for capreomycin (95% CI 69.3-80.0%). Notably, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specificity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8-99.3%) to 79.5% for ethionamide (95% CI 76.4-82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 MTBC. CONCLUSIONS GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the interpretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contribute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://www.mycochase.org .
Collapse
Affiliation(s)
- Doyoung Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Ih Shin
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genomic Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sungjin Jo
- Department of Laboratory Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jiyon Chu
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Yeun-Jun Chung
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genomic Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hyun Jung
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Integrated Research Center for Genomic Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Departments of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoch-Gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
2
|
Mok S, Roycroft E, Flanagan PR, Wagener J, Fitzgibbon MM. Investigation of genomic mutations and their association with phenotypic resistance to new and repurposed drugs in Mycobacterium tuberculosis complex clinical isolates. J Antimicrob Chemother 2023; 78:2637-2644. [PMID: 37740935 PMCID: PMC10683940 DOI: 10.1093/jac/dkad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND WGS has the potential to detect resistance-associated mutations and guide treatment of MDR TB. However, the knowledge base to confidently interpret mutations associated with the new and repurposed drugs is sparse, and phenotypic drug susceptibility testing is required to detect resistance. METHODS We screened 900 Mycobacterium tuberculosis complex genomes from Ireland, a low TB incidence country, for mutations in 13 candidate genes and assessed their association with phenotypic resistance to bedaquiline, clofazimine, linezolid, delamanid and pretomanid. RESULTS We identified a large diversity of mutations in the candidate genes of 195 clinical isolates, with very few isolates associated with phenotypic resistance to bedaquiline (n = 4), delamanid (n = 4) and pretomanid (n = 2). We identified bedaquiline resistance among two drug-susceptible TB isolates that harboured mutations in Rv0678. Bedaquiline resistance was also identified in two MDR-TB isolates harbouring Met146Thr in Rv0678, which dated back to 2007, prior to the introduction of bedaquiline. High-level delamanid resistance was observed in two isolates with deletions in ddn, which were also resistant to pretomanid. Delamanid resistance was detected in two further isolates that harboured mutations in fbiA, but did not show cross-resistance to pretomanid. All isolates were susceptible to linezolid and clofazimine, and no mutations found were associated with resistance. CONCLUSIONS More studies that correlate genotypic and phenotypic drug susceptibility data are needed to increase the knowledge base of mutations associated with resistance, in particular for pretomanid. Overall, this study contributes to the development of future mutation catalogues for M. tuberculosis complex isolates.
Collapse
Affiliation(s)
- Simone Mok
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Emma Roycroft
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Peter R Flanagan
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Johannes Wagener
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Margaret M Fitzgibbon
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| |
Collapse
|
3
|
Nalam SM, Chintamaneni PK, Saxena Pal R, Chaitanya MVNL, Kumar Singh S, Saranya P, Arora S, Sharma S, Pandey P, Mazumder A, Babu R, Amoateng P, Singh A. From nature's bounty to drug discovery: Leveraging phytochemicals and molecular approaches to combat multi-drug-resistant (MDR) tuberculosis. Indian J Tuberc 2023; 71 Suppl 1:S117-S129. [PMID: 39067943 DOI: 10.1016/j.ijtb.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 07/30/2024]
Abstract
A large number of people annually lose their lives to tuberculosis (TB), which is an age-old disease caused by the Mycobacterium tuberculosis. The global spread of TB is a concern for all regions. The south-east Asian region recorded 46% of all new TB cases in 2021, followed by the African and western Pacific regions with 23% and 18%, respectively. Researchers are always searching at natural substances for potential alternative therapeutics to tackle the worrisome growth in multi-drug-resistant (MDR) tuberculosis due to the high costs associated with developing new treatments and unfavourable side effects of currently used synthetic pharmaceuticals. Phytochemicals show promising results as a future health aid due to their multi-targeting ability on pathogen cells. In the search for new drug leads, the Ayurvedic and Siddha medical systems have made an extensive use of ethnomedicinal tools, including the use of plants like Amalaki (Emblica officinalis Gaertn.), Guduchi (Tinospora cordifolia willd.), Sariva (Hemidesmus indicus R.Br.), Kustha (Saussurea lappa Falc.), turmeric (Curcuma longa Mal.) and Green tea (Camellia sinensis Linn.). These sources are high in flavonoids, polyphenols, tannins and catechins, has been shown to reduce the risk of TB. In this overview, we look at how natural sources like plants, algae and mushrooms have helped researchers to find new drug leads, and how to back these natural sources through mapping the molecular approaches and other approaches has helped them to defeat MDR.
