1
|
Le YH, Hoang HTT, Khong DT, Nguyen TN, Que TA, Pham DT, Tanaka K, Yamamoto Y. Contamination of retail market meat with extended-spectrum beta-lactamase genes in Vietnam. Int J Food Microbiol 2025; 430:111061. [PMID: 39827751 DOI: 10.1016/j.ijfoodmicro.2025.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
The contamination of retail meat with antibiotic-resistant bacteria poses a substantial public health risk because of the potential spread of these bacteria within communities. The contamination of retail meat with extended-spectrum beta-lactamase (ESBL)-producing bacteria was investigated in four cities in Vietnam using real-time PCR, employing ESBL marker genes. This method provides a more comprehensive assessment of ESBL-producing bacterial contamination in meat samples than culture-based methods because it directly detects resistance genes from the extracted sample DNA. Retail meats in Vietnam were substantially contaminated with ESBL genes [54 % (n = 46) and 48 % (n = 49) of chicken and pork samples, respectively]. No significant differences in ESBL gene detection rates were observed between chicken and pork. The most frequently detected ESBL gene was blaTEM, followed by blaSHV, whereas blaCTX-M was found in only 4-8 % of the samples. Ho Chi Minh City showed significantly higher contamination rates for both chicken and pork than those in other cities. ESBL-producing Escherichia coli strains were isolated from contaminated meat samples and genomically analyzed. All isolated strains carried blaCTX-M, with some harboring blaTEM, whereas blaSHV was not detected. Although IncFIB plasmids were prevalent among the ESBL-producing E. coli strains, the variability in resistance gene profiles suggested that the endemic spread of specific resistance gene-carrying plasmids was unlikely. Overall, these findings highlight the effectiveness of the ESBL gene detection method and the high levels of ESBL-producing E. coli in retail meat.
Collapse
Affiliation(s)
- Yen Hai Le
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hoa Thi Thanh Hoang
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Diep Thi Khong
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Thang Nam Nguyen
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Tram Anh Que
- Tropical Disease Center, Nghe An Friendship General Hospital, Nghe An, Viet Nam
| | | | - Kaori Tanaka
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Institute for Glyco-core Research, Gifu University, Gifu, Japan
| | - Yoshimasa Yamamoto
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
2
|
Kenzaka T, Tsuruta Y, Nakamura Y, Ueda S. Colistin-resistant Escherichia coli harboring mcr-1 in slaty-backed gull breeding in Northern Japan. Microbiol Spectr 2024; 12:e0070324. [PMID: 39480153 PMCID: PMC11619456 DOI: 10.1128/spectrum.00703-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Affiliation(s)
- Takehiko Kenzaka
- Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yuto Tsuruta
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yuuka Nakamura
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Shouta Ueda
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| |
Collapse
|
3
|
Sy BT, Boutin S, Kieu Linh LT, Weikert-Asbeck S, Eger E, Hauswaldt S, Nhat My T, The NT, Rupp J, Song LH, Schaufler K, Velavan TP, Nurjadi D. Heterogeneity of colistin resistance mechanism in clonal populations of carbapenem-resistant Klebsiella pneumoniae in Vietnam. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 51:101204. [PMID: 39387065 PMCID: PMC11462480 DOI: 10.1016/j.lanwpc.2024.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Bui Tien Sy
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Sébastien Boutin
- Institute of Medical Microbiology and Clinic for Infectious Diseases, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Le Thi Kieu Linh
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Germany
| | - Simone Weikert-Asbeck
- Institute of Medical Microbiology and Clinic for Infectious Diseases, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Elias Eger
- Epidemiology and Ecology of Antimicrobial Resistance (GEAR), Helmholtz Institute for One Health (HIOH), Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Susanne Hauswaldt
- Institute of Medical Microbiology and Clinic for Infectious Diseases, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Truong Nhat My
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Nguyen Trong The
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Department of Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Jan Rupp
- Institute of Medical Microbiology and Clinic for Infectious Diseases, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Le Huu Song
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Department of Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Katharina Schaufler
- Epidemiology and Ecology of Antimicrobial Resistance (GEAR), Helmholtz Institute for One Health (HIOH), Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| | - Thirumalaisamy P. Velavan
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Germany
