1
|
Novović K, Radovanović M, Gajić I, Vasiljević Z, Malešević M, Šapić K, Jovčić B. AdeABC, AdeFGH, and AdeIJK efflux pumps as key factors in tigecycline resistance of Acinetobacter baumannii: a study from Western Balkan hospitals. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04974-w. [PMID: 39538087 DOI: 10.1007/s10096-024-04974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE The present study investigated the role of resistance-nodulation-cell division (RND) efflux pumps in tigecycline resistance of Acinetobacter baumannii clinical isolates recovered from three Western Balkan countries (Serbia, Bosnia and Herzegovina and Montenegro). METHODS A total of 37 A. baumannii isolates recovered from seven tertiary care hospitals in 2016 and 2022 were tested against tigecycline using broth microdilution method. Then, efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used to determine the involvement of efflux pumps in tigecycline resistance. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE) and multiplex PCR-based determination of clonal lineage. Regulators of efflux pumps were analyzed for amino acid substitutions, while reverse transcription-quantitative PCR (RT-qPCR) enabled quantification of RND efflux pumps expression. RESULTS All tested isolates were interpreted as resistant to tigecycline and showed reduced tigecycline minimum inhibitory concentration (MIC) values in the presence of CCCP. PFGE analysis showed significant diversity among isolates grouped in cluster I including IC2 (n = 32) and IC3 (n = 1) isolates, while cluster II was comprised of four IC1 isolates. The most prevalent substitutions in AdeR were V120I and A136V and in AdeS G186V and N268H (n = 33). The Q262R substitution was detected in AdeL proteins of IC1 isolates, whereas no alterations were observed within AdeN. The expression of the adeB, adeG, and adeJ genes in selected isolates was upregulated in five (1.16- to 3-fold), sixteen (1.35- to 2.82-fold), and twelve isolates (1.62- to 4-fold) compared to ATCC19606, respectively. CONCLUSION This study revealed that overexpression of RND efflux pumps underlies tigecycline resistance in A. baumannii clinical isolates from the Western Balkans.
Collapse
Affiliation(s)
- Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milica Radovanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ina Gajić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zorica Vasiljević
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Milka Malešević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Katarina Šapić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Saleh NM, Ezzat H, El-Sayyad GS, Zedan H. Regulation of overexpressed efflux pump encoding genes by cinnamon oil and trimethoprim to abolish carbapenem-resistant Acinetobacter baumannii clinical strains. BMC Microbiol 2024; 24:52. [PMID: 38331716 PMCID: PMC10851603 DOI: 10.1186/s12866-024-03194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Resistance mechanisms are a shelter for Acinetobacter baumannii to adapt to our environment which causes difficulty for the infections to be treated and WHO declares this organism on the top of pathogens priority for new drug development. The most common mechanism that develops drug resistance is the overexpression of the efflux pump, especially Resistance-nodulation-cell division (RND) family, to almost most antibiotics. The study is designed to detect RND efflux pump genes in A. baumannii, and its correlation to multidrug resistance, in particular, the carbapenems resistance Acinetobacter baumannii (CRAB), and using different inhibitors that restore the antibiotic susceptibility of imipenem. Clinical A. baumannii isolates were recovered from different Egyptian hospitals in Intensive care unit (ICU). The expression of genes in two strains was analyzed using RT-PCR before and after inhibitor treatment. About 100 clinical A. baumannii isolates were recovered and identified and recorded as MDR strains with 75% strains resistant to imipenem. adeB, adeC, adeK, and adeJ were detected in thirty- seven the carbapenems resistance Acinetobacter baumannii (CRAB) strains. Cinnamomum verum oil, Trimethoprim, and Omeprazole was promising inhibitor against 90% of the carbapenems resistance Acinetobacter baumannii (CRAB) strains with a 2-6-fold decrease in imipenem MIC. Downregulation of four genes was associated with the addition of those inhibitors to imipenem for two the carbapenems resistance Acinetobacter baumannii (CRAB) (ACN15 and ACN99) strains, and the effect was confirmed in 24 h killing kinetics. Our investigation points to the carbapenems resistance Acinetobacter baumannii (CRAB) strain's prevalence in Egyptian hospitals with the idea to revive the imipenem activity using natural and chemical drugs as inhibitors that possessed high synergistic activity.
Collapse
Affiliation(s)
- Neveen M Saleh
- Department of Microbiology, Egyptian Drug Authority (former National Organization for Drug Control and Research (NODCAR), Giza, Egypt.
| | - Hadeer Ezzat
- Department of Microbiology, Egyptian Drug Authority (former National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Hamdallah Zedan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Nishida S, Ono Y. Genomic analysis of extensively drug-resistant Acinetobacter baumannii harbouring a conjugative plasmid containing aminoglycoside resistance transposon TnaphA6. J Infect Public Health 2024; 17:293-298. [PMID: 38150808 DOI: 10.1016/j.jiph.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
The occurrence of multidrug-resistant Acinetobacter baumannii (MDRA) has increased rapidly and is associated with severe nosocomial infections. MDRA has emerged in the hospital setting and has evolved into extensively drug-resistant A. baumannii (XDRA). A clinical XDRA isolate obtained from a hospitalised patient in 2016 was evaluated for antibiotic susceptibility and whole-genome sequence. The XDRA isolate was resistant to β-lactams, including broad-spectrum cephalosporins and carbapenems, and to aminoglycosides, fosfomycin, fluoroquinolones, tetracyclines, tigecycline, and trimethoprim-sulfamethoxazole. The isolate harboured abaF, ant(3″)-II-c, aph(3″)-Ib, aph(6)-Id, armA, blaADC-73, blaTEM-1, blaOXA-66, blaOXA-23, mphE, msrE and tet(B). Quinolone resistance was associated with mutations gyrA S81L and parC S84L. Tigecycline resistance was associated with a mutation in adeS. The isolate belonged to Oxford and Pasteur scheme sequence type 1050 and 2, respectively, and harboured a conjugative plasmid containing the aminoglycoside resistance transposon TnaphA6. Our study demonstrates that the isolate is closely related to a recent MDRA identified in Australia and the USA, in which a similar conjugative plasmid is not observed. Although the MDRA in Australia caused an outbreak, our hospital's surveillance protocol managed to prevent a further outbreak. Our finding suggests that this XDRA isolate is of concern in hospital and community care settings. The gpi allele could be a marker for discriminating this isolate from clonal complex 92 isolates.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan.
