1
|
Queffeulou M, Leprohon P, Fernandez-Prada C, Ouellette M, Mejía-Jaramillo AM. CRISPR-Cas9 high-throughput screening to study drug resistance in Leishmania infantum. mBio 2024; 15:e0047724. [PMID: 38864609 PMCID: PMC11253630 DOI: 10.1128/mbio.00477-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
Parasites of the genus Leishmania pose a global health threat with limited treatment options. New drugs are urgently needed, and genomic screens have the potential to accelerate target discovery, mode of action, and resistance mechanisms against these new drugs. We describe here our effort in developing a genome-wide CRISPR-Cas9 screen in Leishmania, an organism lacking a functional nonhomologous end joining system that must rely on microhomology-mediated end joining, single-strand annealing, or homologous recombination for repairing Cas9-induced double-stranded DNA breaks. A new vector for cloning and expressing single guide RNAs (sgRNAs) was designed and proven to be effective in a small pilot project while enriching specific sgRNAs during drug selection. We then developed a whole-genome library of 49,754 sgRNAs, targeting all the genes of Leishmania infantum. This library was transfected in L. infantum expressing Cas9, and these cells were selected for resistance to two antileishmanials, miltefosine and amphotericin B. The sgRNAs the most enriched in the miltefosine screen targeted the miltefosine transporter gene, but sgRNAs targeting genes coding for a RING-variant protein and a transmembrane protein were also enriched. The sgRNAs the most enriched by amphotericin B targeted the sterol 24 C methyltransferase genes and a hypothetical gene. Through gene disruption experiments, we proved that loss of function of these genes was associated with resistance. This study describes the feasibility of carrying out whole-genome CRISPR-Cas9 screens in Leishmania provided that a strong selective pressure is applied. Such a screen can be used for accelerating the development of urgently needed antileishmanial drugs.IMPORTANCELeishmaniasis, a global health threat, lacks adequate treatment options and drug resistance exacerbates the challenge. This study introduces a CRISPR-Cas9 screening approach in Leishmania infantum, unraveling mechanisms of drug resistance at a genome-wide scale. Our screen was applied against two main antileishmanial drugs, and guides were enriched upon drug selection. These guides targeted known and new targets, hence validating the use of this screen against Leishmania. This strategy provides a powerful tool to expedite drug discovery as well as potential therapeutic targets against this neglected tropical disease.
Collapse
Affiliation(s)
- Marine Queffeulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Ana María Mejía-Jaramillo
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
2
|
Tejera-Nevado P, Serrano E, González-Herrero A, Bermejo R, Rodríguez-González A. Unlocking the power of AI models: exploring protein folding prediction through comparative analysis. J Integr Bioinform 2024; 21:jib-2023-0041. [PMID: 38797876 PMCID: PMC11377126 DOI: 10.1515/jib-2023-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Protein structure determination has made progress with the aid of deep learning models, enabling the prediction of protein folding from protein sequences. However, obtaining accurate predictions becomes essential in certain cases where the protein structure remains undescribed. This is particularly challenging when dealing with rare, diverse structures and complex sample preparation. Different metrics assess prediction reliability and offer insights into result strength, providing a comprehensive understanding of protein structure by combining different models. In a previous study, two proteins named ARM58 and ARM56 were investigated. These proteins contain four domains of unknown function and are present in Leishmania spp. ARM refers to an antimony resistance marker. The study's main objective is to assess the accuracy of the model's predictions, thereby providing insights into the complexities and supporting metrics underlying these findings. The analysis also extends to the comparison of predictions obtained from other species and organisms. Notably, one of these proteins shares an ortholog with Trypanosoma cruzi and Trypanosoma brucei, leading further significance to our analysis. This attempt underscored the importance of evaluating the diverse outputs from deep learning models, facilitating comparisons across different organisms and proteins. This becomes particularly pertinent in cases where no previous structural information is available.