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Dennis Nurjadi
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Medical Microbiology and Clinic for Infectious Diseases, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| |
Collapse
|
4
|
Le YH, Ikawa K, Hoang HTT, Isomura H, Khong DT, Nguyen TN, Que TA, Pham DT, Tanaka K, Yamamoto Y. Abundance of Colistin-Resistance Genes in Retail Meats in Vietnam. Foodborne Pathog Dis 2024; 21:485-490. [PMID: 38700849 DOI: 10.1089/fpd.2023.0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
The degree of contamination of retail meat with colistin-resistant bacteria and its potential contribution to dissemination within communities remains to be determined. Thus, we aimed to elucidate the contamination status of colistin-resistance genes, indicative of colistin-resistant bacteria, in retail meats in Vietnam. In total, 46 chicken and 49 pork meats from stores in Vietnam and Japan were examined. Multiplex real-time polymerase chain reaction with TaqMan probes was performed for detecting mcr-1, mcr-3, and Escherichia coli 16S rRNA. Colistin-resistant bacteria in meats were isolated using selective media. The minimum inhibitory concentrations of colistin were determined using the broth microdilution method. The results showed that 70.7% of chicken meats in Vietnam were contaminated with both mcr-1 and mcr-3. Meanwhile, mcr-1 and mcr-3 were detected in 15.9% and 40.9% of pork meat, respectively. Only mcr-3 was detected in 40% of chicken in Japan. In addition, mcr-1-harboring E. coli and mcr-3-harboring Aeromonas were isolated from chicken meats in Vietnam. Some of these isolates showed colistin resistance. These results showed that most retail meats were highly contaminated with colistin-resistance genes. Notably, our results suggest that mcr-3 is more prevalent in the contaminated samples compared with mcr-1.
Collapse
Affiliation(s)
- Yen Hai Le
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kanoko Ikawa
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hoa Thi Thanh Hoang
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hatsue Isomura
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Diep Thi Khong
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Thang Nam Nguyen
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Tram Anh Que
- Tropical Disease Center, Nghe An Friendship General Hospital, Nghe An, Vietnam
| | | | - Kaori Tanaka
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Institute for Glyco-core Research, Gifu University, Gifu, Japan
| | - Yoshimasa Yamamoto
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
5
|
Thanh Hoang HT, Yamamoto M, Calvopina M, Bastidas-Caldes C, Khong DT, Nguyen TN, Kawahara R, Yamaguchi T, Yamamoto Y. Comparative genome analysis of colistin-resistant Escherichia coli harboring mcr isolated from rural community residents in Ecuador and Vietnam. PLoS One 2023; 18:e0293940. [PMID: 37917755 PMCID: PMC10621974 DOI: 10.1371/journal.pone.0293940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023] Open
Abstract
The spread of colistin-resistant bacteria among rural community residents of low- and middle-income countries is a major threat to community health. Although the mechanism of the spread of colistin-resistant bacteria in communities is unknown, geographic and regional characteristics may influence it. To elucidate the spread mechanism of colistin-resistant bacteria, we analyzed the genomes of colistin-resistant Escherichia coli isolated from Vietnam and Ecuador residents, which are geographically and socially different. Stool specimens of 139 and 98 healthy residents from Ecuador and Vietnam rural communities, respectively, were analyzed for colistin-resistant E. coli with mcr. Its prevalence in the residents of all the communities assessed was high and approximately equal in both countries: 71.8% in Ecuador and 69.4% in Vietnam. A phylogenetic tree analysis revealed that the sequence type of colistin-resistant E. coli was diverse and the major sequence types were different between the two countries. The location of mcr in the isolates showed that the proportion of chromosomal mcr was 35.1% and 8.5% in the Vietnam and Ecuador isolates, respectively. Most of these chromosomal mcr genes (75%-76%) had an intact mcr-transposon Tn6330. Contrastingly, the replicon types of the mcr-carrying-plasmids were diverse in both countries, but almost all belonged to IncI2 in Ecuador and IncX1/X4 in Vietnam. Approximately 26%-45% of these mcr-plasmids had other resistance genes, which also varied between countries. These results suggest that although the overall profile of the colistin-resistant E. coli isolates is diverse in these countries, the phylogenesis of the isolates and mcr-carrying plasmids has regional characteristics. Although the contributing factors are not clear, it is obvious that the overall profile of colistin-resistant bacteria dissemination varies between countries. Such different epidemic patterns are important for establishing country-specific countermeasures against colistin-resistant bacteria.