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan; Faculty of Health and Medical Science, Teikyo Heisei University, Toshima, Tokyo, Japan
| |
Collapse
|
4
|
Słoczyńska A, Wand ME, Bock LJ, Tyski S, Laudy AE. Efflux-Related Carbapenem Resistance in Acinetobacter baumannii Is Associated with Two-Component Regulatory Efflux Systems' Alteration and Insertion of ΔAbaR25-Type Island Fragment. Int J Mol Sci 2023; 24:ijms24119525. [PMID: 37298476 DOI: 10.3390/ijms24119525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The efflux pumps, beside the class D carbapenem-hydrolysing enzymes (CHLDs), are being increasingly investigated as a mechanism of carbapenem resistance in Acinetobacter baumannii. This study investigates the contribution of efflux mechanism to carbapenem resistance in 61 acquired blaCHDL-genes-carrying A. baumannii clinical strains isolated in Warsaw, Poland. Studies were conducted using phenotypic (susceptibility testing to carbapenems ± efflux pump inhibitors (EPIs)) and molecular (determining expression levels of efflux operon with regulatory-gene and whole genome sequencing (WGS)) methods. EPIs reduced carbapenem resistance of 14/61 isolates. Upregulation (5-67-fold) of adeB was observed together with mutations in the sequences of AdeRS local and of BaeS global regulators in all 15 selected isolates. Long-read WGS of isolate no. AB96 revealed the presence of AbaR25 resistance island and its two disrupted elements: the first contained a duplicate ISAba1-blaOXA-23, and the second was located between adeR and adeA in the efflux operon. This insert was flanked by two copies of ISAba1, and one of them provides a strong promoter for adeABC, elevating the adeB expression levels. Our study for the first time reports the involvement of the insertion of the ΔAbaR25-type resistance island fragment with ISAba1 element upstream the efflux operon in the carbapenem resistance of A. baumannii.
Collapse
Affiliation(s)
- Alicja Słoczyńska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Matthew E Wand
- UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, UK
| | - Lucy J Bock
- UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, UK
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - Agnieszka E Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Gupta N, Angadi K, Jadhav S. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review. Infect Drug Resist 2022; 15:7631-7650. [PMID: 36579124 PMCID: PMC9791997 DOI: 10.2147/idr.s386641] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenemases are β-lactamase enzymes that hydrolyze a variety of β-lactams including carbapenem and belong to different Ambler classes (A, B, D). These enzymes can be encoded by plasmid or chromosomal-mediated genes. The major issues associated with carbapenemases-producing organisms are compromising the activity and increasing the resistance to carbapenems which are the last resort antibiotics used in treating serious infections. The global increase of pathogen, carbapenem-resistant A. baumannii has significantly threatened public health. Thus, there is a pressing need for a better understanding of this pathogen, to know the various carbapenem resistance encoding genes and dissemination of resistance genes from A. baumannii which help in developing strategies to overcome this problem. The horizontal transfer of resistant determinants through mobile genetic elements increases the incidence of multidrug, extensive drug, and Pan-drug resistant A. baumannii. Therefore, the current review aims to know the various mechanisms of carbapenem resistance, categorize and discuss carbapenemases encoding genes and various mobile genetic elements, and the prevalence of carbapenemase genes in recent years in A. baumannii from various geographical regions.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Kalpana Angadi
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Savita Jadhav
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India,Correspondence: Savita Jadhav, Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India, Tel +919284434364, Email
| |
Collapse
|
6
|
Meyer C, Lucaβen K, Gerson S, Xanthopoulou K, Wille T, Seifert H, Higgins PG. Contribution of RND-Type Efflux Pumps in Reduced Susceptibility to Biocides in Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:1635. [PMID: 36421279 PMCID: PMC9686468 DOI: 10.3390/antibiotics11111635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
Bacterial efflux pumps are among the key mechanisms of resistance against antibiotics and biocides. We investigated whether differential expression levels of the RND-type efflux pumps AdeABC and AdeIJK impacted the susceptibility to commonly used biocides in multidrug-resistant Acinetobacter baumannii. Susceptibility testing and time-kill assays of defined laboratory and clinical A. baumannii strains with different levels of efflux pump expression were performed after exposure to the biocides benzalkonium chloride, chlorhexidine digluconate, ethanol, glucoprotamin, octenidine dihydrochloride, and triclosan. While the impact of efflux pump expression on susceptibility to the biocides was limited, noticeable differences were found in kill curves, where AdeABC expression correlated with greater survival after exposure to benzalkonium chloride, chlorhexidine digluconate, glucoprotamin, and octenidine dihydrochloride. AdeABC expression levels did not impact kill kinetics with ethanol nor triclosan. In conclusion, these data indicate that the overexpression of the RND-type efflux pumps AdeABC and AdeIJK contributes to the survival of A. baumannii when exposed to residual concentrations of biocides.
Collapse
Affiliation(s)
- Christina Meyer
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
| | - Kai Lucaβen
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Stefanie Gerson
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
| | - Thorsten Wille
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| |
Collapse
|
7
|
López-Siles M, McConnell MJ, Martín-Galiano AJ. Identification of Promoter Region Markers Associated With Altered Expression of Resistance-Nodulation-Division Antibiotic Efflux Pumps in Acinetobacter baumannii. Front Microbiol 2022; 13:869208. [PMID: 35663863 PMCID: PMC9161033 DOI: 10.3389/fmicb.2022.869208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic alterations leading to the constitutive upregulation of specific efflux pumps contribute to antibacterial resistance in multidrug resistant bacteria. The identification of such resistance markers remains one of the most challenging tasks of genome-level resistance predictors. In this study, 487 non-redundant genetic events were identified in upstream zones of three operons coding for resistance-nodulation-division (RND) efflux pumps of 4,130 Acinetobacter baumannii isolates. These events included insertion sequences, small indels, and single nucleotide polymorphisms. In some cases, alterations explicitly modified the expression motifs described for these operons, such as the promoter boxes, operators, and Shine-Dalgarno sequences. In addition, changes in DNA curvature and mRNA secondary structures, which are structural elements that regulate expression, were also calculated. According to their influence on RND upregulation, the catalog of upstream modifications were associated with “experimentally verified,” “presumed,” and “probably irrelevant” degrees of certainty. For experimental verification, DNA of upstream sequences independently carrying selected markers, three for each RND operon, were fused to a luciferase reporter plasmid system. Five out of the nine selected markers tested showed significant increases in expression with respect to the wild-type sequence control. In particular, a 25-fold expression increase was observed with the ISAba1 insertion sequence upstream the adeABC pump. Next, overexpression of each of the three multi-specific RND pumps was linked to their respective antibacterial substrates by a deep A. baumannii literature screen. Consequently, a data flow framework was then developed to link genomic upregulatory RND determinants to potential antibiotic resistance. Assignment of potential increases in minimal inhibitory concentrations at the “experimentally verified” level was permitted for 42 isolates to 7–8 unrelated antibacterial agents including tigecycline, which is overlooked by conventional resistome predictors. Thus, our protocol may represent a time-saving filter step prior to laborious confirmation experiments for efflux-driven resistance. Altogether, a computational-experimental pipeline containing all components required for identifying the upstream regulatory resistome is proposed. This schema may provide the foundational stone for the elaboration of tools approaching antibiotic efflux that complement routine resistome predictors for preventing antimicrobial therapy failure against difficult-to-threat bacteria.