Collapse
Affiliation(s)
- Paloma Tejera-Nevado
- ETS Ingenieros Informáticos, 16771 Universidad Politécnica de Madrid , Madrid, Spain
- Centro de Tecnología Biomédica, 16771 Universidad Politécnica de Madrid , Pozuelo de Alarcón, Madrid, Spain
| | - Emilio Serrano
- ETS Ingenieros Informáticos, 16771 Universidad Politécnica de Madrid , Madrid, Spain
| | - Ana González-Herrero
- 54446 Margarita Salas Center for Biological Research (CIB-CSIC), Spanish National Research Council , Madrid, Spain
| | - Rodrigo Bermejo
- 54446 Margarita Salas Center for Biological Research (CIB-CSIC), Spanish National Research Council , Madrid, Spain
| | - Alejandro Rodríguez-González
- ETS Ingenieros Informáticos, 16771 Universidad Politécnica de Madrid , Madrid, Spain
- Centro de Tecnología Biomédica, 16771 Universidad Politécnica de Madrid , Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
3
|
Menezes SA, Tasca T. Extracellular vesicles in parasitic diseases - from pathogenesis to future diagnostic tools. Microbes Infect 2024; 26:105310. [PMID: 38316376 DOI: 10.1016/j.micinf.2024.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Parasitic diseases are still a major public health problem especially among individuals of low socioeconomic status in underdeveloped countries. In recent years it has been demonstrated that parasites can release extracellular vesicles that participate in the host-parasite communication, immune evasion, and in governing processes associated with host infection. Extracellular vesicles are membrane-bound structures released into the extracellular space that can carry several types of biomolecules, including proteins, lipids, nucleic acids, and metabolites, which directly impact the target cells. Extracellular vesicles have attracted wide attention due to their relevance in host-parasite communication and for their potential value in applications such as in the diagnostic biomarker discovery. This review of the literature aimed to join the current knowledge on the role of extracellular vesicles in host-parasite interaction and summarize its molecular content, providing information for the acquisition of new tools that can be used in the diagnosis of parasitic diseases. These findings shed light to the potential of extracellular vesicle cargo derived from protozoan parasites as novel diagnostic tools.
Collapse
Affiliation(s)
- Saulo Almeida Menezes
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| | - Tiana Tasca
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| |
Collapse
|
4
|
Madusanka RK, Karunaweera ND, Silva H, Selvapandiyan A. Antimony resistance and gene expression in Leishmania: spotlight on molecular and proteomic aspects. Parasitology 2024; 151:1-14. [PMID: 38012864 PMCID: PMC10941051 DOI: 10.1017/s0031182023001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania parasites with a spectrum of clinical manifestations, ranging from skin lesions to severe visceral complications. Treatment of this infection has been extremely challenging with the concurrent emergence of drug resistance. The differential gene expression and the discrepancies in protein functions contribute to the appearance of 2 distinct phenotypes: resistant and sensitive, but the current diagnostic tools fail to differentiate between them. The identification of gene expression patterns and molecular mechanisms coupled with antimony (Sb) resistance can be leveraged to prompt diagnosis and select the most effective treatment methods. The present study attempts to use comparative expression of Sb resistance-associated genes in resistant and sensitive Leishmania, to disclose their relative abundance in clinical or in vitro selected isolates to gain an understanding of the molecular mechanisms of Sb response/resistance. Data suggest that the analysis of resistance gene expression would verify the Sb resistance or susceptibility only to a certain extent; however, none of the individual expression patterns of the studied genes was diagnostic as a biomarker of Sb response of Leishmania. The findings highlighted will be useful in bridging the knowledge gap and discovering innovative diagnostic tools and novel therapeutic targets.
