1
|
Jin Y, Wang S, Tang K, Zhan P, Liu X. Recent advances in screening methods enabling the discovery of novel anti-hepatitis B virus drug candidates. Eur J Med Chem 2025; 282:117093. [PMID: 39612566 DOI: 10.1016/j.ejmech.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The global population affected by Hepatitis B virus (HBV) is approximately 296 million, but few drugs have been able to completely eradicate HBV and the range of effective treatments remains limited. Recent advancements in molecular biology and artificial intelligence, as well as a comprehensive understanding of the molecular structure of HBV, have greatly aided the rational development of anti-HBV agents. Such advancements have facilitated an increasing array of candidate drugs transitioning into clinical trials, however, no novel target-based compounds have been approved for clinical application. To expedite the progression of anti-HBV drug development, establishing a reliable and robust in vitro HBV infection system is of great importance. However, owing to the host and tissue specificity of HBV, identifying a stable and dependable cell culture system for screening all anti-HBV agents poses significant challenges. In this review, we summarize recent advances in screening methods for small-molecule inhibitors that target key stages of the HBV replication cycle from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Yu Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
2
|
Sadineni K, Haridasyam SB, Gujja V, Muvvala V, Nechipadappu SK, Nanda Pilli KVV, Chepuri K, Allaka TR. Novel tetrazolyl-1,2,3-triazole derivatives as potent antimicrobial targets: design, synthesis and molecular docking techniques. J Biomol Struct Dyn 2024:1-16. [PMID: 39562999 DOI: 10.1080/07391102.2024.2425830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/05/2024] [Indexed: 11/21/2024]
Abstract
The main objective of this study is to produce novel triazoles-loaded tetrazoles, which are crucial in the development of prospective therapeutic agents in medicinal chemistry. Recent investigations have found a wide range of uses for these derivatives, and they are prospective lead molecules for the synthesis of substances with enormous therapeutic utility for various diseases, especially for bacterial therapy. New series of 1,2,3-triazole derivatives have been synthesized from methyl (2S,4S)-4-azido-1-(2,4-difluoro-3-methylbenzoyl)pyrrolidine-2-carboxylate (5) using a well-established click reaction that has several advantages to afford a novel heterocyclic compound based on tetrazole moieties. The structures of the new compounds were ascertained by spectral means (IR, NMR: 1H and 13C) and mass spectrum. All the synthesized compounds were assessed in vitro antimicrobial activity against Gram-+ve (S. pyogenes, S. aureus and B. subtilis), Gram-negative (E. coli and P. aeruginosa) bacterial and fungal strains A. flavus and C. albicans. The prepared compounds 7b and7f proved to have strong impact on S. aureus and S. pyogenes strains with MICs of 2.5 µg/mL and 1.5 µg/mL respectively. Among the tested compounds, hybrids 7b, 7f, 7h, and 7i exhibited exceptional antifungal susceptibilities against C. albicans with zone of inhibition 25 ± 0.2, 30 ± 0.3, 30 ± 0.1, and 28 ± 0.2 mm respectively, which is stronger than fluconazole (28 ± 0.1 mm). The capacity of ligand 7f to form a stable compound on the active site of S. aureus complex with DNA Gyrase (2XCT) was confirmed by docking studies using amino acids Ala233(A), Arg234(A), Gly283(A), Ser286(A), Lys52(A), His280(A), Gly51(A), His282(A) and Val246(A). Furthermore, the physicochemical and ADME (absorption, distribution, metabolism, and excretion) filtration molecular properties, estimation of toxicity, and bioactivity scores of these scaffolds were evaluated.
Collapse
Affiliation(s)
- Kumaraswamy Sadineni
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Venkanna Gujja
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Venkatanaryana Muvvala
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Sunil Kumar Nechipadappu
- Department of Analytical and Structural Chemistry, CSIR-IICT, Tarnaka, Hyderabad, Telangana, India
| | - Kishore Veera Venkata Nanda Pilli
- Department of Chemistry, School of Applied Sciences and Humanities, Vignans Foundation for Science, Technology and Research University), Vadlamudi, Guntur, India
| | - Kalyani Chepuri
- Centre for Biotechnology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Gandham SK, Kudale AA, Allaka TR, Chepuri K, Jha A. New tetrazolopyrrolidine-1,2,3-triazole analogues as potent anticancer agents: design, synthesis and molecular docking studies. Mol Divers 2024; 28:3313-3329. [PMID: 37938509 DOI: 10.1007/s11030-023-10762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
1,2,3-Triazole and tetrazole derivatives bearing pyrrolidines are found to exhibit notable biological activity and have become useful scaffolds in medicinal chemistry for application in lead discovery and optimization. We report design, synthesis and molecular docking studies of tetrazolyl-1,2,3-triazole derivatives (7a-i) bearing pyrrolidine moiety and evaluating their anticancer activity against four cancer cell lines viz. Hela, MCF-7, HCT-116 and HepG2. The structures of the new compounds were ascertained by spectral means IR, NMR: 1H &13C and Mass spectrum. From the studies compounds7a and 7i exhibited significant anticancer activity against the Hela cell line with IC50 = 0.32 ± 1.00, 1.80 ± 0.22 μM when compared to reference drug Doxorubicin (IC50 = 2.34 ± 0.11 μM), whereas 7h, 7i, and 7b were found to be active against MCF-7, HCT-116 and HepG2 cell lines with IC50 = 3.20 ± 1.40, 1.38 ± 0.06 and 0.97 ± 0.12 μM respectively. Notably 7a exhibited highest conventional hydrogen bondings TyrA:40, SerA:17, LysA:117, AlaA:146, Tyr218 with 3HB4and SerA:17, LysA:117, AlaA:146, TyrA:40 with 6IBZ and docking energy - 10.85, - 8.21 kcal/mol respectively. These compounds were further evaluated for their ADMET and physicochemical properties by using SwissADME. The results of the in vitro and in silico studies suggest that the tetrazole incorporated pyrrolidine-triazoles may possess the ideal structural requirements for further developing new anticancer agents.
Collapse
Affiliation(s)
- Siva Kumar Gandham
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Amit A Kudale
- Research and Development, ASolution Pharmaceuticals Pvt Ltd, Dist. Thane, Ambernath, Maharashtra, 421506, India
| | - Tejeswara Rao Allaka
- Department of Chemistry, Centre for Chemical Sciences and Technology, Institute of Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Kalyani Chepuri
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Anjali Jha
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
4
|
Desenko SM, Gorobets MY, Lipson VV, Sakhno YI, Chebanov VA. Dihydroazolopyrimidines: Past, Present and Perspectives in Synthesis, Green Chemistry and Drug Discovery. CHEM REC 2024; 24:e202300244. [PMID: 37668291 DOI: 10.1002/tcr.202300244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Dihydroazolopyrimidines are an important class of heterocycles that are isosteric to natural purines and are therefore of great interest primarily as drug-like molecules. In contrast to the heteroaromatic analogs, synthetic approaches to these compounds were developed much later, and their chemical properties and biological activity have not been studied in detail until recently. In the review, different ways to build dihydroazolopyrimidine systems from different building blocks are described - via the initial formation of a partially hydrogenated pyrimidine ring or an azole ring, as well as a one-pot assembly of azole and azine fragments. Special attention is given to modern approaches: multicomponent reactions, green chemistry, and the use of non-classical activation methods. Information on the chemical properties of dihydroazolopyrimidines and the prospects for their use in the design of drugs of various profiles are also summarized in this review.