Collapse
|
8
|
Characterization of Amino Acid Substitutions in the Two-Component Regulatory System AdeRS Identified in Multidrug-Resistant Acinetobacter baumannii. mSphere 2021; 6:e0070921. [PMID: 34817237 PMCID: PMC8612257 DOI: 10.1128/msphere.00709-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Acinetobacter baumannii, resistance-nodulation-cell division (RND)-type efflux is a resistance mechanism of great importance since it contributes to reduced susceptibility to multiple antimicrobial compounds. Some mutations within the genes encoding the two-component regulatory system AdeRS appear to play a major role in increased expression of the RND efflux pump AdeABC and, consequently, in reduced antimicrobial susceptibility, as they are commonly observed in multidrug-resistant (MDR) A. baumannii. In the present study, the impact of frequently identified amino acid substitutions, namely, D21V and D26N in AdeR and T156M in AdeS, on adeB expression, efflux activity, and antimicrobial susceptibility was investigated. Reverse transcription-quantitative PCR (qRT-PCR) studies revealed significantly increased adeB expression caused by D26N (AdeR) and T156M (AdeS). In addition, accumulation assays have shown that these mutations induce increased efflux activity. Subsequently, antimicrobial susceptibility testing via agar dilution and broth microdilution confirmed the importance of these substitutions for the MDR phenotype, as the MICs for various antimicrobials of different classes were increased. In contrast, the amino acid substitution D21V in AdeR did not lead to increased adeB expression and did not reduce antimicrobial susceptibility. This study demonstrates the impact of the D26N (AdeR) and T156M (AdeS) amino acid substitutions, highlighting that these regulators represent promising targets for interfering with efflux activity to restore antimicrobial susceptibility. IMPORTANCE The active efflux of antimicrobials by bacteria can lead to antimicrobial resistance and persistence and can affect multiple different classes of antimicrobials. Efflux pumps are tightly regulated, and their overexpression can be mediated by changes in their regulators. Identifying these changes is one step in the direction of resistance prediction, but it also opens the possibility of targeting efflux pump regulation as a strategy to overcome antimicrobial resistance. Here, we have investigated commonly found changes in the regulators of the main efflux pumps in Acinetobacter baumannii.
Collapse
|
9
|
Efflux Pump Overexpression Profiling in Acinetobacter baumannii and Study of New 1-(1-Naphthylmethyl)-Piperazine Analogs as Potential Efflux Inhibitors. Antimicrob Agents Chemother 2021; 65:e0071021. [PMID: 34097483 DOI: 10.1128/aac.00710-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of efflux pumps extruding antibiotics currently used for the treatment of Acinetobacter baumannii infections has been described as an important mechanism causing antibiotic resistance. The first aim of this work was to phenotypically evaluate the overexpression of efflux pumps on a collection of 124 ciprofloxacin-resistant A. baumannii strains. An overexpression of genes encoding one or more efflux pumps was obtained for 19 out of the 34 strains with a positive phenotypic efflux (56%). The most frequent genes overexpressed were those belonging to the RND family, with adeJ being the most prevalent (50%). Interestingly, efflux pump genes coding for MATE and MFS families were also overexpressed quite frequently: abeM (32%) and abaQ (26%). The second aim was to synthesize 1-(1-naphthylmethyl)-piperazine analogs as potential new efflux pump inhibitors and biologically evaluate them against strains with a positive phenotypic efflux. Quinoline and pyridine analogs were found to be more effective than their parent compound, 1-(1-naphthyl methyl)-piperazine. Stereochemistry also played an important part in the inhibitory activity, as quinoline derivative (R)-3a was identified as being the most effective and less cytotoxic. Its inhibitory activity was also correlated with the number of efflux pumps expressed by a strain. The results obtained in this work suggest that quinoline analogs of 1-(1-naphthylmethyl)-piperazine are promising leads in the development of new anti-Acinetobacter baumannii therapeutic alternatives in combination with antibiotics for which an efflux-mediated resistance is suspected.
Collapse
|
10
|
Comparison of the Acinetobacter baumannii Reference Strains ATCC 17978 and ATCC 19606 in Antimicrobial Resistance Mediated by the AdeABC Efflux Pump. Antimicrob Agents Chemother 2021; 65:e0057021. [PMID: 34097477 DOI: 10.1128/aac.00570-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Acinetobacter baumannii RND efflux pump AdeABC is regulated by the 2-component regulator AdeRS. In this study, we compared the regulation and expression of AdeABC of the reference strains ATCC 17978 and ATCC 19606. A clearly stronger efflux activity was demonstrated for ATCC 19606. An amino acid substitution at residue 172 of adeS was identified as a potential cause for differential expression of the pump. Therefore, we recommend caution with exclusively using single reference strains for research.
Collapse
|
11
|
Molecular Characterization of German Acinetobacter baumannii Isolates and Multilocus Sequence Typing (MLST) Analysis Based on WGS Reveals Novel STs. Pathogens 2021; 10:pathogens10060690. [PMID: 34206118 PMCID: PMC8229575 DOI: 10.3390/pathogens10060690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/14/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a major cause of severe nosocomial infections worldwide. The emergence of infections associated with A. baumannii poses a significant health risk in Germany. A. baumannii is part of the ACB complex and is difficult to distinguish from other species phenotypically, necessitating its reliable identification. The current study analyzed 89 A. baumannii strains from human and non-human origins by matrix-assisted laser desorption/ionization (MALDI–TOF) and PCR detection of intrinsic blaOXA-51-like carbapenemase, blaOXA-23-like, blaOXA-24-like, blaOXA-58-like, and ISAba 1 genes. Whole-genome sequencing (WGS) was applied for species confirmation and strain type determination. Combining the molecular detection of the intrinsic blaOXA-51-like carbapenemase gene together with MALDI–TOF with a score value of >2.300 proved to be a suitable tool for A. baumannii identification. WGS data for all of the sequenced strains confirmed the identity of all A. baumannii strains. The Pasteur scheme successfully assigned 79.7% of the strains into distinct STs, while the Oxford scheme succeeded in allocating only 42.7% of isolates. Multilocus sequence typing (MLST) analysis based on the Pasteur scheme identified 16 STs. ST/241 was the most prevalent in samples from non-human origin, whereas ST/2 was predominant in human samples. Furthermore, eight isolates of non-human origin were allocated to seven new STs (ST/1410, ST/1414, ST/1416, ST/1417, ST/1418, ST/1419, and ST/1421). Ten isolates from non-human origin could not be typed since new alleles were observed in the loci Pas_cpn60, Pas_rpoB, and Pas_gltA. MLST analysis based on the Pasteur scheme was more appropriate than the Oxford scheme for the current group of A. baumannii.