Collapse
Affiliation(s)
- Rajamanthrilage Kasun Madusanka
- Department of Parasitology, Faculty of Medicine, University of Colombo, No. 25, Kynsey Road, Colombo 8, Sri Lanka
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, No. 25, Kynsey Road, Colombo 8, Sri Lanka
| | - Hermali Silva
- Department of Parasitology, Faculty of Medicine, University of Colombo, No. 25, Kynsey Road, Colombo 8, Sri Lanka
| | - Angamuthu Selvapandiyan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
5
|
Kamran M, Bhattacharjee R, Das S, Mukherjee S, Ali N. The paradigm of intracellular parasite survival and drug resistance in leishmanial parasite through genome plasticity and epigenetics: Perception and future perspective. Front Cell Infect Microbiol 2023; 13:1001973. [PMID: 36814446 PMCID: PMC9939536 DOI: 10.3389/fcimb.2023.1001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Leishmania is an intracellular, zoonotic, kinetoplastid eukaryote with more than 1.2 million cases all over the world. The leishmanial chromosomes are divided into polymorphic chromosomal ends, conserved central domains, and antigen-encoding genes found in telomere-proximal regions. The genome flexibility of chromosomal ends of the leishmanial parasite is known to cause drug resistance and intracellular survival through the evasion of host defense mechanisms. Therefore, in this review, we discuss the plasticity of Leishmania genome organization which is the primary cause of drug resistance and parasite survival. Moreover, we have not only elucidated the causes of such genome plasticity which includes aneuploidy, epigenetic factors, copy number variation (CNV), and post-translation modification (PTM) but also highlighted their impact on drug resistance and parasite survival.
Collapse
Affiliation(s)
| | | | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sohitri Mukherjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | |
Collapse
|
6
|
Salari S, Bamorovat M, Sharifi I, Almani PGN. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal 2022; 36:e24599. [PMID: 35808933 PMCID: PMC9396204 DOI: 10.1002/jcla.24599] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pentavalent antimonials (Sb(V)) such as meglumine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®) are used as first-line treatments for leishmaniasis, either alone or in combination with second-line drugs such as amphotericin B (Amp B), miltefosine (MIL), methotrexate (MTX), or cryotherapy. Therapeutic aspects of these drugs are now challenged because of clinical resistance worldwide. METHODS We reviewedthe recent original studies were assessed by searching in electronic databases such as Scopus, Pubmed, Embase, and Web of Science. RESULTS Studies on molecular biomarkers involved in drug resistance are essential for monitoring the disease. We reviewed genes and mechanisms of resistance to leishmaniasis, and the geographical distribution of these biomarkers in each country has also been thoroughly investigated. CONCLUSION Due to the emergence of resistant genes mainly in anthroponotic Leishmania species such as L. donovani and L. tropica, as the causative agents of ACL and AVL, respectively, selection of an appropriate treatment modality is essential. Physicians should be aware of the presence of such resistance for the selection of proper treatment modalities in endemic countries.
Collapse
Affiliation(s)
- Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | - Iraj Sharifi
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | | |
Collapse
|
7
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
8
|
Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nat Commun 2019; 10:5627. [PMID: 31819054 PMCID: PMC6901541 DOI: 10.1038/s41467-019-13344-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Current genome-wide screens allow system-wide study of drug resistance but detecting small nucleotide variants (SNVs) is challenging. Here, we use chemical mutagenesis, drug selection and next generation sequencing to characterize miltefosine and paromomycin resistant clones of the parasite Leishmania. We highlight several genes involved in drug resistance by sequencing the genomes of 41 resistant clones and by concentrating on recurrent SNVs. We associate genes linked to lipid metabolism or to ribosome/translation functions with miltefosine or paromomycin resistance, respectively. We prove by allelic replacement and CRISPR-Cas9 gene-editing that the essential protein kinase CDPK1 is crucial for paromomycin resistance. We have linked CDPK1 in translation by functional interactome analysis, and provide evidence that CDPK1 contributes to antimonial resistance in the parasite. This screen is powerful in exploring networks of drug resistance in an organism with diploid to mosaic aneuploid genome, hence widening the scope of its applicability. Here, Bhattacharya et al. chemically mutagenize Leishmania and identify genes associated with resistance to miltefosine and paromomycin by next generation sequencing. The study shows that a protein kinase (CDPK1) can mediate resistance to paromomycin by affecting translation.