Collapse
Affiliation(s)
| | - Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, Gitam-Hyderabad Campus, Hyderabad, 502329, India
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144402, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144402, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144402, India
| | - P Saranya
- Department of Pharmacy Practice, Faculty of Pharmacy, Sree Balaji Medical College and Hospital Campus, Bharath Institute of Higher Education and Research, Chromepet, Chennai, 600044, India
| | - Smriti Arora
- Department of Allied Health Sciences, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, 248007, India
| | - Sarika Sharma
- Department of Sponsored Research, Division of Research & Development, Lovely Professional University, Phagwara, 144402, India
| | - Pratibha Pandey
- Noida Institute of Engineering & Technology, Gautam Buddh Nagar, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Avijit Mazumder
- Niet Pharmacy Institute C Block, Noida Institute of Engineering & Technology, Gautam Buddh Nagar, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144402, India
| | - Patrick Amoateng
- Pharmacology & Toxicology, School of Pharmacy, University of Ghana, Legon, Accra, India
| | - Amandeep Singh
- Khalsa College of Pharmacy, H.No 21a, Lane No 4, Chheharta, Amritsar, Punjab, 143002, India
| |
Collapse
|
4
|
Yusoof KA, García JI, Schami A, Garcia-Vilanova A, Kelley HV, Wang SH, Rendon A, Restrepo BI, Yotebieng M, Torrelles JB. Tuberculosis Phenotypic and Genotypic Drug Susceptibility Testing and Immunodiagnostics: A Review. Front Immunol 2022; 13:870768. [PMID: 35874762 PMCID: PMC9301132 DOI: 10.3389/fimmu.2022.870768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB), considered an ancient disease, is still killing one person every 21 seconds. Diagnosis of Mycobacterium tuberculosis (M.tb) still has many challenges, especially in low and middle-income countries with high burden disease rates. Over the last two decades, the amount of drug-resistant (DR)-TB cases has been increasing, from mono-resistant (mainly for isoniazid or rifampicin resistance) to extremely drug resistant TB. DR-TB is problematic to diagnose and treat, and thus, needs more resources to manage it. Together with+ TB clinical symptoms, phenotypic and genotypic diagnosis of TB includes a series of tests that can be used on different specimens to determine if a person has TB, as well as if the M.tb strain+ causing the disease is drug susceptible or resistant. Here, we review and discuss advantages and disadvantages of phenotypic vs. genotypic drug susceptibility testing for DR-TB, advances in TB immunodiagnostics, and propose a call to improve deployable and low-cost TB diagnostic tests to control the DR-TB burden, especially in light of the increase of the global burden of bacterial antimicrobial resistance, and the potentially long term impact of the coronavirus disease 2019 (COVID-19) disruption on TB programs.