Collapse
Affiliation(s)
- Serhiy M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Mykola Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Victoria V Lipson
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
- Department of Medicinal Chemistry, State Institution "V. Ya. Danilevsky Institute for Endocrine Pathology Problems" NAMS of Ukraine, Alchevskikh St. 10, Kharkiv, Ukraine, 61002
| | - Yana I Sakhno
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Valentyn A Chebanov
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
| |
Collapse
|
5
|
Yuan SY, Yu HB, Yang Z, Qin YP, Ren JH, Cheng ST, Ren F, Law BYK, Wong VKW, Ng JPL, Zhou YJ, He X, Tan M, Zhang ZZ, Chen J. Pimobendan Inhibits HBV Transcription and Replication by Suppressing HBV Promoters Activity. Front Pharmacol 2022; 13:837115. [PMID: 35721154 PMCID: PMC9204083 DOI: 10.3389/fphar.2022.837115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Current anti-HBV therapeutic strategy relies on interferon and nucleos(t)ide-type drugs with the limitation of functional cure, inducing hepatitis B surface antigen (HBsAg) loss in very few patients. Notably, the level of HBsAg has been established as an accurate indicator to evaluate the drug efficacy and predict the disease prognosis, thus exploring a novel drug targeting HBsAg will be of great significance. Herein, by screening 978 compounds from an FDA-approved drug library and determining the inhibitory function of each drug on HBsAg level in HepG2.2.15 cells supernatant, we identified that pimobendan (Pim) has a powerful antiviral activity with relatively low cytotoxicity. The inhibitory effect of Pim on HBsAg as well as other HBV markers was validated in HBV-infected cell models and HBV-transgenic mice. Mechanistically, real-time PCR and dual-luciferase reporter assay were applied to identify the partial correlation of transcription factor CAAT enhancer-binding protein α (C/EBPα) with the cccDNA transcription regulated by Pim. This indicates Pim is an inhibitor of HBV transcription through suppressing HBV promoters to reduce HBV RNAs levels and HBsAg production. In conclusion, Pim was identified to be a transcription inhibitor of cccDNA, thereby inhibiting HBsAg and other HBV replicative intermediates both in vitro and in vivo. This report may provide a promising lead for the development of new anti-HBV agent.
Collapse
Affiliation(s)
- Si-Yu Yuan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhen Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi-Ping Qin
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Jerome P. L. Ng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yu-Jiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xin He
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhen-Zhen Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Infectious Diseases, The Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhen-Zhen Zhang, ; Juan Chen,
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Zhen-Zhen Zhang, ; Juan Chen,
| |
Collapse
|
6
|
Datta K, Mitra B, Sharma BS, Ghosh P. One‐pot Three‐component Solvent‐free Tandem Annulations for Synthesis of Tetrazolo[1,2‐
a
]pyrimidine and [1,2,4]triazolo[1,5‐
a
]pyrimidine. ChemistrySelect 2022. [DOI: 10.1002/slct.202103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kumaresh Datta
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Bijeta Mitra
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Biswajit Shil Sharma
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Pranab Ghosh
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| |
Collapse
|
7
|
Deev SL, Shestakova TS, Shenkarev ZO, Paramonov AS, Khalymbadzha IA, Eltsov OS, Charushin VN, Chupakhin ON. 15N Chemical Shifts and JNN-Couplings as Diagnostic Tools for Determination of the Azide-Tetrazole Equilibrium in Tetrazoloazines. J Org Chem 2021; 87:211-222. [PMID: 34941254 DOI: 10.1021/acs.joc.1c02225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Selectively 15N-labeled tetrazolo[1,5-b][1,2,4]triazines and tetrazolo[1,5-a]pyrimidines bearing one, two, or three 15N labels were synthesized. The synthesized compounds were studied by 1H, 13C, and 15N NMR spectroscopy in DMSO and TFA solutions, where the azide-tetrazole equilibrium can lead to the formation of two tetrazole (T, T') isomers and one azide (A) isomer for each compound. Incorporation of the 15N-label(s) leads to the appearance of 15N-15N coupling constants (JNN), which can be easily measured via simple 1D 15N NMR spectra, even at natural abundance between labeled and unlabeled 15N atoms. The chemical shifts for the 15N nuclei in the azole moiety are very sensitive to the ring opening and azide formation, thus providing information about the azido-tetrazole equilibrium. At the same time, the 1-2JNN couplings between 15N-labeled atoms in the azole and azine fragments unambiguously determine the fusion type between tetrazole and azine rings in the cyclic isomers T and T'. Thus, combined analysis of 15N chemical shifts and JNN values in selectively isotope-enriched compounds provides an effective diagnostic tool for direct structural determination of tetrazole isomers and azide form in solution. This method was found to be the most simple and efficient way to study the azido-tetrazole equilibrium.
Collapse
Affiliation(s)
- Sergey L Deev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Tatyana S Shestakova
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Igor A Khalymbadzha
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Oleg S Eltsov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Valery N Charushin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia.,I. Ya. Postovsky Institute of Organic Synthesis of Ural Branch of the Russian Academy of Sciences, 22 Sofya Kovalevskaya Street, 620108 Yekaterinburg, Russia
| | - Oleg N Chupakhin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia.,I. Ya. Postovsky Institute of Organic Synthesis of Ural Branch of the Russian Academy of Sciences, 22 Sofya Kovalevskaya Street, 620108 Yekaterinburg, Russia
| |
Collapse
|
8
|
El‐Remaily MAEAAA, Soliman AMM, Khalifa ME, El‐Metwaly NM, Alsoliemy A, El‐Dabea T, Abu‐Dief AM. Rapidly, highly yielded and green synthesis of dihydrotetrazolo[1,5‐
a
]pyrimidine derivatives in aqueous media using recoverable Pd (II) thiazole catalyst accelerated by ultrasonic: Computational studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| | - Amerah Alsoliemy
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Tarek El‐Dabea
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Ahmed M. Abu‐Dief
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
- Department of Chemistry, College of Science Taibah University Madinah Saudi Arabia
| |
Collapse
|
9
|
Kiruthika S, Bhat R, Dash R, Rathore AS, Vivekanandan P, Jayaram B. A novel piperazine derivative that targets hepatitis B surface antigen effectively inhibits tenofovir resistant hepatitis B virus. Sci Rep 2021; 11:11723. [PMID: 34083665 PMCID: PMC8175705 DOI: 10.1038/s41598-021-91196-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global problem. The loss of hepatitis B surface antigen (HBsAg) in serum is a therapeutic end point. Prolonged therapy with nucleoside/nucleotide analogues targeting the HBV-polymerase may lead to resistance and rarely results in the loss of HBsAg. Therefore, inhibitors targeting HBsAg may have potential therapeutic applications. Here, we used computational virtual screening, docking, and molecular dynamics simulations to identify potential small molecule inhibitors against HBsAg. After screening a million molecules from ZINC database, we identified small molecules with potential anti-HBV activity. Subsequently, cytotoxicity profiles and anti-HBV activities of these small molecules were tested using a widely used cell culture model for HBV. We identified a small molecule (ZINC20451377) which binds to HBsAg with high affinity, with a KD of 65.3 nM, as determined by Surface Plasmon Resonance spectroscopy. Notably, the small molecule inhibited HBsAg production and hepatitis B virion secretion (10 μM) at low micromolar concentrations and was also efficacious against a HBV quadruple mutant (CYEI mutant) resistant to tenofovir. We conclude that this small molecule exhibits strong anti-HBV properties and merits further testing.
Collapse
Affiliation(s)
- S Kiruthika
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, India
| | - Ruchika Bhat
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
- Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology, Delhi, New Delhi, India
| | - Rozaleen Dash
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, India.
| | - B Jayaram
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, India.
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India.
- Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology, Delhi, New Delhi, India.
| |
Collapse
|
10
|
Tang D, Zhao H, Wu Y, Peng B, Gao Z, Sun Y, Duan J, Qi Y, Li Y, Zhou Z, Guo G, Zhang Y, Li C, Sui J, Li W. Transcriptionally inactive hepatitis B virus episome DNA preferentially resides in the vicinity of chromosome 19 in 3D host genome upon infection. Cell Rep 2021; 35:109288. [PMID: 34192543 DOI: 10.1016/j.celrep.2021.109288] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/07/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The hepatitis B virus (HBV) infects 257 million people worldwide. HBV infection requires establishment and persistence of covalently closed circular (ccc) DNA, a viral episome, in nucleus. Here, we study cccDNA spatial localization in the 3D host genome by using chromosome conformation capture-based sequencing analysis and fluorescence in situ hybridization (FISH). We show that transcriptionally inactive cccDNA is not randomly distributed in host nucleus. Rather, it is preferentially accumulated at specialized areas, including regions close to chromosome 19 (chr.19). Activation of the cccDNA is apparently associated with its re-localization, from a pre-established heterochromatin hub formed by 5 regions of chr.19 to transcriptionally active regions formed by chr.19 and nearby chromosomes including chr.16, 17, 20, and 22. This active versus inactive positioning at discrete regions of the host genome is primarily controlled by the viral HBx protein and by host factors including the structural maintenance of chromosomes protein 5/6 (SMC5/6) complex.
Collapse
Affiliation(s)
- Dingbin Tang
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Hanqing Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Yumeng Wu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Bo Peng
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Zhenchao Gao
- National Institute of Biological Sciences, Beijing, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Jinzhi Duan
- National Institute of Biological Sciences, Beijing, China
| | - Yonghe Qi
- National Institute of Biological Sciences, Beijing, China
| | - Yunfei Li
- National Institute of Biological Sciences, Beijing, China
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Guilan Guo
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Yu Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Statistical Science, Center for Bioinformatics, Peking University, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Analgesic Activity and Acute Toxicity of Dihydrotetrazolo[1,5-a]Pyrimidine Derivatives. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Felicetti T, Pismataro MC, Cecchetti V, Tabarrini O, Massari S. Triazolopyrimidine Nuclei: Privileged Scaffolds for Developing Antiviral Agents with a Proper Pharmacokinetic Profile. Curr Med Chem 2021; 29:1379-1407. [PMID: 34042030 DOI: 10.2174/0929867328666210526120534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
Viruses are a continuing threat to global health. The lack or limited therapeutic armamentarium against some viral infections and increasing drug resistance issues make the search for new antiviral agents urgent. In recent years, a growing literature highlighted the use of triazolopyrimidine (TZP) heterocycles in the development of antiviral agents, with numerous compounds that showed potent antiviral activities against different RNA and DNA viruses. TZP core represents a privileged scaffold for achieving biologically active molecules, thanks to: i) the synthetic feasibility that allows to variously functionalize TZPs in the different positions of the nucleus, ii) the ability of TZP core to establish multiple interactions with the molecular target, and iii) its favorable pharmacokinetic properties. In the present review, after mentioning selected examples of TZP-based compounds with varied biological activities, we will focus on those antivirals that appeared in the literature in the last 10 years. Approaches used for their identification, the hit-to-lead studies, and the emerged structure-activity relationship will be described. A mention of the synthetic methodologies to prepare TZP nuclei will also be given. In addition, their mechanism of action, the binding mode within the biological target, and pharmacokinetic properties will be analyzed, highlighting the strengths and weaknesses of compounds based on the TZP scaffold, which is increasingly used in medicinal chemistry.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | | | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
13
|
Gein VL, Prudnikova AN, Kurbatova AA, Dmitriev MV. Synthesis of (E)-5-Arylvinyl-7-methyltetrazolo[1,5-a]pyrimidines. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
A three-component reaction of 5-aminotetrazole with aromatic aldehydes and
acetylacetone under solvent- and catalyst-free conditions at a temperature of
150–160°С proceeds with the formation of (E)-5-arylvinyl-7-methyltetrazolo[1,5-a]pyrimidines. 5,7-Dimethyltetrazolo[1,5-a]pyrimidine is formed as a side-product of the reaction.
Collapse
|
14
|
Access to azolopyrimidine-6,7-diamines as a valuable “building-blocks” to develop new fused heteroaromatic systems. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
|
16
|
Abu-Hashem AA, El-Shazly M. Synthesis and Antimicrobial Evaluation of Novel Triazole, Tetrazole, and Spiropyrimidine-Thiadiazole Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1598448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ameen A. Abu-Hashem
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Biology Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
17
|
Zhang Q, Huang J, Chow HY, Wang J, Zhang Y, Fung YME, Ren Q, Li X. Development of DHQ-based chemical biology probe to profile cellular targets for HBV. Bioorg Med Chem Lett 2020; 30:127615. [PMID: 33080351 DOI: 10.1016/j.bmcl.2020.127615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022]
Abstract
Chronic hepatitis B virus (HBV) infection has been a serious public health burden worldwide. Current anti-HBV therapies could not eliminate HBV ultimately. Considering the characteristics of HBV, it is impossible to be entirely cured based on current therapies. Therefore, it is urgently needed to develop novel therapeutic agents with new mechanism of action. The dihydroquinolizinone (DHQ) derivatives exhibited potent anti-HBV activity by decreasing HBV DNA and HBsAg level in an obscure mechanism of action. In this study, we have optimized the DHQ scaffold, developed the photoaffinity probe, with which to identify potential binding proteins.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR
| | - Jianzhou Huang
- The State Key Laboratory of Anti-Infection Drug Development, HEC Pharma Group, Dong Guan 523871, China
| | - Hoi Yee Chow
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR
| | - Jinzheng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infection Drug Development, HEC Pharma Group, Dong Guan 523871, China
| | - Yi Man Eva Fung
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR
| | - Qingyun Ren
- The State Key Laboratory of Anti-Infection Drug Development, HEC Pharma Group, Dong Guan 523871, China.
| | - Xuechen Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
18
|
Gein VL, Prudnikova AN, Kurbatova AA, Dmitriev MV. Synthesis of (7-Aryl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidin-6-yl)(phenyl)methanones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Hu Z, Hu J, Ren F, Xu H, Tan M, Wang Q, Ren J. Nobiletin, a novel inhibitor, inhibits HBsAg production and hepatitis B virus replication. Biochem Biophys Res Commun 2020; 523:802-808. [PMID: 31954513 DOI: 10.1016/j.bbrc.2019.12.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a serious problem due to its extensive worldwide distribution and poor prognosis including cirrhosis and/or hepatocellular carcinoma. The hepatitis B surface antigen(HBsAg) is a vital serum marker in HBV infection and a major obstacle for effective and subsequently virus clearance. However, Current anti-HBV drugs, such as nucleos(t)ide analogs (NA) and PegIFN, do not meet ideal result of sustained HBsAg loss (defined as functional cure). Therefore, there is an urgent need to identify a new compound targeting HBsAg. In this study, nobiletin was screened out from 1500 compounds due to its low cytotoxicity and high antiviral activity. The effect of nobiletin on HBV was determined in HepG2.2.15 and HepG2-NTCP cells. Furthermore, the antiviral capability of nobiletin was also verified in vivo. Unlike entecavir (ETV) therapy, which reduced HBV DNA but do not lead to an effective reduction in HBsAg, nobiletin significantly reduced the level of HBsAg as well as lowered HBV DNA in vivo and in vitro. Meanwhile, combination of nobiletin and ETV led to broad reductions of both HBV DNA and HBsAg level. This study may shed light on the development of a novel class of anti-HBV agents.