Collapse
|
9
|
Borsari C, Jiménez-Antón MD, Eick J, Bifeld E, Torrado JJ, Olías-Molero AI, Corral MJ, Santarem N, Baptista C, Severi L, Gul S, Wolf M, Kuzikov M, Ellinger B, Reinshagen J, Witt G, Linciano P, Tait A, Costantino L, Luciani R, Tejera Nevado P, Zander-Dinse D, Franco CH, Ferrari S, Moraes CB, Cordeiro-da-Silva A, Ponterini G, Clos J, Alunda JM, Costi MP. Discovery of a benzothiophene-flavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics. Eur J Med Chem 2019; 183:111676. [DOI: 10.1016/j.ejmech.2019.111676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 01/24/2023]
|
10
|
Bhattacharya A, Sharma M, Pakkinathan C, Rosen BP, Leprohon P, Ouellette M. Genomewide Analysis of Mode of Action of the S-Adenosylmethionine Analogue Sinefungin in Leishmania infantum. mSystems 2019; 4:e00416-19. [PMID: 31615876 PMCID: PMC6794121 DOI: 10.1128/msystems.00416-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
To further our understanding of one-carbon metabolism in the protozoan parasite Leishmania, we conducted genomic screens to study how the parasite responded to sinefungin (SNF) selection. SNF is a structural analogue of S-adenosylmethionine (AdoMet), a key methyl group donor to a number of biomolecules. One screen consisted of sequencing SNF-resistant mutants generated by stepwise selection with gradually increasing drug concentrations. These studies demonstrated deletion of the AdoMet transporter (AdoMetT1) by intergenic recombination as a crucial loss-of-function marker for SNF resistance. The second screen consisted of Cos-seq, a gain-of-function cosmid-based genomewide functional screen with increasing SNF concentration coupled to next-generation sequencing. Cosmids enriched in that screen and sequenced led to the identification of (i) the AdoMet synthetase (METK) as the major SNF target, (ii) an mRNA [(guanine-N7)-methyltransferase (CMT1)], (iii) a leucine carboxyl methyltransferase (LCMT), (iv) two tryparedoxin genes, and (v) two protein phosphatase regulatory genes. Further functional exploration indicated that LCMT interacts with one phosphatase catalytic subunit (PP2AC) and that mutation of the C-terminal leucine residue of PP2AC affects sinefungin susceptibility. These holistic screens led to the identification of transporters, biosynthetic genes, RNA and protein methyltransferases, as well as phosphatases linked to AdoMet-mediated functions in Leishmania IMPORTANCE The two main cellular metabolic one-carbon donors are reduced folates and S-adenosylmethionine, whose biosynthetic pathways have proven highly effective in chemotherapeutic interventions in various cell types. Sinefungin, a nucleoside analogue of S-adenosylmethionine, was shown to have potent activity against the protozoan parasite Leishmania Here, we studied resistance to sinefungin using whole-genome approaches as a way to further our understanding of the role of S-adenosylmethionine in this parasite and to reveal novel potential drug targets. These approaches allowed the characterization of novel features related to S-adenosylmethionine function in Leishmania which could further help in the development of sinefungin-like compounds against this pathogenic parasite.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| | - Mansi Sharma
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| | - Charles Pakkinathan
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Philippe Leprohon
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| | - Marc Ouellette
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| |
Collapse
|
11
|