Collapse
Affiliation(s)
- Kizil A. Yusoof
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Juan Ignacio García
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| | - Alyssa Schami
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Andreu Garcia-Vilanova
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Holden V. Kelley
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Shu-Hua Wang
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine and Global One Health Initiative, The Ohio State University, Columbus, OH, United States
| | - Adrian Rendon
- Centro de Investigación, Prevención y Tratamiento de Infecciones Respiratorias (CIPTIR), Hospital Universitario de Monterrey Universidad Autónoma de Nuevo León (UANL), Monterrey, Mexico
| | - Blanca I. Restrepo
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| | - Marcel Yotebieng
- Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| | - Jordi B. Torrelles
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Juan Ignacio García, ; Blanca I. Restrepo, ; Marcel Yotebieng, ; Jordi B. Torrelles,
| |
Collapse
|
5
|
Dookie N, Khan A, Padayatchi N, Naidoo K. Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Front Microbiol 2022; 13:775030. [PMID: 35401475 PMCID: PMC8988194 DOI: 10.3389/fmicb.2022.775030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
The World Health Organization’s End TB Strategy prioritizes universal access to an early diagnosis and comprehensive drug susceptibility testing (DST) for all individuals with tuberculosis (TB) as a key component of integrated, patient-centered TB care. Next generation whole genome sequencing (WGS) and its associated technology has demonstrated exceptional potential for reliable and comprehensive resistance prediction for Mycobacterium tuberculosis isolates, allowing for accurate clinical decisions. This review presents a descriptive analysis of research describing the potential of WGS to accelerate delivery of individualized care, recent advances in sputum-based WGS technology and the role of targeted sequencing for resistance detection. We provide an update on recent research describing the mechanisms of resistance to new and repurposed drugs and the dynamics of mixed infections and its potential implication on TB diagnosis and treatment. Whilst the studies reviewed here have greatly improved our understanding of recent advances in this arena, it highlights significant challenges that remain. The wide-spread introduction of new drugs in the absence of standardized DST has led to rapid emergence of drug resistance. This review highlights apparent gaps in our knowledge of the mechanisms contributing to resistance for these new drugs and challenges that limit the clinical utility of next generation sequencing techniques. It is recommended that a combination of genotypic and phenotypic techniques is warranted to monitor treatment response, curb emerging resistance and further dissemination of drug resistance.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Navisha Dookie,
| | - Azraa Khan
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC), CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC), CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
6
|
Abstract
Given the low treatment success rates of drug-resistant tuberculosis (TB), novel TB drugs are urgently needed. The landscape of TB treatment has changed considerably over the last decade with the approval of three new compounds: bedaquiline, delamanid and pretomanid. Of these, delamanid and pretomanid belong to the same class of drugs, the nitroimidazoles. In order to close the knowledge gap on how delamanid and pretomanid compare with each other, we summarize the main findings from preclinical research on these two compounds. We discuss the compound identification, mechanism of action, drug resistance, in vitro activity, in vivo pharmacokinetic profiles, and preclinical in vivo activity and efficacy. Although delamanid and pretomanid share many similarities, several differences could be identified. One finding of particular interest is that certain Mycobacterium tuberculosis isolates have been described that are resistant to either delamanid or pretomanid, but with preserved susceptibility to the other compound. This might imply that delamanid and pretomanid could replace one another in certain regimens. Regarding bactericidal activity, based on in vitro and preclinical in vivo activity, delamanid has lower MICs and higher mycobacterial load reductions at lower drug concentrations and doses compared with pretomanid. However, when comparing in vivo preclinical bactericidal activity at dose levels equivalent to currently approved clinical doses based on drug exposure, this difference in activity between the two compounds fades. However, it is important to interpret these comparative results with caution knowing the variability inherent in preclinical in vitro and in vivo models.