Collapse
|
12
|
Lopes SP, Jorge P, Sousa AM, Pereira MO. Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice. Crit Rev Microbiol 2021; 47:162-191. [PMID: 33527850 DOI: 10.1080/1040841x.2020.1863329] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial therapy is facing a worrisome and underappreciated challenge, the phenomenon of heteroresistance (HR). HR has been gradually documented in clinically relevant pathogens (e.g. Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia spp., Acinetobacter baumannii, Klebsiella pneumoniae, Candida spp.) towards several drugs and is believed to complicate the clinical picture of chronic infections. This type of infections are typically mediated by polymicrobial biofilms, wherein microorganisms inherently display a wide range of physiological states, distinct metabolic pathways, diverging refractory levels of stress responses, and a complex network of chemical signals exchange. This review aims to provide an overview on the relevance, prevalence, and implications of HR in clinical settings. Firstly, related terminologies (e.g. resistance, tolerance, persistence), sometimes misunderstood and overlapped, were clarified. Factors generating misleading HR definitions were also uncovered. Secondly, the recent HR incidences reported in clinically relevant pathogens towards different antimicrobials were annotated. The potential mechanisms underlying such occurrences were further elucidated. Finally, the link between HR and biofilms was discussed. The focus was to recognize the presence of heterogeneous levels of resistance within most biofilms, as well as the relevance of polymicrobial biofilms in chronic infectious diseases and their role in resistance spreading. These topics were subject of a critical appraisal, gaining insights into the ascending clinical implications of HR in antimicrobial resistance spreading, which could ultimately help designing effective therapeutic options.
Collapse
Affiliation(s)
- Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Jorge
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Ana Margarida Sousa
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
13
|
Xu Q, Hua X, He J, Zhang D, Chen Q, Zhang L, Loh B, Leptihn S, Wen Y, Higgins PG, Yu Y, Zhou Z. The distribution of mutations and hotspots in transcription regulators of resistance-nodulation-cell division efflux pumps in tigecycline non-susceptible Acinetobacter baumannii in China. Int J Med Microbiol 2020; 310:151464. [PMID: 33130415 DOI: 10.1016/j.ijmm.2020.151464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Acinetobacter baumannii has emerged as a problematic hospital pathogen and tigecycline is among the few remaining antibiotics retaining activity against multidrug-resistant A. baumannii. This study was aimed to elucidate the tigecycline resistance mechanisms in 28 unique clinical A. baumannii strains from nine provinces in China. METHODS Whole genome sequences were obtained via Illumina HiSeq sequencing and regulatory genes of efflux pumps were analyzed. Minimal inhibitory concentrations (MICs) were determined by agar/microbroth dilution according to the guidelines recommended by Clinical and Laboratory Standards Institute (CLSI). Tigecycline susceptibility data was interpreted using breakpoints for Enterobacterales recommended by EUCAST v8.1. RESULTS The majority of isolates belonged to the international clonal lineage IC2 (n = 27, 96.4%). Four isolates were considered tigecycline-intermediate (MIC = 2 mg/L), twenty-four isolates were tigecycline-resistant. The insertion of ISAba1 in adeS was found in six isolates and was the most prevalent insertion element (IS). In four isolates we observed an insertion of ISAba1 in adeN, and two of them had IS26 insertions. Two mutations in adeN (deletion and premature stop codon) were observed only in the MIC = 4 mg/L isolates. Other mutations in adeRS (amino acid insertion/substitutions and premature stop codons) were only detected in the MIC ≥ 8 group. The novel substitutions E219 K in adeR and A130 T in adeS were observed in five and four isolates respectively, suggesting a mutational hotspot. CONCLUSIONS This study demonstrates that changes in transcription regulators were important mechanisms in tigecycline resistance in A. baumannii. Also, we identified several chromosomal hotspots that can be used for prediction of tigecycline resistance.
Collapse
Affiliation(s)
- Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Qiong Chen
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, China
| | - Yurong Wen
- Department of Talent Highland, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany; German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Karakonstantis S. A systematic review of implications, mechanisms, and stability of in vivo emergent resistance to colistin and tigecycline in Acinetobacter baumannii. J Chemother 2020; 33:1-11. [PMID: 32677578 DOI: 10.1080/1120009x.2020.1794393] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The potential of A. baumannii for acquired resistance to last resort antibiotics (colistin and tigecycline) during treatment has important clinical implications, especially when dealing with patients failing to improve despite treatment with an active antimicrobial. However, the relevant literature remains scattered. Therefore, a systematic search was conducted in PubMed and Scopus. Several studies reported emergence of resistance to colistin or tigecycline during treatment, in most cases (86%) resulting in persistent or recurrent infections, especially in cases of emergent resistance without fitness cost. Lipopolysaccharide modification in the case of colistin and overexpression of efflux pumps in the case of tigecycline were the main mechanisms of resistance. Emergent colistin resistance is often associated with fitness cost which may result in re-emergence of the fitter and more virulent colistin susceptible strain after cessation of antibiotic pressure. Prospective studies are needed to determine the frequency of emergent resistance during treatment and its impact on patient outcomes.
Collapse
Affiliation(s)
- Stamatis Karakonstantis
- Internal Medicine Department, General Hospital of Heraklion Venizeleio, Heraklion, Crete, Greece.,School of medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
15
|
Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020; 8:microorganisms8060935. [PMID: 32575913 PMCID: PMC7355832 DOI: 10.3390/microorganisms8060935] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges for the clinical sector and industry, environment and societal development. One of the most important pathogens responsible for severe nosocomial infections is Acinetobacter baumannii, a Gram-negative bacterium from the Moraxellaceae family, due to its various resistance mechanisms, such as the β-lactamases production, efflux pumps, decreased membrane permeability and altered target site of the antibiotic. The enormous adaptive capacity of A. baumannii and the acquisition and transfer of antibiotic resistance determinants contribute to the ineffectiveness of most current therapeutic strategies, including last-line or combined antibiotic therapy. In this review, we will present an update of the antibiotic resistance profiles and underlying mechanisms in A. baumannii and the current progress in developing innovative strategies for combating multidrug-resistant A. baumannii (MDRAB) infections.