Rugani JN, Gontijo CMF, Frézard F, Soares RP, do Monte-Neto RL. Antimony resistance in Leishmania (Viannia) braziliensis clinical isolates from atypical lesions associates with increased ARM56/ARM58 transcripts and reduced drug uptake. Mem Inst Oswaldo Cruz 2019; 114:e190111. [PMID: 31433006 PMCID: PMC6697410 DOI: 10.1590/0074-02760190111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In addition to the limited therapeutic arsenal and the side effects of antileishmanial agents, drug resistance hinders disease control. In Brazil, Leishmania braziliensis causes atypical (AT) tegumentary leishmaniasis lesions, frequently refractory to treatment. OBJECTIVES The main goal of this study was to characterise antimony (Sb)-resistant (SbR) L. braziliensis strains obtained from patients living in Xakriabá indigenous community, Minas Gerais, Brazil. METHODS The aquaglyceroporin 1-encoding gene (AQP1) from L. braziliensis clinical isolates was sequenced, and its function was evaluated by hypo-osmotic shock. mRNA levels of genes associated with Sb resistance were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Atomic absorption was used to measure Sb uptake. FINDINGS Although clinical isolates presented delayed recovery time in hypo-osmotic shock, AQP1 function was maintained. Isolate 340 accumulated less Sb than all other isolates, supporting the 65-fold downregulation of AQP1 mRNA levels. Both 330 and 340 isolates upregulated antimony resistance marker (ARM) 56/ARM58 and multidrug resistant protein A (MRPA); however, only ARM58 upregulation was an exclusive feature of SbR field isolates. CA7AE seemed to increase drug uptake in L. braziliensis and represented a tool to study the role of glycoconjugates in Sb transport. MAIN CONCLUSIONS There is a clear correlation between ARM56/58 upregulation and Sb resistance in AT-harbouring patients, suggesting the use of these markers as potential indicators to help the treatment choice and outcome, preventing therapeutic failure.
Collapse
Affiliation(s)
| | | | - Frédéric Frézard
- Universidade Federal de Minas Gerais, Instituto de Ciências
Biológicas, Departamento de Fisiologia e Biofísica, Belo Horizonte, MG, Brasil
| | - Rodrigo Pedro Soares
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo
Horizonte, MG, Brasil
| | | |
Collapse
|
12
|
Vergnes B, Gazanion E, Mariac C, Du Manoir M, Sollelis L, Lopez-Rubio JJ, Sterkers Y, Bañuls AL. A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. J Antimicrob Chemother 2019; 74:3231-3239. [DOI: 10.1093/jac/dkz334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
For almost a century, antimonials have remained the first-line drugs for the treatment of leishmaniasis. However, little is known about their mode of action and clinical resistance mechanisms.
Objectives
We have previously shown that Leishmania nicotinamidase (PNC1) is an essential enzyme for parasite NAD+ homeostasis and virulence in vivo. Here, we found that parasites lacking the pnc1 gene (Δpnc1) are hypersusceptible to the active form of antimony (SbIII) and used these mutant parasites to better understand antimony’s mode of action and the mechanisms leading to resistance.
Methods
SbIII-resistant WT and Δpnc1 parasites were selected in vitro by a stepwise selection method. NAD(H)/NADP(H) dosages and quantitative RT–PCR experiments were performed to explain the susceptibility differences observed between strains. WGS and a marker-free CRISPR/Cas9 base-editing approach were used to identify and validate the role of a new resistance mutation.
Results
NAD+-depleted Δpnc1 parasites were highly susceptible to SbIII and this phenotype could be rescued by NAD+ precursor or trypanothione precursor supplementation. Δpnc1 parasites could become resistant to SbIII by an unknown mechanism. WGS revealed a unique amino acid substitution (H451Y) in an EF-hand domain of an orphan calcium-dependent kinase, recently named SCAMK. When introduced into a WT reference strain by base editing, the H451Y mutation allowed Leishmania parasites to survive at extreme concentrations of SbIII, potentiating the rapid emergence of resistant parasites.