Collapse
Affiliation(s)
- Hoa Thi Thanh Hoang
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Mayumi Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Health Administration Center, Gifu University, Gifu, Japan
| | - Manuel Calvopina
- One Health Research Group, Universidad De Las Americas, Quito, Ecuador
| | | | - Diep Thi Khong
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Thang Nam Nguyen
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Ryuji Kawahara
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Takahiro Yamaguchi
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yoshimasa Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
6
|
Phu DH, Wongtawan T, Truong DB, Van Cuong N, Carrique-Mas J, Thomrongsuwannakij T. A systematic review and meta-analysis of integrated studies on antimicrobial resistance in Vietnam, with a focus on Enterobacteriaceae, from a One Health perspective. One Health 2022; 15:100465. [PMID: 36561710 PMCID: PMC9767812 DOI: 10.1016/j.onehlt.2022.100465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Vietnam is a low- and middle-income country (LMIC), a primary food producer, and an antimicrobial resistance (AMR) hotspot. AMR is recognized as a One Health challenge since it may transfer between humans, animals and the environment. This study aimed to apply systematic review and meta-analysis to investigate the phenotypic profiles and correlations of antimicrobial-resistant Enterobacteriaceae across three compartments: humans, animals and the environment in Vietnam. A total of 89 articles found in PubMed, Science Direct, and Google Scholar databases were retrieved for qualitative synthesis. E. coli and non-typhoidal Salmonella (NTS) were the most common bacterial species in studies of all compartments (60/89 studies). Among antimicrobials classified as critically important, the resistance levels were observed to be highest to quinolones, 3rd generation of cephalosporins, penicillins, and aminoglycosides. Of 89 studies, 55 articles reported the resistance prevalence of E. coli and NTS in healthy humans, animals and the environment against ciprofloxacin, ceftazidime, ampicillin, gentamicin, sulfamethoxazole-trimethoprim, chloramphenicol was used for meta-analysis. The pooled prevalence was found highest in E. coli against ampicillin 84.0% (95% CI 73.0-91.0%) and sulfamethoxazole-trimethoprim 66.0% (95% CI 56.0-75.0%) while in NTS they were 34.0% (95% CI 24.0-46.0%), 33.0% (95% CI 25.0-42.0%), respectively. There were no significant differences in the pooled prevalence of E. coli and NTS to these antimicrobials across healthy humans, animals and the environment, except for ceftazidime-resistant E. coli (χ2 = 8.29, p = 0.02), chloramphenicol-resistant E.coli (χ2 = 9.65, p < 0.01) and chloramphenicol-resistant NTS (χ2 = 7.51, p = 0.02). Findings from the multiple meta-regression models indicated that the AMR levels in E. coli (β = 1.887, p < 0.001) and the North (β = 0.798, p = 0.047) had a higher fraction of AMR than NTS and other regions of Vietnam. The outcomes of this study play an important role as the baseline information for further investigation and follow-up intervention strategies to tackle AMR in Vietnam, and more generally, can be adapted to other LMICs.