Collapse
|
16
|
Spatio-Temporal Distribution of Acinetobacter baumannii in Germany-A Comprehensive Systematic Review of Studies on Resistance Development in Humans (2000-2018). Microorganisms 2020; 8:microorganisms8030375. [PMID: 32155886 PMCID: PMC7143851 DOI: 10.3390/microorganisms8030375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter (A.) baumannii has gained global notoriety as a significant nosocomial pathogen because it is frequently associated with multi-drug resistance and hospital-based outbreaks. There is a substantial difference in the incidence of A. baumannii infections between different countries and within Germany. However, its continuous spread within Germany is a matter of concern. A systematic literature search and analysis of the literature published between 2000 and 2018 on A. baumannii in humans was performed. Forty-four studies out of 216 articles met the criteria for inclusion, and were selected and reviewed. The number of published articles is increasing over time gradually. Case reports and outbreak investigations are representing the main body of publications. North Rhine-Westphalia, Hesse and Baden-Wuerttemberg were states with frequent reports. Hospitals in Cologne and Frankfurt were often mentioned as specialized institutions. Multiresistant strains carrying diverse resistance genes were isolated in 13 of the 16 German states. The oxacillinase blaOXA-23-like, intrinsic blaOXA-51-like, blaOXA-58 variant, blaNDM-1, blaGES-11, blaCTX-M and blaTEM are the most predominant resistance traits found in German A. baumannii isolates. Five clonal lineages IC-2, IC-7, IC-1, IC-4 and IC-6 and six sequence types ST22, ST53, ST195, ST218, ST944/ST78 and ST348/ST2 have been reported. Due to multidrug resistance, colistin, tigecycline, aminoglycosides, fosfomycin, ceftazidime/avibactam and ceftolozan/tazobactam were often reported to be the only effective antibiotics left to treat quadruple multi-resistant Gram-negative (4MRGN) A. baumannii. Dissemination and infection rates of A. baumannii are on the rise nationwide. Hence, several aspects of resistance development and pathogenesis are not fully understood yet. Increased awareness, extensive study of mechanisms of resistance and development of alternative strategies for treatment are required. One-Health genomic surveillance is needed to understand the dynamics of spread, to identify the main reservoirs and routes of transmission and to develop targeted intervention strategies.
Collapse
|
17
|
Tsai YK, Liou CH, Lin JC, Fung CP, Chang FY, Siu LK. Effects of different resistance mechanisms on antimicrobial resistance in Acinetobacter baumannii: a strategic system for screening and activity testing of new antibiotics. Int J Antimicrob Agents 2020; 55:105918. [PMID: 32007593 DOI: 10.1016/j.ijantimicag.2020.105918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 01/08/2023]
Abstract
A total of 50 engineered strains with various antimicrobial resistance mechanisms were constructed by in-frame deletion, site-directed mutagenesis and plasmid transformation from two fully-susceptible strains (Acinetobacter baumannii KAB1544 and ATCC 17978), including 31 strains with chromosomally-mediated resistance and 19 with plasmid-mediated resistance. Each of the 50 resistance mechanisms showed similar effects on the minimum inhibitory concentrations (MICs) of KAB1544 and ATCC 17978. Compared with the parental strains, the engineered strains related to some efflux pumps showed a significant (≥4-fold) difference in the MICs of β-lactams, quinolones, aminoglycosides, tetracyclines, folate pathway inhibitors and/or phenicols, whereas no significant effects on the MICs were found for the engineered strains lacking OmpA, CarO, Omp25, Omp33, OmpW or OprD. Mechanisms due to GyrA/ParC mutations, β-lactamases, aminoglycoside-modifying enzymes, 16S rRNA methylases and tet resistance genes contributed their corresponding resistance, as previously published. In conclusion, strains constructed in this study have clear resistance mechanisms and can be used to screen and assess compounds against specific resistance mechanisms for treating Acinetobacter. In addition to our previously published system for Enterobacteriaceae, the combination of these two systems could increase the coverage of bacterial types for drug assessment and facilitate the selection process of new candidates in drug development against drug-resistant superbugs.
Collapse
Affiliation(s)
- Yu-Kuo Tsai
- KeMyth Biotech Company, Incubation Center, National Health Research Institutes, Miaoli, Taiwan
| | - Ci-Hong Liou
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Phone Fung
- Section of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - L Kristopher Siu
- KeMyth Biotech Company, Incubation Center, National Health Research Institutes, Miaoli, Taiwan; Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
18
|
Gerson S, Lucaßen K, Wille J, Nodari CS, Stefanik D, Nowak J, Wille T, Betts JW, Roca I, Vila J, Cisneros JM, Seifert H, Higgins PG. Diversity of amino acid substitutions in PmrCAB associated with colistin resistance in clinical isolates of Acinetobacter baumannii. Int J Antimicrob Agents 2019; 55:105862. [PMID: 31837449 DOI: 10.1016/j.ijantimicag.2019.105862] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the mechanisms of colistin resistance in 64 Acinetobacter baumannii isolates obtained from patients with ventilator-associated pneumonia hospitalised in Greece, Italy and Spain. In total, 31 A. baumannii isolates were colistin-resistant. Several novel amino acid substitutions in PmrCAB were found in 27 colistin-resistant A. baumannii. Most substitutions were detected in PmrB, indicating the importance of the histidine kinase for colistin resistance. In two colistin-resistant isolates, 93 amino acid changes were observed in PmrCAB compared with A. baumannii ACICU, and homologous recombination across different clonal lineages was suggested. Analysis of gene expression revealed increased pmrC expression in isolates harbouring pmrCAB mutations. Complementation of A. baumannii ATCC 19606 and ATCC 17978 with a pmrAB variant revealed increased pmrC expression but unchanged colistin MICs, indicating additional unknown factors associated with colistin resistance. Moreover, a combination of PmrB and PmrC alterations was associated with very high colistin MICs, suggesting accumulation of mutations as the mechanism for high-level resistance. The pmrC homologue eptA was detected in 29 colistin-susceptible and 26 colistin-resistant isolates. ISAba1 was found upstream of eptA in eight colistin-susceptible and one colistin-resistant isolate and eptA was disrupted by ISAba125 in two colistin-resistant isolates. Whilst in most isolates an association of eptA with colistin resistance was excluded, in one isolate an amino acid substitution in EptA (R127L) combined with a point mutation in ISAba1 upstream of eptA contributed to elevated colistin MICs. This study helps to gain an insight into the diversity and complexity of colistin resistance in A. baumannii.
Collapse
Affiliation(s)
- Stefanie Gerson
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Kai Lucaßen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | - Carolina S Nodari
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany; Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil
| | - Danuta Stefanik
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Jennifer Nowak
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Thorsten Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Jonathan W Betts
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Ignasi Roca
- Department of Clinical Microbiology and ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology and ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Jose M Cisneros
- Department of Infectious Diseases, Microbiology, and Preventive Medicine, Infectious Diseases Research Group, Institute of Biomedicine of Seville (IBiS), University of Seville/CSIC/University Hospital Virgen del Rocío, Seville, Spain
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Germany.
| |
Collapse
|
19
|
Gerson S, Nowak J, Zander E, Ertel J, Wen Y, Krut O, Seifert H, Higgins PG. Diversity of mutations in regulatory genes of resistance-nodulation-cell division efflux pumps in association with tigecycline resistance in Acinetobacter baumannii. J Antimicrob Chemother 2019; 73:1501-1508. [PMID: 29554339 DOI: 10.1093/jac/dky083] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/15/2018] [Indexed: 01/06/2023] Open
Abstract
Objectives To investigate the mechanisms of tigecycline resistance in isogenic Acinetobacter baumannii isolate pairs as well as 65 unique clinical A. baumannii isolates obtained during the MagicBullet clinical trial from Greece, Italy and Spain. Methods A. baumannii isolates were subjected to WGS and the regulatory genes of resistance-nodulation-cell division (RND)-type efflux pumps were analysed. MICs were determined by agar dilution and the expression of RND-type efflux pumps was measured by semi-quantitative RT-PCR. Results In isolate pairs, disruption of adeS or adeN by ISs increased adeB or adeJ expression and conferred increased resistance to at least three antimicrobial classes, respectively. The insertion of ISAba1 in adeN was observed in more than 30% of tested isolates and was the most prevalent IS. Furthermore, the insertion of ISAba125 and ISAba27 into adeN was observed for the first time in A. baumannii isolates. Besides ISs, several different mutations were observed in adeN (e.g. deletions and premature stop codons), all of which led to increased tigecycline MICs. Moreover, several amino acid substitutions were detected in AdeRS, AdeN and AdeL. Of note, the substitutions D21V, G25S and D26N in AdeR were found in multiple sequences and suggest a mutational hotspot. Conclusions This study provides an insight into the different mechanisms associated with tigecycline resistance using a genomic approach and points out the importance of considering adeRS and adeN as markers for tigecycline-resistant A. baumannii isolates.