Conclusions
These results establish that Leishmania SCAMK is a new central hub of antimony’s mode of action and resistance development, and uncover the importance of drug tolerance mutations in the evolution of parasite drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yvon Sterkers
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
- Department of Parasitology-Mycology, Faculty of Medicine, University Hospital Center of Montpellier, Univ. Montpellier, Montpellier, France
| | | |
Collapse
|
13
|
Zirpel H, Clos J. Gene Replacement by Homologous Recombination. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 1971:169-188. [PMID: 30980303 DOI: 10.1007/978-1-4939-9210-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
While homologous recombination-based gene replacement is about to be supplanted by more modern approaches, it is still retaining usefulness for genes that prove to be poor targets for CRISPR/cas-based approaches. Homologous recombination has proven to be relatively robust to minor sequence mismatches between GOI-flanking sequences and the gene replacement constructs, and the faithfulness of recombination events is easily verified by whole-genome sequencing. Moreover, the availability of custom synthetic gene production by numerous service providers should allow for a relatively quick generation of null mutants without the need to introduce additional protein-coding genes beyond the selection markers.
Collapse
Affiliation(s)
- Henner Zirpel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
14
|
To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia. Int J Parasitol 2019; 49:153-163. [DOI: 10.1016/j.ijpara.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
|
15
|
Wu Z, Wang L, Li J, Wang L, Wu Z, Sun X. Extracellular Vesicle-Mediated Communication Within Host-Parasite Interactions. Front Immunol 2019; 9:3066. [PMID: 30697211 PMCID: PMC6340962 DOI: 10.3389/fimmu.2018.03066] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-surrounded structures released by different kinds of cells (normal, diseased, and transformed cells) in vivo and in vitro that contain large amounts of important substances (such as lipids, proteins, metabolites, DNA, RNA, and non-coding RNA (ncRNA), including miRNA, lncRNA, tRNA, rRNA, snoRNA, and scaRNA) in an evolutionarily conserved manner. EVs, including exosomes, play a role in the transmission of information, and substances between cells that is increasingly being recognized as important. In some infectious diseases such as parasitic diseases, EVs have emerged as a ubiquitous mechanism for mediating communication during host-parasite interactions. EVs can enable multiple modes to transfer virulence factors and effector molecules from parasites to hosts, thereby regulating host gene expression, and immune responses and, consequently, mediating the pathogenic process, which has made us rethink our understanding of the host-parasite interface. Thus, here, we review the present findings regarding EVs (especially exosomes) and recognize the role of EVs in host-parasite interactions. We hope that a better understanding of the mechanisms of parasite-derived EVs may provide new insights for further diagnostic biomarker, vaccine, and therapeutic development.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingling Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jiaying Li
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
16
|
Piel L, Pescher P, Späth GF. Reverse Epidemiology: An Experimental Framework to Drive Leishmania Biomarker Discovery in situ by Functional Genetic Screening Using Relevant Animal Models. Front Cell Infect Microbiol 2018; 8:325. [PMID: 30283743 PMCID: PMC6157315 DOI: 10.3389/fcimb.2018.00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Leishmania biomarker discovery remains an important challenge that needs to be revisited in light of our increasing knowledge on parasite-specific biology, notably its genome instability. In the absence of classical transcriptional regulation in these early-branching eukaryotes, fluctuations in transcript abundance can be generated by gene and chromosome amplifications, which have been linked to parasite phenotypic variability with respect to virulence, tissue tropism, and drug resistance. Conducting in vitro evolutionary experiments to study mechanisms of Leishmania environmental adaptation, we recently validated the link between parasite genetic amplification and fitness gain, thus defining gene and chromosome copy number variations (CNVs) as important Leishmania biomarkers. These experiments also demonstrated that long-term Leishmania culture adaptation can strongly interfere with epidemiologically relevant, genetic signals, which challenges current protocols for biomarker discovery, all of which rely on in vitro expansion of clinical isolates. Here we propose an experimental framework independent of long-term culture termed “reverse” epidemiology, which applies established protocols for functional genetic screening of cosmid-transfected parasites in animal models for the identification of clinically relevant genetic loci that then inform targeted field studies for their validation as Leishmania biomarkers.