Collapse
Affiliation(s)
- Doan Hoang Phu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand,Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Viet Nam
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Dinh Bao Truong
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Viet Nam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Viet Nam,Ausvet PTY LTD, Bruce ACT 2617, Canberra, Australia
| | - Juan Carrique-Mas
- Food and Agriculture Organization of the United Nations, Ha Noi 10000, Viet Nam
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand,Corresponding author at: Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
7
|
Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock-A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11060659. [PMID: 35745513 PMCID: PMC9230117 DOI: 10.3390/pathogens11060659] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Antimicrobial resistance is a serious public-health problem throughout the world. Escherichia coli, the most common Gram-negative microorganism, has developed different resistance mechanisms, making treating infections difficult. Colistin is considered a last-resort drug in the treatment of infections caused by E. coli. Plasmid-mediated mobile-colistin-resistant (mcr) genes in E. coli, now disseminated globally, are considered a major public-health threat. Humans, chickens, and pigs are the main reservoirs for E. coli and the sources of antibiotic resistance. Hence, an up-to-date and precise estimate of the global prevalence of mcr resistance genes in these reservoirs is necessary to understand more precisely the worldwide spread and to more effectively implement control and prevention strategies. Methodology: Publications were identified in the PubMed database on the basis of the PRISMA guidelines. English full-text articles were selected from December 2014 to March 2021. Descriptive statistics and a meta-analysis were performed in Excel and R software, respectively. Colistin resistance was defined as the molecular-genetic detection of the mcr genes. The crude and estimated prevalence were calculated for each host and continent. The studies were divided into two groups; community-based when they involved isolates from healthy humans, chickens, or pigs, and clinical studies when they involved only hospital, outpatient, or laboratory isolates. Results: A total of 1278 studies were identified and 218 were included in this systematic review and meta-analysis, divided into community studies (159 studies) and clinical studies (59 studies). The general prevalence of mcr-mediated colistin-resistant E. coli (mcrMCRE) was 6.51% (n = 11,583/177,720), reported in 54 countries and on five continents; Asia with 119 studies followed by Europe with 61 studies registered the most articles. Asia reported the major diversity of mcr-variants (eight of nine, except mcr-2). Worldwide, chickens and pigs proved to be the principal reservoir of mcr with an estimated prevalence of 15.8% and 14.9%, respectively. Healthy humans and clinical isolates showed a lower prevalence with 7.4% and 4.2% respectively. Conclusions: In this systematic review and meta-analysis, the worldwide prevalence of mcr in E. coli isolated from healthy humans, chickens, and pigs was investigated. A wide prevalence and distribution of mcr genes was demonstrated on all continents in E. coli isolates from the selected reservoirs. Understanding the epidemiology and occurrence in the reservoirs of mcr in E. coli on different continents of the world facilitates tracing how mcr genes are transmitted and determining the infection risks for humans. This knowledge can be used to reduce the incidence of zoonotic transmission by implementing the appropriate control programs.
Collapse
|
8
|
Al Mana H, Johar AA, Kassem II, Eltai NO. Transmissibility and Persistence of the Plasmid-Borne Mobile Colistin Resistance Gene, mcr-1, Harbored in Poultry-Associated E. coli. Antibiotics (Basel) 2022; 11:774. [PMID: 35740180 PMCID: PMC9220209 DOI: 10.3390/antibiotics11060774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Colistin, a last-resort antibiotic, is used to treat infections caused by multi-drug-resistant Gram-negative bacteria. Colistin resistance can emerge by acquiring the mobile colistin gene, mcr-1, usually plasmid borne. Studies on mcr-1 and its transmissibility are limited in the Middle East and North Africa (MENA) region. Here, we investigated the occurrence of mcr-1 in 18 previously collected Escherichia coli isolates collected from chicken samples in Qatar; whole-genome sequencing was performed to determine the location (plasmid-borne and chromosomal) of mcr-1 in the isolates. Additionally, we assessed the transmissibility of plasmid-borne mcr-1 and its cost on fitness in E. coli biofilms. Our results showed that the E. coli isolates belonged to different sequence types, indicating that mcr-1 was occurring in strains with diverse genetic backgrounds. In silico analysis and transformation assays showed that all the isolates carried mcr-1 on plasmids that were mainly IncI2 types. All the mcr-1 plasmids were found to be transmissible by conjugation. In biofilms, a significant reduction in the number of CFU (≈0.055 logs CFU/mL) and colistin resistance (≈2.19 log CFU/mL) was observed; however, the reduction in resistance was significantly larger, indicating that the plasmids incur a high fitness cost. To our knowledge, this is the first study that investigates mcr-1 transmissibility and persistence in Qatar. Our findings highlight that mcr has the potential to spread colistin resistance to potentially disparate strains and niches in Qatar, posing a risk that requires intervention.