Collapse
Affiliation(s)
- Stefanie Gerson
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Jennifer Nowak
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Esther Zander
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Julia Ertel
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Yurong Wen
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Oleg Krut
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany.,Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
20
|
Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol 2019; 17:479-496. [DOI: 10.1038/s41579-019-0218-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 02/08/2023]
|
21
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
22
|
Investigation of Novel pmrB and eptA Mutations in Isogenic Acinetobacter baumannii Isolates Associated with Colistin Resistance and Increased Virulence In Vivo. Antimicrob Agents Chemother 2019; 63:AAC.01586-18. [PMID: 30617096 DOI: 10.1128/aac.01586-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Colistin resistance in Acinetobacter baumannii is of great concern and is a threat to human health. In this study, we investigate the mechanisms of colistin resistance in four isogenic pairs of A. baumannii isolates displaying an increase in colistin MICs. A mutation in pmrB was detected in each colistin-resistant isolate, three of which were novel (A28V, I232T, and ΔL9-G12). Increased expression of pmrC was shown by semi-quantitative reverse transcription-PCR (qRT-PCR) for three colistin-resistant isolates, and the addition of phosphoethanolamine (PEtN) to lipid A by PmrC was revealed by mass spectrometry. Interestingly, PEtN addition was also observed in some colistin-susceptible isolates, indicating that this resistance mechanism might be strain specific and that other factors could contribute to colistin resistance. Furthermore, the introduction of pmrAB carrying the short amino acid deletion ΔL9-G12 into a pmrAB knockout strain resulted in increased pmrC expression and lipid A modification, but colistin MICs remained unchanged, further supporting the strain specificity of this colistin resistance mechanism. Of note, a mutation in the pmrC homologue eptA and a point mutation in ISAba1 upstream of eptA were associated with colistin resistance and increased eptA expression, which is a hitherto undescribed resistance mechanism. Moreover, no cost of fitness was observed for colistin-resistant isolates, while the virulence of these isolates was increased in a Galleria mellonella infection model. Although the mutations in pmrB were associated with colistin resistance, PEtN addition appears not to be the sole factor leading to colistin resistance, indicating that the mechanism of colistin resistance is far more complex than previously suspected and is potentially strain specific.
Collapse
|
23
|
The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat Microbiol 2019; 4:504-514. [PMID: 30742072 DOI: 10.1038/s41564-018-0342-0] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
When choosing antibiotics to treat bacterial infections, it is assumed that the susceptibility of the target bacteria to an antibiotic is reflected by laboratory estimates of the minimum inhibitory concentration (MIC) needed to prevent bacterial growth. A caveat of using MIC data for this purpose is heteroresistance, the presence of a resistant subpopulation in a main population of susceptible cells. We investigated the prevalence and mechanisms of heteroresistance in 41 clinical isolates of the pathogens Escherichia coli, Salmonella enterica, Klebsiella pneumoniae and Acinetobacter baumannii against 28 different antibiotics. For the 766 bacteria-antibiotic combinations tested, as much as 27.4% of the total was heteroresistant. Genetic analysis demonstrated that a majority of heteroresistance cases were unstable, with an increased resistance of the subpopulations resulting from spontaneous tandem amplifications, typically including known resistance genes. Using mathematical modelling, we show how heteroresistance in the parameter range estimated in this study can result in the failure of antibiotic treatment of infections with bacteria that are classified as antibiotic susceptible. The high prevalence of heteroresistance with the potential for treatment failure highlights the limitations of MIC as the sole criterion for susceptibility determinations. These results call for the development of facile and rapid protocols to identify heteroresistance in pathogens.
Collapse
|
24
|
Lari AR, Ardebili A, Hashemi A. AdeR-AdeS mutations & overexpression of the AdeABC efflux system in ciprofloxacin-resistant Acinetobacter baumannii clinical isolates. Indian J Med Res 2018; 147:413-421. [PMID: 29998878 PMCID: PMC6057251 DOI: 10.4103/ijmr.ijmr_644_16] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background & objectives: Overexpression of efflux pumps is a cause of acquired resistance to fluoroquinolones in Acinetobacter baumannii. The present study was done to investigate the presence and overexpression of AdeABC efflux system and to analyze the sequences of AdeR-AdeS regulatory system in ciprofloxacin-resistant A. baumannii isolates. Methods: Susceptibility of 50 clinical A. baumannii isolates to ciprofloxacin, imipenem, ceftazidime, cefepime and gentamicin antimicrobials was evaluated by agar dilution method. Isolates were screened for the evidence of active efflux pump. Isolates were also examined for adeR-adeS and adeB efflux genes by polymerase chain reaction (PCR). The adeR and adeS regulatory genes were sequenced to detect amino acid substitutions. Expression of adeB was evaluated by quantitative reverse-transcriptase PCR. Results: There were high rates of resistance to ciprofloxacin (88%), ceftazidime (88%), cefepime (74%) and imipenem (72%) and less resistance rate to gentamicin (64%). Phenotypic assay showed involvement of active efflux in decreased susceptibility to ciprofloxacin among 16 isolates. The 12.27-fold increase and 4.25-fold increase were found in adeB expression in ciprofloxacin-full-resistant and ciprofloxacin-intermediate-resistant isolates, respectively. Several effective mutations, including A91V, A136V, L192R, A94V, G103D and G186V, were detected in some domains of AdeR-AdeS regulators in the overexpressed ciprofloxacin-resistant isolates. Interpretation & conclusions: The results of this study indicated that overexpression of the AdeABC efflux pump was important to reduce susceptibility to ciprofloxacin and cefepime in A. baumannii that, in turn, could be triggered by alterations in the AdeR-AdeS two-component system. However, gene expression alone does not seem adequate to explain multidrug resistance phenomenon. These results could help plan improved active efflux pump inhibitors.