Collapse
Affiliation(s)
- Laura Piel
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pascale Pescher
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France
| | - Gerald F Späth
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France
| |
Collapse
|
17
|
Fernandez-Prada C, Sharma M, Plourde M, Bresson E, Roy G, Leprohon P, Ouellette M. High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:165-173. [PMID: 29602064 PMCID: PMC6039308 DOI: 10.1016/j.ijpddr.2018.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022]
Abstract
Increasing drug resistance towards first line antimony-derived compounds has forced the introduction of novel therapies in leishmaniasis endemic areas including amphotericin B and miltefosine. However, their use is threatened by the emergence and spread of drug-resistant strains. In order to discover stage-dependent resistance genes, we have adapted the Cos-Seq approach through the introduction of macrophage infections in the pipeline. A L. infantum intracellular amastigote population complemented with a L. infantum cosmid library was submitted to increasing concentrations of miltefosine, amphotericin B and pentavalent antimonials in experimental infections of THP-1 cells. For each step of selection, amastigotes were extracted and cosmids were isolated and submitted to next-generation sequencing, followed by subsequent gene-enrichment analyses. Cos-Seq screen in amastigotes revealed four highly enriched loci for antimony, five for miltefosine and one for amphotericin B. Of these, a total of seven cosmids were recovered and tested for resistance in both promastigotes and amastigotes. Candidate genes within the pinpointed genomic regions were validated using single gene overexpression in wild-type parasites and/or gene disruption by means of a CRISPR-Cas9-based approach. This led to the identification and validation of a stage-independent antimony-resistance gene (LinJ.06.1010) coding for a putative leucine rich repeat protein and a novel amastigote-specific miltefosine-resistance gene (LinJ.32.0050) coding for a member of the SEC13 family of WD-repeat proteins. This study further reinforces the power of Cos-Seq approach to discover novel drug-resistance genes, some of which are life-stages specific. The Cos-Seq led to the discovery of several new genomic regions selected with drugs. This work led to the validation of novel drug-resistance genes in Leishmania. Gene LinJ.06.1010 is involved in antimony resistance in both life stages of the parasite. Gene LinJ.32.0050 is involved in miltefosine resistance in amastigotes. The amastigote screen is labour intensive but complements screens in promastigotes.
Collapse
Affiliation(s)
- Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Mansi Sharma
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marie Plourde
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Eva Bresson
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Gaétan Roy
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
18
|
Bartsch K, Hombach-Barrigah A, Clos J. Hsp90 inhibitors radicicol and geldanamycin have opposing effects on Leishmania Aha1-dependent proliferation. Cell Stress Chaperones 2017; 22:729-742. [PMID: 28455612 PMCID: PMC5573691 DOI: 10.1007/s12192-017-0800-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023] Open
Abstract
Hsp90 and its co-chaperones are essential for the medically important parasite Leishmania donovani, facilitating life cycle control and intracellular survival. Activity of Hsp90 is regulated by co-chaperones of the Aha1 and P23 families. In this paper, we studied the expression of L. donovani Aha1 in two life cycle stages, its interaction with Hsp90 and the phenotype of Aha1 null mutants during the insect stage and inside infected macrophages. This study provides a detailed in vitro analysis of the function of Aha1 in Leishmania parasites and the first instance of a reverse genetic analysis of Aha1 in a protozoan parasite. While Aha1 is non-essential under standard growth conditions and at elevated temperature, Aha1 protects against ethanol stress. However, both overexpression and lack of Aha1 affected parasite growth in the presence of the Hsp90 inhibitors radicicol (RAD) and geldanamycin (GA). Under RAD pressure, P23 and Aha1 act in an antagonistic way. By contrast, expression levels of both co-chaperones have similar effects under GA treatment, indicating different inhibition mechanisms by the two compounds. Aha1 is also secreted in virulence-enhancing exosomes. This may explain why the loss of Aha1 reduces the infectivity of L. donovani in ex vivo mouse macrophages, indicating a role during the intracellular mammalian stage.