Collapse
Affiliation(s)
- Hassan Al Mana
- Biomedical Research Centre, Microbiology Department, Qatar University, Doha 2713, Qatar;
| | - Alreem A. Johar
- Research and Development Department, Barzan Holdings, Doha 7178, Qatar;
| | - Issmat I. Kassem
- GA Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA;
| | - Nahla O. Eltai
- Biomedical Research Centre, Microbiology Department, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
9
|
Yamamoto Y, Higashi A, Ikawa K, Hoang HTT, Yamaguchi T, Kawahara R, Noguchi H, Nguyen TN, Khong DT, Tran HT. Horizontal transfer of a plasmid possessing mcr-1 marked with a single nucleotide mutation between Escherichia coli isolates from community residents. BMC Res Notes 2022; 15:196. [PMID: 35659286 PMCID: PMC9166650 DOI: 10.1186/s13104-022-06079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives The widespread dissemination of phenotypic colistin-resistant (COR) bacteria in the community threatens public health. The horizontal gene transfer of the mobile colistin resistance gene via plasmids is thought to be one of the main mechanisms for dissemination. However, genotypic evidence to prove this in community settings is limited. This study used genome analysis to demonstrate the direct horizontal colistin resistance gene transfer via plasmids in isolates from the community. Results A total of 19 isolates of COR Escherichia coli from stool specimens of 23 residents from seven households in the Vietnamese community were assessed in this study. The whole-genome sequence data of isolates were acquired using a combination of DNBSEQ short-reads and Nanopore long-read sequencing. Analysis of genomic data was performed using online tools such as Geneious. Analysis of the genomic information of COR E. coli isolates revealed that the isolates from two residents of different households had a similar IncP1 plasmid possessing mcr-1.1, marked with a single nucleotide mutation at the same position. The study provided direct evidence to prove that mcr was horizontally transmitted among bacteria in community residents. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06079-z.