Collapse
Affiliation(s)
- Zhongwen Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jieli Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongyan Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Wang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Sun S, Li Y, Liu B, Zhang B, Han S, Li X. Establishment of stable cell lines in which the HBV genome replicates episomally for evaluation of antivirals. Arch Med Sci 2020; 16:407-413. [PMID: 32190152 PMCID: PMC7069427 DOI: 10.5114/aoms.2018.79712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Due to the increasing resistance to nucleot(s)ide analogs in patients with chronic hepatitis B, development of new antiviral drugs to eradicate hepatitis B virus is still urgently needed. MATERIAL AND METHODS To date, most studies on evaluating anti-HBV drugs have been performed using cell lines where the HBV genomic DNA is chromosomally integrated, e.g. Hep2.2.15 in HBV-infected livers of the viral episomal genome replicates in the nucleus and covalently closed circular DNA (cccDNA) serves as a transcriptional template. Another option involves the use of HBV-infected cells of HepaRG or NTCP-overexpressing cells. However, the development of the infection system is expensive and laborious, and its HBV expression level remained low. RESULTS Compared to HuH7 cells, the established stable cell lines based on episomal-type pEB-Multi vectors can been expressed HBV wild-type by qRT-PCR and immunoblotting (p < 0.05). These two vectors are also sensitive to Entecavir and against nucleoside analog Lamivudine in mutants cellines. CONCLUSIONS It is worth demonstrating how useful the established cell system is for evaluating antiviral agents and their mechanisms of action.
Collapse
Affiliation(s)
- Suofeng Sun
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yuan Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Bowei Liu
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Bingyong Zhang
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Gorji S, Ghorbani-Vaghei R, Toghraei-Semiromi Z, Alavinia S. Synthesis of 5,8-Diaryl-5,7,8,9-Tetrahydropyrimido[5,4-e]Tetrazolo[1,5-a]Pyrimidin-6(4H)-One Derivatives Catalyzed by MNPs@SiO2-Pr-AP as a New Efficient Reusable Nanomagnetic Catalyst. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1701050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Samareh Gorji
- Faculty of Chemistry, Department of Organic Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ramin Ghorbani-Vaghei
- Faculty of Chemistry, Department of Organic Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Zahra Toghraei-Semiromi
- Faculty of Chemistry, Department of Organic Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Sedigheh Alavinia
- Faculty of Chemistry, Department of Organic Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
22
|
Yu Y, Yu Q, Zhang X. Allosteric inhibition of HIF-2α as a novel therapy for clear cell renal cell carcinoma. Drug Discov Today 2019; 24:2332-2340. [DOI: 10.1016/j.drudis.2019.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023]
|
23
|
Tkachenko IG, Komykhov SA, Musatov VI, Shishkina SV, Dyakonenko VV, Shvets VN, Diachkov MV, Chebanov VA, Desenko SM. In water multicomponent synthesis of low-molecular-mass 4,7-dihydrotetrazolo[1,5- a]pyrimidines. Beilstein J Org Chem 2019; 15:2390-2397. [PMID: 31666873 PMCID: PMC6808202 DOI: 10.3762/bjoc.15.231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/13/2019] [Indexed: 11/23/2022] Open
Abstract
The three-component reaction of 5-aminotetrazole with aliphatic aldehydes (formaldehyde, acetaldehyde) and acetoacetic ester derivatives in water under microwave irradiation leads to the selective formation of 4,7-dihydrotetrazolo[1,5-a]pyrimidine derivatives. Under similar conditions using 4,4,4-trifluoroacetoacetic ester 5-hydroxy-4,5,6,7-tetrahydrotetrazolo[1,5-a]pyrimidines are obtained. The analogous reaction with acetylacetone requires scandium(III) triflate as catalyst. The antioxidant activity of selected compounds was assayed with 1,1-diphenyl-2-picrylhydrazyl.
Collapse
Affiliation(s)
- Irina G Tkachenko
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine.,Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine.,Kharkiv Scientific Research Forensic Center, Ministry of Internal Affairs of Ukraine, 32 Kovtuna Str., Kharkiv 61036, Ukraine
| | - Sergey A Komykhov
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine.,Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine
| | - Vladimir I Musatov
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine
| | - Svitlana V Shishkina
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine.,Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine
| | - Viktoriya V Dyakonenko
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine
| | - Vladimir N Shvets
- Zaporizhzhia State Medical University, Mayakovsky Ave 26, Zaporizhzhia 69035, Ukraine
| | | | - Valentyn A Chebanov
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine.,Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine
| | - Sergey M Desenko
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine.,Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine
| |
Collapse
|
24
|
Ren F, Yang X, Hu ZW, Wong VKW, Xu HY, Ren JH, Zhong S, Jia XJ, Jiang H, Hu JL, Cai XF, Zhang WL, Yao FL, Yu HB, Cheng ST, Zhou HZ, Huang AL, Law BYK, Chen J. Niacin analogue, 6-Aminonicotinamide, a novel inhibitor of hepatitis B virus replication and HBsAg production. EBioMedicine 2019; 49:232-246. [PMID: 31680002 PMCID: PMC6945246 DOI: 10.1016/j.ebiom.2019.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/28/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Hepatitis B surface antigen (HBsAg) is one of the important clinical indexes for hepatitis B virus (HBV) infection diagnosis and sustained seroconversion of HBsAg is an indicator for functional cure. However, the level of HBsAg could not be reduced by interferons and nucleoside analogs effectively. Therefore, identification of a new drug targeting HBsAg is urgently needed. Methods: In this study, 6-AN was screened out from 1500 compounds due to its low cytotoxicity and high antiviral activity. The effect of 6-AN on HBV was examined in HepAD38, HepG2-NTCP and PHHs cells. In addition, the antivirus effect of 6-AN was also identified in mouse model. Findings: 6-AN treatment resulted in a significant decrease of HBsAg and other viral markers both in vitro and in vivo. Furthermore, we found that 6-AN inhibited the activities of HBV SpI, SpII and core promoter by decreasing transcription factor PPARα, subsequently reduced HBV RNAs transcription and HBsAg production. Interpretation: We have identified a novel small molecule to inhibit HBV core DNA, HBV RNAs, HBsAg production, as well as cccDNA to a minor degree both in vitro and in vivo. This study may shed light on the development of a novel class of anti-HBV agent.
Collapse
Affiliation(s)
- Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Xiao Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Zhong-Wen Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room 704a-02, Block H, Macau, China
| | - Hong-Yan Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Shan Zhong
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Xiao-Jiong Jia
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Hui Jiang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Jie-Li Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Xue-Fei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Wen-Lu Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Fang-Long Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Hong-Zhong Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Ai-Long Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room 704a-02, Block H, Macau, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China.
| |
Collapse
|
25
|
Firoj Basha S, Prasad TN, Gudise VB, Kumar VS, Mulakayala N, Anwar S. An efficient, multicomponent, green protocol to access 4, 7-dihydrotetrazolo [1, 5-a] pyrimidines and 5,6,7,9-tetrahydrotetrazolo[5,1-b]quinazolin-8(4H)-ones using PEG-400 under microwave irradiation. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1659973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shaik Firoj Basha
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| | - Tangella Nagendra Prasad
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| | - Veera Babu Gudise
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| | - Vadiga Shanthi Kumar
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| | - Naveen Mulakayala
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| | - Shaik Anwar
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| |
Collapse
|
26
|
Facile synthesis of tetrazolo[1,5-a]pyrimidine with the aid of an effective gallic acid nanomagnetic catalyst. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
5-(4-Bromophenyl)-7-(2,4-dimethoxyphenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine. MOLBANK 2018. [DOI: 10.3390/m1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A derivative of dihydrotetrazolopyrimidine has been successfully synthesized through a cyclocondensation reaction between a chalcone derivative with 5-aminotetrazole. The molecular structure of the title compound was established based on Fourier transform infrared spectra (FTIR), high-resolution mass spectrometry (HRMS), 1D and 2D nuclear magnetic resonance (NMR) spectrum.