Collapse
Affiliation(s)
- Abdolaziz Rastegar Lari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdollah Ardebili
- Laboratory Sciences Research Center; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Hashemi
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Xing Z, Wei L, Jiang X, Conroy J, Glenn S, Bshara W, Yu T, Pao A, Tanaka S, Kawai A, Choi C, Wang J, Liu S, Morrison C, Yu YE. Analysis of mutations in primary and metastatic synovial sarcoma. Oncotarget 2018; 9:36878-36888. [PMID: 30627328 PMCID: PMC6305143 DOI: 10.18632/oncotarget.26416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Synovial sarcoma is the most common pediatric non-rhabdomyosarcoma soft tissue sarcoma and accounts for about 8-10% of all soft tissue sarcoma in childhood and adolescence. The presence of a chromosomal translocation-associated SS18-SSX-fusion gene is causally linked to development of primary synovial sarcoma. Metastases occur in approximately 50-70% of synovial sarcoma cases with yet unknown mechanisms, which led to about 70-80% mortality rate in five years. To explore the possibilities to investigate metastatic mechanisms of synovial sarcoma, we carried out the first genome-wide search for potential genetic biomarkers and drivers associated with metastasis by comparative mutational profiling of 18 synovial sarcoma samples isolated from four patients carrying the primary tumors and another four patients carrying the metastatic tumors through whole exome sequencing. Selected from the candidates yielded from this effort, we examined the effect of the multiple missense mutations of ADAM17, which were identified solely in metastatic synovial sarcoma. The mutant alleles as well as the wild-type control were expressed in the mammalian cells harboring the SS18-SSX1 fusion gene. The ADAM17-P729H mutation was shown to enhance cell migration, a phenotype associated with metastasis. Therefore, like ADAM17-P729H, other mutations we identified solely in metastatic synovial sarcoma may also have the potential to serve as an entry point for unraveling the metastatic mechanisms of synovial sarcoma.
Collapse
Affiliation(s)
- Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiaoling Jiang
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jeffrey Conroy
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA
| | - Sean Glenn
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Annie Pao
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Christopher Choi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Carl Morrison
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA.,Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
26
|
Bahador A, Farshadzadeh Z, Raoofian R, Mokhtaran M, Pourakbari B, Pourhajibagher M, Hashemi FB. Association of virulence gene expression with colistin-resistance in Acinetobacter baumannii: analysis of genotype, antimicrobial susceptibility, and biofilm formation. Ann Clin Microbiol Antimicrob 2018; 17:24. [PMID: 29859115 PMCID: PMC5984448 DOI: 10.1186/s12941-018-0277-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/19/2018] [Indexed: 12/01/2022] Open
Abstract
Background Acinetobacter baumannii causes difficult-to-treat nosocomial infections, which often lead to morbidity due to the development of antimicrobial drug resistance and expression of virulence genes. Data regarding the association of resistance to colistin, a last treatment option, and the virulence gene expression of A. baumannii is scarce. Methods We evaluated the MLVA genotype, antimicrobial resistance, and biofilm formation of 100 A. baumannii isolates from burn patients, and further compared the in vitro and in vivo expression of four virulence genes among five colistin-resistant A. baumannii (Cst-R-AB) isolates. Five Cst-R-AB isolates were tested; one from the present study, and four isolated previously. Results Our results showed that reduced expression of recA, along with increased in vivo expression of lpsB, dnaK, and blsA; are associated with colistin resistance among Cst-R-AB isolates. Differences in virulence gene expressions among Cst-R-AB isolates, may in part explain common discrepant in vitro vs. in vivo susceptibility data during treatment of infections caused by Cst-R-AB. Conclusions Our findings highlight the intricate relationship between colistin-resistance and virulence among A. baumannii isolates, and underscore the importance of examining the interactions between virulence and antimicrobial resistance toward efforts to control the spread of multidrug-resistant A. baumannii (MDR-AB) isolates, and also to reduce disease severity in burn patients with MDR-AB infection. Electronic supplementary material The online version of this article (10.1186/s12941-018-0277-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Laser Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Farshadzadeh
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Reza Raoofian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.,Innovative Research Center, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Masoumeh Mokhtaran
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Babak Pourakbari
- Pediatrics Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran.
| |
Collapse
|
27
|
Zhang Y, Li Z, He X, Ding F, Wu W, Luo Y, Fan B, Cao H. Overproduction of efflux pumps caused reduced susceptibility to carbapenem under consecutive imipenem-selected stress in Acinetobacter baumannii. Infect Drug Resist 2018; 11:457-467. [PMID: 29636625 PMCID: PMC5880185 DOI: 10.2147/idr.s151423] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Acinetobacter baumannii is an important pathogen in the nosocomial infections worldwide. Combining with carbapenemases, efflux pumps and outer membrane proteins (OMPs) have been thought to affect the development of carbapenem resistance in A. baumannii. This study aimed to investigate the contributions of different efflux pumps and OMPs in developing carbapenem resistance in a clinical isolate of A. baumannii and reveal the possible mechanism of overproduction of main efflux pumps. PATIENTS AND METHODS In this study, an imipenem-susceptible clinical isolate was identified as A. baumannii and named SZE. Several common carbapenemases were detected by polymerase chain reaction (PCR). Imipenem-selected mutants were selected from SZE by serial subcultivations on Mueller-Hinton agar, and the minimum inhibitory concentration (MIC) was detected. Gene expressions of four families of efflux pumps, five OMPs, and blaOXA-51 were determined by reverse transcription quantitative PCR, and comparisons were made between SZE strain and the imipenem-selected mutants. The adeRS system in SZE and its mutant was sequenced and aligned. RESULTS Under consecutive imipenem-selected stress, the MIC to imipenem increased gradually from 0.125 μg/mL to 8 μg/mL. The effect of resistance inducement was almost neutralized when treated with an efflux pump inhibitor. The expression of efflux pumps, adeB, adeG, and adeJ, was increased by 6.9-, 4.0-, and 2.1-fold in mutants, respectively, compared to SZE. A single mutation (G to A) at position 58 was detected in the regulatory adeRS system and possibly upregulated the adeB expression, and then affected the carbapenem resistance in A. baumannii strains. CONCLUSION In conclusion, under consecutive imipenem-selected stress in vitro, A. baumannii strain evolved the ability to reduce susceptibility to a variety of antimicrobials by overproduction of efflux pumps. Especially, the resistance-nodulation-cell division super family and a nucleotide mutant in adeRS regulating system caused the overexpression of adeABC.