Collapse
Affiliation(s)
- Yoshimasa Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| | - Ayano Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kanoko Ikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hoa Thi Thanh Hoang
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Takahiro Yamaguchi
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Ryuji Kawahara
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Hideki Noguchi
- Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Japan
| | - Thang Nam Nguyen
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Diep Thi Khong
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Hoa Thi Tran
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| |
Collapse
|
10
|
Nakayama T, Le Thi H, Thanh PN, Minh DTN, Hoang ON, Hoai PH, Yamaguchi T, Jinnai M, Do PN, Van CD, Kumeda Y, Hase A. Abundance of colistin-resistant Escherichia coli harbouring mcr-1 and extended-spectrum β-lactamase-producing E. coli co-harbouring bla CTX-M-55 or -65 with bla TEM isolates from chicken meat in Vietnam. Arch Microbiol 2022; 204:137. [PMID: 35032196 DOI: 10.1007/s00203-021-02746-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
Although the spread of plasmid-mediated antibiotic-resistant bacteria is a public health concern, food contamination with plasmid-mediated antibiotic-resistant Escherichia coli in Vietnam has not been well investigated. This study aimed to describe the prevalence of colistin-resistant, carbapenem-resistant, and endemic blaCTX-M in extended-spectrum β-lactamase (ESBL) producing E. coli isolates. Colistin and carbapenem-resistant ESBL-producing E. coli were isolated from chickens in Vietnam and Japan. Colistin-resistant and AmpC/ESBL-producing E. coli (52% and 93%, respectively) were detected in chickens from Vietnam, in comparison to 52.7%, AmpC/ESBL-producing E. coli found in chicken from Japan. Carbapenem-resistant E. coli has not been isolated in Vietnam and Japan. Genotyping revealed that colistin-resistant E. coli harboured mcr-1, and most of the AmpC/ESBL-related genes were blaCTX-M-55 and blaCTX-M-65 together with blaTEM in Vietnamese chickens and blaCMY-2 in Japanese chickens. Multi-drug resistance analysis showed that ESBL-producing E. coli isolates had greater resistance to quinolones, streptomycin, and chloramphenicol than colistin-resistant E. coli isolates from Vietnam, suggesting the selection of multiple antibiotic resistance genes in ESBL-producing E. coli. In conclusion, colistin-resistant E. coli was detected in approximately half of the chicken samples, the majority of which harboured mcr-1. The high prevalence of ESBL-producing E. coli has remained constant in the last 5 years. The predominant blaCTX-M in ESBL-producing E. coli was blaCTX-M-55 or blaCTX-M-65, with the coexistence of blaTEM in Vietnam. These results can be implemented in monitoring systems to overcome the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Tatsuya Nakayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| | - Hien Le Thi
- Institute of Public Health, Ho Chi Minh City, Vietnam
| | | | | | | | | | - Takahiro Yamaguchi
- Department of Microbiology, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Michio Jinnai
- Department of Microbiology, Kanagawa Prefecture Institute of Public Health, Chigasaki, Kanagawa, Japan
| | | | | | - Yuko Kumeda
- Research Center for Microorganism Control, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Atsushi Hase
- Faculty of Contemporary Human Life Science, Tezukayama University, Nara, Japan
| |
Collapse
|
11
|
Vu H, Hayashi M, Nguyen TN, Khong DT, Tran HT, Yamamoto Y, Tanaka K. Comparison of Phenotypic and Genotypic Patterns of Antimicrobial-Resistant Bacteroides fragilis Group Isolated from Healthy Individuals in Vietnam and Japan. Infect Drug Resist 2021; 14:5313-5323. [PMID: 34924764 PMCID: PMC8674666 DOI: 10.2147/idr.s341571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Normal non-pathogenic flora can harm the host by acting as a reservoir of resistance determinants that are potentially transferable to human pathogens. This study aimed to assess the phenotypic and genotypic antimicrobial susceptibility patterns of the Bacteroides fragilis group (BFG) isolated from healthy individuals in Vietnam and Japan in order to elucidate the prevalence of antimicrobial resistance in human flora in the two economically and geographically different countries. Materials and Methods BFG was isolated from fecal samples of 80 healthy individuals in Vietnam (n=51) and Japan (n=29). Isolated strains were identified using MALDI-TOF MS, and the minimum inhibitory concentration (MIC) of 18 antibiotics was determined using the agar dilution method. Additionally, 20 antimicrobial resistance genes were detected using standard PCR. Results A total of 139 BFG strains belonging to 11 BFG species were isolated from the two countries, with diversity in the prevalence of each species. B. fragilis was not the predominant species. Isolations from Vietnam and Japan showed some similarities in terms of MIC50 values, MIC90 values, and the percentage of resistant strains. However, isolations from Vietnam showed significantly higher resistance to piperacillin, cefmetazole, clindamycin, tetracycline, and minocycline. ErmB, tet36, tetM, nim, catA, and qnrA were not found in either country. CepA was more common in B. fragilis than in non-fragilis Bacteroides. In contrast, cfiA, ermG, mefA, msrSA, tetX, tetX1, bexA, qnrB, and qnrS were found only in non-fragilis Bacteroides. There were differences in the prevalence of ermG, linA, mefA, msrSA, and qnrS between isolates from Vietnam and Japan. Conclusion This study is the first report on the antimicrobial susceptibility patterns in the BFG isolated from healthy individuals in Vietnam and Japan. Compared to isolations from Japan, isolations from Vietnam showed significantly higher resistance to antimicrobial agents. The distribution of various antibiotic resistance genes also differed between the two countries.