Collapse
Affiliation(s)
- Katharina Bartsch
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359, Hamburg, Germany
| | - Antje Hombach-Barrigah
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359, Hamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359, Hamburg, Germany.
| |
Collapse
|
19
|
Dos Reis PG, do Monte-Neto RL, Melo MN, Frézard F. Biophysical and Pharmacological Characterization of Energy-Dependent Efflux of Sb in Laboratory-Selected Resistant Strains of Leishmania ( Viannia) Subgenus. Front Cell Dev Biol 2017; 5:24. [PMID: 28393067 PMCID: PMC5364148 DOI: 10.3389/fcell.2017.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/07/2017] [Indexed: 12/02/2022] Open
Abstract
The growing resistance of leishmaniasis to first-line drugs like antimonials in some regions limits the control of this parasitic disease. The precise mechanisms involved in Leishmania antimony resistance are still subject to debate. The reduction of intracellular SbIII accumulation is a common change observed in both laboratory-selected and field isolated resistant Leishmania strains, but the exact transport pathways involved in antimony resistance have not yet been elucidated. In order to functionally characterize the antimony transport routes responsible for resistance, we performed systematic transport studies of SbIII in wild-type and resistant strains of L. (Viannia) guyanensis and L. (V.) braziliensis. Those include influx and efflux assays and the influence of ABC transporters and metabolism inhibitors: prochlorperazine, probenecid, verapamil, BSO, and sodium azide. The mRNA levels of genes associated with antimony resistance (MRPA, GSH1, ODC, AQP1, ABCI4, and ARM58) were also investigated in addition to intracellular thiol levels. A strong reduction of Sb influx was observed in L. guyanensis resistant mutant (LgSbR), but not in L. braziliensis (LbSbR). Both mutants showed increased energy-dependent efflux of SbIII, when compared to their respective parental strains. In LgSbR, BSO and prochlorperazine inhibited antimony efflux and resistance was associated with increased MRPA and GSH1 mRNA levels, while in LbSbR antimony efflux was inhibited by probenicid and prochlorperazine in absence of resistance-associated gene modulation. Intracellular thiol levels were increased in both Sb-resistant mutants. An energy-dependent SbIII efflux pathway sensitive to prochlorperazine was clearly evidenced in both Sb-resistant mutants. In conclusion, the present study allowed the biophysical and pharmacological characterization of energy-dependent Sb efflux pathway apparently independent of MRPA, ABCI4, and ARM58 upregulation, in Leishmania (Vianna) mutant selected in vitro for resistance to SbIII. Prochlorperazine has also been identified as an effective chemosensitizer in both Sb resistant mutants, which acts through inhibition of the active efflux of Sb.
Collapse
Affiliation(s)
- Priscila G Dos Reis
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil; Departamento de Farmácia/Ensino e Pesquisa, Hospital João XXIII - Fundação Hospitalar do Estado de Minas GeraisBelo Horizonte, Brazil
| | - Rubens L do Monte-Neto
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou - CPqRR/FIOCRUZ Belo Horizonte, Brazil
| | - Maria N Melo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|
20
|
Laffitte MCN, Leprohon P, Papadopoulou B, Ouellette M. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Res 2016; 5:2350. [PMID: 27703673 PMCID: PMC5031125 DOI: 10.12688/f1000research.9218.1] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 01/04/2023] Open
Abstract
Leishmania has a plastic genome, and drug pressure can select for gene copy number variation (CNV). CNVs can apply either to whole chromosomes, leading to aneuploidy, or to specific genomic regions. For the latter, the amplification of chromosomal regions occurs at the level of homologous direct or inverted repeated sequences leading to extrachromosomal circular or linear amplified DNAs. This ability of
Leishmania to respond to drug pressure by CNVs has led to the development of genomic screens such as Cos-Seq, which has the potential of expediting the discovery of drug targets for novel promising drug candidates.
Collapse
Affiliation(s)
- Marie-Claude N Laffitte
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Barbara Papadopoulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|