Collapse
|
28
|
Han X, Zhou C, Jiang M, Wang Y, Wang J, Cheng Z, Wang M, Liu Y, Liang C, Wang J, Wang Z, Weikert R, Lv W, Xie J, Yu X, Zhou X, Luangsay S, Shen HC, Mayweg AV, Javanbakht H, Yang S. Discovery of RG7834: The First-in-Class Selective and Orally Available Small Molecule Hepatitis B Virus Expression Inhibitor with Novel Mechanism of Action. J Med Chem 2018; 61:10619-10634. [PMID: 30286292 DOI: 10.1021/acs.jmedchem.8b01245] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a serious public health burden, and current therapies cannot achieve satisfactory cure rate. There are high unmet medical needs of novel therapeutic agents with differentiated mechanism of action (MOA) from the current standard of care. RG7834, a compound from the dihydroquinolizinone (DHQ) chemical series, is a first-in-class highly selective and orally bioavailable HBV inhibitor which can reduce both viral antigens and viral DNA with a novel mechanism of action. Here we report the discovery of RG7834 from a phenotypic screening and the structure-activity relationship (SAR) of the DHQ chemical series. RG7834 can selectively inhibit HBV but not other DNA or RNA viruses in a virus panel screening. Both in vitro and in vivo profiles of RG7834 are described herein, and the data support further development of this compound as a chronic HBV therapy.
Collapse
|
29
|
Mohebbi A, Lorestani N, Tahamtan A, Kargar NL, Tabarraei A. An Overview of Hepatitis B Virus Surface Antigen Secretion Inhibitors. Front Microbiol 2018; 9:662. [PMID: 29675010 PMCID: PMC5895781 DOI: 10.3389/fmicb.2018.00662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
Current anti-hepatitis B virus (HBV) regimen do not meet ideal result due to emerging resistance strains, cytotoxicity, and unfavorable adverse effects. In chronic HBV infection, high rates of sub-viral particles (SVPs) bearing HBV surface antigen (HBsAg) is a major obstacle regarding to raise effective immune responses and subsequently virus clearance. Development of potent HBsAg secretion inhibitors would provide a better insight into HBV immunopathogenesis and therapy. Investigating new non-toxic HBsAg secretion inhibitors targeting either viral or cellular factors could restore the immune response to remove virally infected hepatocytes after inhibiting SVPs. In this study, we overview several classes of HBV inhibitors with focus on their limitations and advantages over anti-HBsAg secretion potential.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Student Research Committee, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nazanin Lorestani
- Student Research Committee, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Tahamtan
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Niki L Kargar
- Student Research Committee, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.,Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
30
|
Feng S, Gao L, Han X, Hu T, Hu Y, Liu H, Thomas AW, Yan Z, Yang S, Young JAT, Yun H, Zhu W, Shen HC. Discovery of Small Molecule Therapeutics for Treatment of Chronic HBV Infection. ACS Infect Dis 2018; 4:257-277. [PMID: 29369612 DOI: 10.1021/acsinfecdis.7b00144] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The chronic infection of hepatitis B virus (HBV) inflicts 250 million people worldwide representing a major public health threat. A significant subpopulation of patients eventually develop cirrhosis and hepatocellular carcinoma (HCC). Unfortunately, none of the current standard therapies for chronic hepatitis B (CHB) result in a satisfactory clinical cure rate. Driven by a highly unmet medical need, multiple pharmaceutical companies and research institutions have been engaged in drug discovery and development to improve the CHB functional cure rate, defined by sustainable viral suppression and HBsAg clearance after a finite treatment. This Review summarizes the recent advances in the discovery and development of novel anti-HBV small molecules. It is believed that an improved CHB functional cure rate may be accomplished via the combination of molecules with distinct MoAs. Thus, certain molecules may evolve into key components of a suitable combination therapy leading to superior outcome of clinical efficacy in the future.
Collapse
Affiliation(s)
- Song Feng
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Lu Gao
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Xingchun Han
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Taishan Hu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Yimin Hu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Haixia Liu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Andrew W. Thomas
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Zhipeng Yan
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Song Yang
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - John A. T. Young
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Hongying Yun
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Wei Zhu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Hong C. Shen
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| |
Collapse
|
31
|
Recent progress in potential anti-hepatitis B virus agents: Structural and pharmacological perspectives. Eur J Med Chem 2018; 147:205-217. [PMID: 29438889 DOI: 10.1016/j.ejmech.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
|
32
|
Ogura N, Ogawa K, Watashi K, Ito T, Wakita T. Novel stable HBV producing cell line systems for expression and screening antiviral inhibitor of hepatitis B virus in human hepatoma cell line. Biochem Biophys Res Commun 2018; 498:64-71. [PMID: 29481805 DOI: 10.1016/j.bbrc.2018.02.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is currently a major public health burden. Therefore, there is an urgent need for the development of novel antiviral inhibitors. The stable HBV-producing cell lines of genotype D are widely used to investigate the HBV life cycle and to evaluate antiviral agents. However, stable HBV-producing cell lines of different genotypes do not exist. To construct more convenient and efficient novel cell systems, stable cell lines of genotypes A, B, and C were established using a full-length HBV genome sequence isolated from chronic HBV patients in human hepatoma HepG2 cells. Novel HBV clones were identified and stable HBV-producing cell lines derived from these clones were constructed. HBV replication activities demonstrated time-dependent expression, and the novel cell lines were susceptible to several antiviral inhibitors with no cytotoxicity. Furthermore, infectious viruses were produced from these cell lines. In conclusion, we have established novel stable HBV-producing cell line systems of genotypes A, B, and C. These systems can provide valuable tools for screening antiviral agents and analyzing viral phenotypes in vitro.
Collapse
Affiliation(s)
- Naoki Ogura
- Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, 569-1125, Japan.
| | - Kazuya Ogawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, 569-1125, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| | - Takayoshi Ito
- Digestive Diseases Center, Showa University Koto-Toyosu Hospital, Tokyo, 135-8577, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
33
|
Cui XX, Yang X, Wang HJ, Rong XY, Jing S, Xie YH, Huang DF, Zhao C. Luteolin-7- O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro. Front Microbiol 2017; 8:2425. [PMID: 29270164 PMCID: PMC5723679 DOI: 10.3389/fmicb.2017.02425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) infection is endemic in Asia and chronic hepatitis B (CHB) is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg) loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b) or lamivudine (3TC), the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS) accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy.
Collapse
Affiliation(s)
- Xiao-Xian Cui
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Yang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine and Health Science, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
| | - Xing-Yu Rong
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Sha Jing
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - You-Hua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan-Feng Huang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
| |
Collapse
|
34
|
Scapin E, Salbego PRS, Bender CR, Meyer AR, Pagliari AB, Orlando T, Zimmer GC, Frizzo CP, Bonacorso HG, Zanatta N, Martins MAP. Synthesis, effect of substituents on the regiochemistry and equilibrium studies of tetrazolo[1,5- a]pyrimidine/2-azidopyrimidines. Beilstein J Org Chem 2017; 13:2396-2407. [PMID: 29181120 PMCID: PMC5687014 DOI: 10.3762/bjoc.13.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/05/2017] [Indexed: 12/02/2022] Open
Abstract
An efficient synthesis methodology for a series of tetrazolo[1,5-a]pyrimidines substituted at the 5- and 7-positions from the cyclocondensation reaction [CCC + NCN] was developed. The NCN corresponds to 5-aminotetrazole and CCC to β-enaminone. Two distinct products were observed in accordance with the β-enaminone substituent. When observed in solution, the compounds can be divided into two groups: (a) precursor compounds with R = CF3 or CCl3, which leads to tetrazolo[1,5-a]pyrimidines in high regioselectivity with R at the 7-position of the heterocyclic ring; and (b) precursor compounds with R = aryl or methyl, which leads to a mixture of compounds, tetrazolo[1,5-a] pyrimidines (R in the 5-position of the ring) and 2-azidopyrimidines (R in the 4-position of the ring), which was attributed to an equilibrium of azide–tetrazole. In the solid state, all compounds were found as 2-azidopyrimidines. The regiochemistry of the reaction and the stability of the products are discussed on the basis of the data obtained by density functional theory (DFT) for energetic and molecular orbital (MO) calculations.