Collapse
Affiliation(s)
- Hanh Vu
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Masahiro Hayashi
- Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu City, Gifu, Japan
| | - Thang Nam Nguyen
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Diep Thi Khong
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Hoa Thi Tran
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Yoshimasa Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Kaori Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan.,Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu City, Gifu, Japan
| |
Collapse
|
12
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
13
|
Kawahara R, Yamaguchi T, Yamamoto Y. Comparative Genome Analysis of Livestock and Human Colistin-Resistant Escherichia coli Isolates from the Same Household. Infect Drug Resist 2021; 14:841-847. [PMID: 33688219 PMCID: PMC7937380 DOI: 10.2147/idr.s298120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
Background Emergence and dissemination of colistin-resistant bacteria that harbor mobile colistin resistance (mcr) genes pose a dire challenge for the treatment of intractable infections caused by multidrug-resistant bacteria. Current findings on colistin-resistant bacteria in both humans and livestock of the same households highlight the need to identify the dissemination mechanisms of colistin-resistant bacteria. Methods In this study, a comparative genome analysis of colistin-resistant Escherichia coli isolates from livestock and humans of the same household was performed to clarify the possible dissemination mechanism of mcr genes among bacteria. Pulsed-field gel electrophoresis and whole-genome sequencing followed by sequence typing of the isolates were performed for assessment of the samples. Results The study revealed that two colistin-resistant E. coli isolates, one each from a pig and a chicken, were phylogenetically similar but not identical to the human isolates obtained from the same household. The comparative genome analysis revealed that the chicken isolate and a human isolate shared the same IncHl2 plasmid harboring the mcr transposon (mcr-1-PAP2). The pig isolate and the other human isolate retained the mcr-1 transposon on the chromosome, with the pig isolate carrying the complete mcr transposon (ISApl1-mcr-1-PAP2-ISApl1) and the human isolate carrying the incomplete mcr transposon (ISApl1-mcr-1-PAP2). Conclusion The results of the study confirm the distribution of colistin-resistant bacteria and subsequent transmission of the resistance gene-carrying transposon between livestock and humans of the same household. To the best of our knowledge, this is the first report on genomic analysis of colistin-resistant E. coli isolates obtained from livestock and residents of the same household.
Collapse
Affiliation(s)
- Ryuji Kawahara
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Takahiro Yamaguchi
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yoshimasa Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Life Science Research Center, Gifu University, Gifu, Japan
| |
Collapse
|
14
|
Quantitative Analysis of Colistin-Resistant Escherichia coli in Retail Meat from Local Vietnamese Markets. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6678901. [PMID: 33681373 PMCID: PMC7910070 DOI: 10.1155/2021/6678901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
The spread of drug-resistant bacteria via food has contributed to the dissemination of resistant bacteria among humans. However, the status of food contamination with resistant bacteria, particularly the quantitative level of resistant bacteria in food, has not yet been well elucidated. In this study, the abundance of colistin-resistant Escherichia coli in meat samples was quantified to understand the origin of the contamination of meat available in local Vietnamese markets. Fifteen samples each of chicken and pork meat purchased from local Vietnamese markets were assessed for the presence of colistin-resistant E. coli with the mobile colistin resistance gene, mcr. The results showed that 40% (6/15) and 66% (10/15) of the pork and chicken meat samples, respectively, were contaminated with colistin-resistant E. coli. The median quantitative levels of colistin-resistant E. coli in the contaminated pork and chicken samples were 1.8 × 104 and 4.2 × 103 CFU/g, respectively. The results of phylogenetic analysis of isolates from a chicken meat sample showed that the contaminated colistin-resistant E. coli was a mix of multiple phylogenetical clones of bacteria that may have multiplied during sale. This is the first study to quantify the abundance of colistin-resistant E. coli in meat samples.