Collapse
Affiliation(s)
- Saskia E. Mudde
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Corresponding author. E-mail:
| | | | - Anne Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Hannelore I. Bax
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurriaan E. M. De Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Khoshnood S, Taki E, Sadeghifard N, Kaviar VH, Haddadi MH, Farshadzadeh Z, Kouhsari E, Goudarzi M, Heidary M. Mechanism of Action, Resistance, Synergism, and Clinical Implications of Delamanid Against Multidrug-Resistant Mycobacterium tuberculosis. Front Microbiol 2021; 12:717045. [PMID: 34690963 PMCID: PMC8529252 DOI: 10.3389/fmicb.2021.717045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis (MTB) remain a primary global threat to the end of tuberculosis (TB) era. Delamanid (DLM) is a nitro-dihydro-imidazooxazole derivative utilized to treat MDR-TB. DLM has distinct mechanism of action, inhibiting methoxy- and keto-mycolic acid (MA) synthesis through the F420 coenzyme mycobacteria system and generating nitrous oxide. While DLM resistance among MTB strains is uncommon, there are increasing reports in Asia and Europe, and such resistance will prolong the treatment courses of patients infected with MDR-TB. In this review, we address the antimycobacterial properties of DLM, report the global prevalence of DLM resistance, discuss the synergism of DLM with other anti-TB drugs, and evaluate the documented clinical trials to provide new insights into the clinical use of this antibiotic.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Zahra Farshadzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
8
|
Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Sci Rep 2021; 11:19431. [PMID: 34593898 PMCID: PMC8484543 DOI: 10.1038/s41598-021-98862-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the deadliest infectious diseases worldwide. Multidrug and extensively drug-resistant strains are making disease control difficult, and exhausting treatment options. New anti-TB drugs bedaquiline (BDQ), delamanid (DLM) and pretomanid (PTM) have been approved for the treatment of multi-drug resistant TB, but there is increasing resistance to them. Nine genetic loci strongly linked to resistance have been identified (mmpR5, atpE, and pepQ for BDQ; ddn, fgd1, fbiA, fbiB, fbiC, and fbiD for DLM/PTM). Here we investigated the genetic diversity of these loci across >33,000 M. tuberculosis isolates. In addition, epistatic mutations in mmpL5-mmpS5 as well as variants in ndh, implicated for DLM/PTM resistance in M. smegmatis, were explored. Our analysis revealed 1,227 variants across the nine genes, with the majority (78%) present in isolates collected prior to the roll-out of BDQ and DLM/PTM. We identified phylogenetically-related mutations, which are unlikely to be resistance associated, but also high-impact variants such as frameshifts (e.g. in mmpR5, ddn) with likely functional effects, as well as non-synonymous mutations predominantly in MDR-/XDR-TB strains with predicted protein destabilising effects. Overall, our work provides a comprehensive mutational catalogue for BDQ and DLM/PTM associated genes, which will assist with establishing associations with phenotypic resistance; thereby, improving the understanding of the causative mechanisms of resistance for these drugs, leading to better treatment outcomes.
Collapse
|
9
|
Angst DC, Tepekule B, Sun L, Bogos B, Bonhoeffer S. Comparing treatment strategies to reduce antibiotic resistance in an in vitro epidemiological setting. Proc Natl Acad Sci U S A 2021; 118:e2023467118. [PMID: 33766914 PMCID: PMC8020770 DOI: 10.1073/pnas.2023467118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The rapid rise of antibiotic resistance, combined with the increasing cost and difficulties to develop new antibiotics, calls for treatment strategies that enable more sustainable antibiotic use. The development of such strategies, however, is impeded by the lack of suitable experimental approaches that allow testing their effects under realistic epidemiological conditions. Here, we present an approach to compare the effect of alternative multidrug treatment strategies in vitro using a robotic liquid-handling platform. We use this framework to study resistance evolution and spread implementing epidemiological population dynamics for treatment, transmission, and patient admission and discharge, as may be observed in hospitals. We perform massively parallel experimental evolution over up to 40 d and complement this with a computational model to infer the underlying population-dynamical parameters. We find that in our study, combination therapy outperforms monotherapies, as well as cycling and mixing, in minimizing resistance evolution and maximizing uninfecteds, as long as there is no influx of double resistance into the focal treated community.
Collapse
Affiliation(s)
- Daniel C Angst
- Institute of Integrative Biology, Department for Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Burcu Tepekule
- Institute of Integrative Biology, Department for Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Lei Sun
- Institute of Integrative Biology, Department for Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Balázs Bogos
- Institute of Integrative Biology, Department for Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Department for Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|