Collapse
Affiliation(s)
- Elisandra Scapin
- Laboratório de Química, Universidade Federal do Tocantins, Palmas, TO 77001-090, Brazil
| | - Paulo R S Salbego
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Caroline R Bender
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Alexandre R Meyer
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Anderson B Pagliari
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Tainára Orlando
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Geórgia C Zimmer
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Clarissa P Frizzo
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
35
|
Wilson EMP, Tang L, Kottilil S. Eradication Strategies for Chronic Hepatitis B Infection. Clin Infect Dis 2017; 62 Suppl 4:S318-25. [PMID: 27190322 DOI: 10.1093/cid/ciw044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis B infection affects >300 million people worldwide and is a leading cause of liver failure and cancer. Current approaches to treatment for chronic hepatitis B involve suppression of hepatitis B virus (HBV) DNA with the use of nucleoside analogues. Chronic suppressive therapy rarely results in a "functional cure" or absence of detectable HBV DNA in plasma and loss of detectable hepatitis B surface antigen after cessation of therapy. The major obstacles to achieving a functional cure are the presence of covalently closed circular DNA and ineffective/exhaustive immune system. This review focuses on novel approaches to target viral life cycle and host immunity to achieve a functional cure.
Collapse
Affiliation(s)
- Eleanor M P Wilson
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore
| | - Lydia Tang
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
36
|
Ghorbani-Vaghei R, Shahriari A, Mahmoodi J, Maghbooli Y. Effective DABCO-catalyzed synthesis of new tetrazolo[1,5-a]pyrimidine analogs. Mol Divers 2017; 21:865-873. [PMID: 28681233 DOI: 10.1007/s11030-017-9760-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/29/2017] [Indexed: 11/29/2022]
Abstract
In this study, an efficient multicomponent one-pot route is described for the DABCO-catalyzed synthesis of tetrazolo[1,5-a]pyrimidines. This synthesis strategy is based on the reaction of malononitrile and aldehydes with 5-aminotetrazole monohydrate using 1,4-diazabicyclo[2.2.2]octane (DABCO) in i-PrOH under reflux conditions. This protocol is a simple, green, and low-cost technique to prepare new compounds with potential medicinal properties.
Collapse
Affiliation(s)
- Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65174, Iran.
| | - Azadeh Shahriari
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65174, Iran
| | - Jafar Mahmoodi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65174, Iran
| | - Yaser Maghbooli
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65174, Iran
| |
Collapse
|
37
|
Peters MG, Locarnini S. New Direct-Acting Antiviral Agents and Immunomodulators for Hepatitis B Virus Infection. Gastroenterol Hepatol (N Y) 2017; 13:348-356. [PMID: 28690451 PMCID: PMC5495044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chronic hepatitis B (CHB) affects over 350 million individuals worldwide and is the most common cause of liver cancer. In the United States, CHB affects at least 2 to 3 million individuals, and current therapies can control the disease but not cure it. There are over 30 new molecules being studied in CHB in preclinical to phase 2 studies, targeting specific parts of the hepatitis B virus (HBV) life cycle and the host immune response. When discussing new therapies for CHB, it is critical to understand both the various phases of CHB and the life cycle of HBV. This article will discuss both of these issues, as well as mechanisms of action of potential therapies and possible ways to combine such therapies in the various phases of CHB.
Collapse
Affiliation(s)
- Marion G Peters
- Dr Peters is a professor of medicine and chief of hepatology research in the Department of Medicine at the University of California in San Francisco, California. Dr Locarnini is a professor of microbiology and immunology at the University of Melbourne and is director of the WHO Regional Reference Laboratory for Hepatitis B within the Victorian Infectious Diseases Reference Laboratory at the Doherty Institute in Melbourne, Australia
| | - Stephen Locarnini
- Dr Peters is a professor of medicine and chief of hepatology research in the Department of Medicine at the University of California in San Francisco, California. Dr Locarnini is a professor of microbiology and immunology at the University of Melbourne and is director of the WHO Regional Reference Laboratory for Hepatitis B within the Victorian Infectious Diseases Reference Laboratory at the Doherty Institute in Melbourne, Australia
| |
Collapse
|
38
|
Deng Y, Chuai X, Chen P, Chen H, Wang W, Ruan L, Li W, Tan W. Recombinant vaccinia vector-based vaccine (Tiantan) boosting a novel HBV subunit vaccine induced more robust and lasting immunity in rhesus macaques. Vaccine 2017; 35:3347-3353. [PMID: 28487055 DOI: 10.1016/j.vaccine.2017.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 02/08/2023]
Abstract
This study explored several prime-boost strategies in rhesus macaques using various novel hepatitis B virus (HBV) vaccines that showed promise as prophylactic and therapeutic approaches in our previous study using in a mouse model. The tested vaccines included an HBV particle subunit (HBSS1) vaccine and the recombinant vaccinia (RVJSS1) or adenoviral (rAdSS1) vector-based vaccines containing S (1-223aa) and PreS1 (21-47aa). The strength and maintenance of humoral activity (IgG and neutralizing antibodies) and cellular immunity (interferon-γ production assessed by IFN-γ enzyme-linked immunosorbent spot (ELISpot) assay) were investigated in a longitudinal study following various vaccination protocols until 79weeks post-vaccination. We found that HBSS1/RVJSS1 heterologous prime-boost elicits similar strong humoral immunity but more robust and lasting cellular immunity (CMI) than HBSS1/HBSS1 homologous vaccination in rhesus macaques. Furthermore, HBSS1/RVJSS1/RVJSS1 induced more robust and lasting CMI in macaques than did HBSS1/HBSS1/rAdSS1 vaccination. Therefore, HBSS1/RVJSS1/RVJSS1 is most promising candidates for protecting humans against HBV infection, especially for therapeutic application.
Collapse
Affiliation(s)
- Yao Deng
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Xia Chuai
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, Heibei Province, People's Republic of China
| | - Pan Chen
- National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Hong Chen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Wen Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Li Ruan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Wenjie Tan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China.
| |
Collapse
|
39
|
Pei Y, Wang C, Yan SF, Liu G. Past, Current, and Future Developments of Therapeutic Agents for Treatment of Chronic Hepatitis B Virus Infection. J Med Chem 2017; 60:6461-6479. [PMID: 28383274 DOI: 10.1021/acs.jmedchem.6b01442] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For decades, treatment of hepatitis B virus (HBV) infection has been relying on interferon (IFN)-based therapies and nucleoside/nucleotide analogues (NAs) that selectively target the viral polymerase reverse transcriptase (RT) domain and thereby disrupt HBV viral DNA synthesis. We have summarized here the key steps in the HBV viral life cycle, which could potentially be targeted by novel anti-HBV therapeutics. A wide range of next-generation direct antiviral agents (DAAs) with distinct mechanisms of actions are discussed, including entry inhibitors, transcription inhibitors, nucleoside/nucleotide analogues, inhibitors of viral ribonuclease H (RNase H), modulators of viral capsid assembly, inhibitors of HBV surface antigen (HBsAg) secretion, RNA interference (RNAi) gene silencers, antisense oligonucleotides (ASOs), and natural products. Compounds that exert their antiviral activities mainly through host factors and immunomodulation, such as host targeting agents (HTAs), programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors, and Toll-like receptor (TLR) agonists, are also discussed. In this Perspective, we hope to provide an overview, albeit by no means being comprehensive, for the recent development of novel therapeutic agents for the treatment of chronic HBV infection, which not only are able to sustainably suppress viral DNA but also aim to achieve functional cure warranted by HBsAg loss and ultimately lead to virus eradication and cure of hepatitis B.