Collapse
|
15
|
Luo Q, Wang Y, Xiao Y. Prevalence and transmission of mobilized colistin resistance (mcr) gene in bacteria common to animals and humans. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
16
|
High Prevalence of Colistin-Resistant Escherichia coli with Chromosomally Carried mcr-1 in Healthy Residents in Vietnam. mSphere 2020; 5:5/2/e00117-20. [PMID: 32132160 PMCID: PMC7056805 DOI: 10.1128/msphere.00117-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Elucidation of the mechanism of the wide dissemination of colistin-resistant bacteria in communities of developing countries is an urgent public health issue. In this study, we investigated the genetic background of the colistin resistance gene mcr in E. coli isolates from the fecal microbiota of healthy human residents living in a community in Vietnam with a high prevalence of colistin-resistant E. coli. Our study revealed for the first time, a surprisingly high percentage (36.8%) of colistin-resistant E. coli carrying chromosomal mcr-1, the emergence of which may have occurred recently, in the fecal microbiota of the community residents. The mcr-1 transposon on the chromosome may develop into a more stable genotype by the loss of insertion sequences (ISs). Our results are valuable in understanding the mechanism underlying the increasing prevalence of colistin-resistant bacteria within a community. The wide distribution of colistin-resistant bacteria in developing countries has become a common phenomenon. To understand the mechanisms underlying their distribution, we studied the mcr genetic background of colistin-resistant Escherichia coli isolates from the fecal microbiota of healthy human residents from a community in Vietnam with a high prevalence of colistin-resistant E. coli with mcr. Fifty-seven colistin-resistant isolates were obtained from 98 residents; one isolate was collected from each individual and analyzed for mcr. We found that 36.8% of the isolates carried chromosomal mcr-1. Further, 63.2% and 1.8% of the isolates carried mcr-1 on the plasmid and the plasmid/chromosome, respectively. Whole-genome sequencing of genetically unrelated isolates showed that the majority (6 of 7) of the isolates had the chromosomal mcr-1 in a complete ancestral mcr-1 transposon Tn6330, ISApl1-mcr-1-PAP2-ISApl1, which was inserted at various positions on the chromosomes. In addition, the majority (87.5%) of Tn6330 of mcr-1-carrying plasmids (n = 8) lacked both upstream and downstream ISApl1 transposons. The results obtained in this study indicate that plasmid-to-chromosomal transfer of mcr-1 may have occurred recently in the fecal microbiota of the residents. Additionally, Tn6330 on the chromosome may lose ISApl1 from the transposon during multiplication to gain a more stable mcr-1 state on the chromosome. Stabilization of resistance by the chromosomal incorporation of mcr-1 would be an additional challenge in combating the dissemination of resistant bacteria. IMPORTANCE Elucidation of the mechanism of the wide dissemination of colistin-resistant bacteria in communities of developing countries is an urgent public health issue. In this study, we investigated the genetic background of the colistin resistance gene mcr in E. coli isolates from the fecal microbiota of healthy human residents living in a community in Vietnam with a high prevalence of colistin-resistant E. coli. Our study revealed for the first time, a surprisingly high percentage (36.8%) of colistin-resistant E. coli carrying chromosomal mcr-1, the emergence of which may have occurred recently, in the fecal microbiota of the community residents. The mcr-1 transposon on the chromosome may develop into a more stable genotype by the loss of insertion sequences (ISs). Our results are valuable in understanding the mechanism underlying the increasing prevalence of colistin-resistant bacteria within a community.
Collapse
|