Collapse
Affiliation(s)
- Yameng Pei
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| | - Chunting Wang
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| | - S Frank Yan
- Molecular Design and Chemical Biology, Roche Pharma Research and Early Development, Roche Innovation Center Shanghai , Shanghai 201203, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| |
Collapse
|
40
|
Chuai X, Chen P, Chen H, Wang W, Deng Y, Ruan L, Li W, Tan W. Protective efficacy and hepatitis B virus clearance in mice enhanced by cell-mediated immunity with novel prime-boost regimens. J Viral Hepat 2017; 24:337-345. [PMID: 27885748 DOI: 10.1111/jvh.12649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022]
Abstract
In this study, anti-hepatitis B virus (HBV) immunity was evaluated in mice using several regimens of the HBV recombinant protein vaccine HBSS1 that expressed in CHO cells containing S (1-223 aa) and preS1 (21-47 aa) and recombinant adenovirus rAdSS1 vaccine. Further, the protective efficacy of these vaccine regimens was studied in a mouse model. High titres of antigen-specific antibodies and neutralizing activity were elicited in mice after vaccination. However, robust multi-antigen (preS1 and S)-specific cell-mediated immunity (CMI) was only detected in mice primed with HBSS1 and boosted with rAdSS1. Moreover, functional T-cell responses with high levels of cytokines and antigen-specific cytotoxic T-cell responses (CD107a+ CD8+ ) were also detected in the mice. Rapid clearance of hepatitis B surface antigen and HBV DNA in blood and significantly decreased hepatitis B envelope antigen levels were observed in mice immunized with the heterogeneous prime-boost vaccine after hepatitis B virus challenge by hydrodynamic injection (HI) of pCS-HBV1.3. The clearance of HBV correlated well with antigen-specific CMI (Th1 and CTL responses) and cytokine profiles (IFN-γ, TNF-α, IL-2) elicited by vaccination. Taken together, our results might contribute to the development of new human HBV vaccines and a better understanding of the mechanisms underlying immune protection and clearance of hepatitis B virus infection.
Collapse
Affiliation(s)
- X Chuai
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Heibei Province, China
| | - P Chen
- National Institute of Biological Sciences, Beijing, China
| | - H Chen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - W Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Y Deng
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - L Ruan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - W Li
- National Institute of Biological Sciences, Beijing, China
| | - W Tan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
41
|
Abstract
We have developed a miniature human liver (liver-sinusoid-on-a-chip) model using a dual microchannel separated by a porous membrane. Primary human hepatocytes and immortalized bovine aortic endothelial cells were co-cultured on opposite sides of a microporous membrane in a dual microchannel with continuous perfusion. Primary human hepatocytes in this system retained their polygonal morphology for up to 26 days, while hepatocytes cultured in the absence of bovine aortic endothelial cells lost their morphology within a week. In order to demonstrate the utility of our human-liver-sinusoid-on-a-chip, human hepatocytes in this system were directly infected by Hepatitis B Virus (HBV). Expression of the HBV core antigen was detected in human hepatocytes in the microchannel system. HBV replication, measured by the presence of cell-secreted HBV DNA, was also detected. Importantly, HBV is hepatotropic, and expression of HBV RNA transcripts is dependent upon expression of hepatocyte-specific factors. Moreover, HBV infection requires expression of the human-hepatocyte-specific HBV cell surface receptor. Therefore, the ability to detect HBV replication and Hepatitis B core Antigen (HBcAg) expression in our microfluidic platform confirmed that hepatocyte differentiation and functions were retained throughout the time course of our studies. We believe that our human-liver-sinusoid-on-a-chip could have many applications in liver-related research and drug development.
Collapse
|
42
|
Discovery of hepatitis B virus capsid assembly inhibitors leading to a heteroaryldihydropyrimidine based clinical candidate (GLS4). Bioorg Med Chem 2016; 25:1042-1056. [PMID: 28082068 DOI: 10.1016/j.bmc.2016.12.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/10/2016] [Indexed: 11/20/2022]
Abstract
Inhibition of hepatitis B virus (HBV) capsid assembly is a novel strategy for the development of chronic hepatitis B (CHB) therapeutics. Herein we described our lead optimization studies including the synthesis, molecular docking studies and structure-activity relationship (SAR) studies of a series of novel heteroaryldihydropyrimidine (HAP) inhibitors of HBV capsid assembly inhibitors, and the discovery of a potent inhibitor of HBV capsid assembly of GLS4 (ethyl 4-[2-bromo-4-fluorophenyl]-6-[morpholino-methyl]-2-[2-thiazolyl]-1,4-dihydro-pyrimidine-5-carboxylate) which is now in clinical phase 2. GLS4 demonstrated potent inhibitory activities in HBV HepG2.2.15 cell assay with an EC50 value of 1nM, and it also exhibited high potency against various drug-resistant HBV viral strains with EC50 values in the range of 10-20nM, more potent than the typical HBV polymerase inhibitors such as lamivudine, telbivudine, and entecavir. Pharmacokinetic profiles of GLS4 were favorable and safety evaluation including acute toxicity and repeated toxicity study indicated that GLS4 was safe enough to support clinical experiments in human.
Collapse
|
43
|
Ward H, Tang L, Poonia B, Kottilil S. Treatment of hepatitis B virus: an update. Future Microbiol 2016; 11:1581-1597. [PMID: 27855500 DOI: 10.2217/fmb-2016-0128] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus infection is a global health concern as it affects over 240 million people worldwide and an estimated 686,000 people die annually as a result of complications of the disease. With the development of newer antiviral drugs, viral suppression of HBV is achievable, however elimination of HBV from infected individuals (functional cure) remains an issue. Due to persistence of HBV DNA (cccDNA) in infected cells, chronically infected patients who discontinue therapy prior to HBsAg loss or seroconversion are likely to relapse. Several novel therapeutic strategies are being researched and studied in clinical trials. Here we review these novel strategies to achieve sustained cure or elimination of HBV. These strategies include the targeting of the host or viral factors required for viral persistence as well as therapeutic vaccines.
Collapse
Affiliation(s)
- Haley Ward
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lydia Tang
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bhawna Poonia
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shyam Kottilil
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
44
|
Tang L, Zhao Q, Wu S, Cheng J, Chang J, Guo JT. The current status and future directions of hepatitis B antiviral drug discovery. Expert Opin Drug Discov 2016; 12:5-15. [PMID: 27797587 DOI: 10.1080/17460441.2017.1255195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The current standard care of chronic hepatitis B fails to induce a durable off-drug control of hepatitis B virus (HBV) replication in the majority of treated patients. The primary reasons are its inability to eliminate the covalently closed circular (ccc) DNA, the nuclear form of HBV genome, and restoration of the dysfunctional host antiviral immune response against the virus. Accordingly, discovery and development of therapeutics to completely stop HBV replication, eliminate or functionally inactivate cccDNA as well as activate a functional antiviral immune response against HBV are the primary efforts for finding a cure for chronic hepatitis B. Area covered: Herein, the authors highlight the current efforts of HBV drug discovery and offer their opinions for the future directions of this research. Expert opinion: The authors believe that through a consecutive or overlapping three-stage antiviral and immunotherapy program to: (i) completely stop HBV replication and cccDNA amplification; (ii) reduce viral antigen load and induce HBV surface antigen (HBsAg) seroclearance through eradication or inactivation of cccDNA and RNA interference-mediated degradation of viral mRNA and (iii) activate a functional antiviral immune response against HBV through therapeutic immunization or immunotherapy, a functional cure of chronic HBV infection can be achieved in the majority of chronic HBV carriers.
Collapse
Affiliation(s)
- Liudi Tang
- a Microbiology and Immunology graduate program , Drexel University College of medicine , Philadelphia , PA , USA
| | - Qiong Zhao
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Shuo Wu
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Junjun Cheng
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Jinhong Chang
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Ju-Tao Guo
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| |
Collapse
|
45
|
Mohebbi A, Mohammadi S, Memarian A. Prediction of HBF-0259 interactions with hepatitis B Virus receptors and surface antigen secretory factors. Virusdisease 2016; 27:234-241. [PMID: 28466034 PMCID: PMC5394709 DOI: 10.1007/s13337-016-0333-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is an etiological agent of viral hepatitis, which may lead to cirrhosis, and hepatocellular carcinoma. Current treatment strategies have not shown promising effect to date but various complications such as, drug toxicity-resistance have been reported. Study on newly discovered compounds, with minimal side effects, as specific HBV inhibitors is a fundamental subject introducing new biologic drugs. Here, we aimed to, by prediction, estimate interactions of HBF-0259 as a non-toxic anti-HBV compound on inhibiting the HBV through either interaction with the viral entry or HBsAg secreting factors using In Silico procedure. Molecular docking was performed by Hex 8.0.0 software to predict the interaction energy (Etot) between HBF-0259 and known cellular factors involved in HBV entry and HBsAg secreting factors. Hex 8.0.0 also employed to create protein-protein complexes. These interactions were then used to analyze the binding site of HBF-0259 within the assumed receptors by MGLTools software. Finally, the amino acid sequences involved in this interaction were aligned for any conservancy. Here, we showed that HBF-0259 Etot with CypA (-545.41 kcal/mol) and SCCA1 (499.68 kcal/mol), involved in HBsAg secretion and HBV integration, respectively, was higher than other interactions. Furthermore, HBF-0259 predicted interaction energy was even higher than those of CypA inhibitors. In addition, we claim that preS1 and/or preS2 regions within HBsAg are not suitable targets for HBF-0259. HBF-0259 has higher interaction energy with CypA and SCCA1, even more than other known receptors, co-receptors, viral ligands, and secretory factors. HBF-0259 could be introduced as potent anti-viral compound in which CypA and or SCCA1, as previously shown, are involved.
Collapse
Affiliation(s)
- Alireza Mohebbi
- School of Medicine, Golstan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Department of Molecular Medicine, Faculty of Advanced Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Stem Cell Research Center, Deputy of Research and Technology, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
46
|
Recent advance of the hepatitis B virus inhibitors: a medicinal chemistry overview. Future Med Chem 2016; 7:587-607. [PMID: 25921400 DOI: 10.4155/fmc.15.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B Virus (HBV) is one of the most prevalent viral infections of human worldwide. The therapies are limited in the clinical context because of negative side effects of interferons and the development of viral resistance to the nucleoside/nucleotide inhibitors. In this review, we summarize the recent advances in design and development of potent anti-HBV inhibitors from natural sources and synthetic compounds, targeting different steps in the life cycle of HBV. We attempt to emphasize the major structural modifications, mechanisms of action and computer-aided docking analysis of novel potent inhibitors that need to be addressed in the future to design potent anti-HBV molecules.
Collapse
|
47
|
Brahmania M, Feld J, Arif A, Janssen HLA. New therapeutic agents for chronic hepatitis B. THE LANCET. INFECTIOUS DISEASES 2016; 16:e10-21. [PMID: 26795693 DOI: 10.1016/s1473-3099(15)00436-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/13/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
The treatment goal for chronic hepatitis B is true eradication of the hepatitis B virus, but this is rarely achieved with first-line treatment regimens because of an inability to disrupt covalently closed circular DNA and an inadequate host immune response. Therefore, new antiviral agents are needed to target various stages of the hepatitis B virus lifecycle and modulation of the immune system. This Review provides a summary of available regimens with their strengths and limitations, and highlights future therapeutic strategies to target the virus and host immune response. These new agents can hopefully lead to a finite duration of treatment, and provide a functional and durable cure for chronic hepatitis B infection.
Collapse
Affiliation(s)
- Mayur Brahmania
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jordan Feld
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Ambreen Arif
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Department of Gastroenterology and Hepatology, Erasmus Medical Center University Hospital, Rotterdam, Netherlands.
| |
Collapse
|
48
|
Zhang E, Kosinska A, Lu M, Yan H, Roggendorf M. Current status of immunomodulatory therapy in chronic hepatitis B, fifty years after discovery of the virus: Search for the "magic bullet" to kill cccDNA. Antiviral Res 2015; 123:193-203. [PMID: 26476376 DOI: 10.1016/j.antiviral.2015.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B (CHB) is currently treated with IFN-α and nucleos(t)ide analogues, which have many clinical benefits, but there is no ultimate cure. The major problem consists in the persistence of cccDNA in infected hepatocytes. Because no antiviral drug has been evaluated which significantly reduces copies of cccDNA, cytolytic and noncytolytic approaches are needed. Effective virus-specific T- and B-cell responses remain crucial in eliminating cccDNA-carrying hepatocytes and for the long-term control of HBV infection. Reduction of viremia by antiviral drugs provides a window for reconstitution of an HBV-specific immune response. Preclinical studies in mice and woodchucks have shown that immunostimulatory strategies, such as prime-boost vaccination and PD-1 blockade, can boost a weak virus-specific T cell response and lead to effective control of HBV infection. Based on data obtained in our preclinical studies, the combination of antiviral drugs and immunomodulators may control HBV viremia during a patient's drug-off period. In this article, we review current immune-modulatory approaches for the treatment of chronic hepatitis B and the elimination of cccDNA in preclinical models. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis".
Collapse
Affiliation(s)
- Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Anna Kosinska
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Michael Roggendorf
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
49
|
Goryaeva MV, Burgart YV, Ezhikova MA, Kodess MI, Saloutin VI. Reaction of 2-(ethoxymethylidene)-3-oxo carboxylic acid esters with tetrazol-5-amine. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015070179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Scheuermann TH, Stroud D, Sleet CE, Bayeh L, Shokri C, Wang H, Caldwell CG, Longgood J, MacMillan JB, Bruick RK, Gardner KH, Tambar UK. Isoform-Selective and Stereoselective Inhibition of Hypoxia Inducible Factor-2. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00529] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Thomas H. Scheuermann
- Department
of Biophysics, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Daniel Stroud
- Department
of Biochemistry, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Christopher E. Sleet
- Department
of Biochemistry, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Liela Bayeh
- Department
of Biochemistry, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Cameron Shokri
- Department
of Biochemistry, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Hanzhi Wang
- Department
of Biochemistry, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Charles G. Caldwell
- Department
of Biochemistry, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Jamie Longgood
- Department
of Biochemistry, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - John B. MacMillan
- Department
of Biochemistry, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Richard K. Bruick
- Department
of Biochemistry, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Kevin H. Gardner
- Department
of Biophysics, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
- Structural
Biology Initiative, CUNY Advanced Science Research Center, New York, New York 10031, United States
- Department
of Chemistry and Biochemistry, City College of New York, New York, New York 10031, United States
| | - Uttam K. Tambar
- Department
of Biochemistry, University of Texas Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|