Collapse
Affiliation(s)
- Yanpeng Zhang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
- Laboratory Department of the First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Zhuocheng Li
- Laboratory Department of the First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Fanglin Ding
- Laboratory Department of the First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Weiqing Wu
- Laboratory Department of the First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Yong Luo
- Laboratory Department of the First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Bing Fan
- Laboratory Department of the First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
28
|
Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X, Cleland H, Spelman DW, Padiglione A, Peleg AY, Holt KE. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb Genom 2018; 4. [PMID: 29547094 PMCID: PMC5885017 DOI: 10.1099/mgen.0.000165] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acinetobacter baumannii is a common causative agent of hospital-acquired infections and a leading cause of infection in burns patients. Carbapenem-resistant A. baumannii is considered a major public-health threat and has been identified by the World Health Organization as the top priority organism requiring new antimicrobials. The most common mechanism for carbapenem resistance in A. baumannii is via horizontal acquisition of carbapenemase genes. In this study, we sampled 20 A. baumannii isolates from a patient with extensive burns, and characterized the evolution of carbapenem resistance over a 45 day period via Illumina and Oxford Nanopore sequencing. All isolates were multidrug resistant, carrying two genomic islands that harboured several antibiotic-resistance genes. Most isolates were genetically identical and represented a single founder genotype. We identified three novel non-synonymous substitutions associated with meropenem resistance: F136L and G288S in AdeB (part of the AdeABC efflux pump) associated with an increase in meropenem MIC to ≥8 µg ml−1; and A515V in FtsI (PBP3, a penicillin-binding protein) associated with a further increase in MIC to 32 µg ml−1. Structural modelling of AdeB and FtsI showed that these mutations affected their drug-binding sites and revealed mechanisms for meropenem resistance. Notably, one of the adeB mutations arose prior to meropenem therapy but following ciprofloxacin therapy, suggesting exposure to one drug whose resistance is mediated by the efflux pump can induce collateral resistance to other drugs to which the bacterium has not yet been exposed.
Collapse
Affiliation(s)
- Jane Hawkey
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David B Ascher
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Louise M Judd
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ryan R Wick
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xenia Kostoulias
- 2Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heather Cleland
- 3Victorian Adult Burns Service, The Alfred Hospital, Melbourne, Victoria 3004, Australia.,4Department of Surgery, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Denis W Spelman
- 5Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria 3004, Australia.,6Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Alex Padiglione
- 5Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Anton Y Peleg
- 6Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,2Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.,5Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Kathryn E Holt
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
29
|
Wen Y, Ouyang Z, Yu Y, Zhou X, Pei Y, Devreese B, Higgins PG, Zheng F. Mechanistic insight into how multidrug resistant Acinetobacter baumannii response regulator AdeR recognizes an intercistronic region. Nucleic Acids Res 2017; 45:9773-9787. [PMID: 28934482 PMCID: PMC5766154 DOI: 10.1093/nar/gkx624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/07/2017] [Indexed: 01/22/2023] Open
Abstract
AdeR-AdeS is a two-component regulatory system, which controls expression of the adeABC efflux pump involved in Acinetobacter baumannii multidrug resistance. AdeR is a response regulator consisting of an N-terminal receiver domain and a C-terminal DNA-binding-domain. AdeR binds to a direct-repeat DNA in the intercistronic region between adeR and adeABC. We demonstrate a markedly high affinity binding between unphosphorylated AdeR and DNA with a dissociation constant of 20 nM. In addition, we provide a 2.75 Å crystal structure of AdeR DNA-binding-domain complexed with the intercistronic DNA. This structure shows that the α3 and β hairpin formed by β5-β6 interacts with the major and minor groove of the DNA, which in turn leads to the introduction of a bend. The AdeR receiver domain structure revealed a dimerization motif mediated by a gearwheel-like structure involving the D108F109-R122 motif through cation π stack interaction. The structure of AdeR receiver domain bound with magnesium indicated a conserved Glu19Asp20-Asp63 magnesium-binding motif, and revealed that the potential phosphorylation site Asp63OD1 forms a hydrogen bond with Lys112. We thus dissected the mechanism of how AdeR recognizes the intercistronic DNA, which leads to a diverse mode of response regulation. Unlocking the AdeRS mechanism provides ways to circumvent A. baumannii antibiotic resistance.
Collapse
Affiliation(s)
- Yurong Wen
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenlin Ouyang
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yue Yu
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaorong Zhou
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yingmei Pei
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bart Devreese
- Unit for Biological Mass Spectrometry and Proteomics, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology, and Hygiene, University of Cologne, Goldenfelsstr.19-21, 50935 Cologne, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Fang Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
30
|
Higgins PG, Prior K, Harmsen D, Seifert H. Development and evaluation of a core genome multilocus typing scheme for whole-genome sequence-based typing of Acinetobacter baumannii. PLoS One 2017; 12:e0179228. [PMID: 28594944 PMCID: PMC5464626 DOI: 10.1371/journal.pone.0179228] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023] Open
Abstract
We have employed whole genome sequencing to define and evaluate a core genome multilocus sequence typing (cgMLST) scheme for Acinetobacter baumannii. To define a core genome we downloaded a total of 1,573 putative A. baumannii genomes from NCBI as well as representative isolates belonging to the eight previously described international A. baumannii clonal lineages. The core genome was then employed against a total of fifty-three carbapenem-resistant A. baumannii isolates that were previously typed by PFGE and linked to hospital outbreaks in eight German cities. We defined a core genome of 2,390 genes of which an average 98.4% were called successfully from 1,339 A. baumannii genomes, while Acinetobacter nosocomialis, Acinetobacter pittii, and Acinetobacter calcoaceticus resulted in 71.2%, 33.3%, and 23.2% good targets, respectively. When tested against the previously identified outbreak strains, we found good correlation between PFGE and cgMLST clustering, with 0–8 allelic differences within a pulsotype, and 40–2,166 differences between pulsotypes. The highest number of allelic differences was between the isolates representing the international clones. This typing scheme was highly discriminatory and identified separate A. baumannii outbreaks. Moreover, because a standardised cgMLST nomenclature is used, the system will allow inter-laboratory exchange of data.
Collapse
Affiliation(s)
- Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- * E-mail:
| | - Karola Prior
- Department for Periodontology and Restorative Dentistry, University Hospital Muenster, Muenster, Germany
| | - Dag Harmsen
- Department for Periodontology and Restorative Dentistry, University Hospital Muenster, Muenster, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
31
|
Kröger C, Kary SC, Schauer K, Cameron ADS. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii. Genes (Basel) 2016; 8:genes8010012. [PMID: 28036056 PMCID: PMC5295007 DOI: 10.3390/genes8010012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023] Open
Abstract
Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Stefani C Kary
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Kristina Schauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim 85764, Germany.
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, SK S4S 042, Canada.
| |
Collapse
|
32
|
A Novel Genome-Editing Platform for Drug-Resistant Acinetobacter baumannii Reveals an AdeR-Unrelated Tigecycline Resistance Mechanism. Antimicrob Agents Chemother 2016; 60:7263-7271. [PMID: 27671072 DOI: 10.1128/aac.01275-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022] Open
Abstract
Infections with the Gram-negative coccobacillus Acinetobacter baumannii are a major threat in hospital settings. The progressing emergence of multidrug-resistant clinical strains significantly reduces the treatment options for clinicians to fight A. baumannii infections. The current lack of robust methods to genetically manipulate drug-resistant A. baumannii isolates impedes research on resistance and virulence mechanisms in clinically relevant strains. In this study, we developed a highly efficient and versatile genome-editing platform enabling the markerless modification of the genome of A. baumannii clinical and laboratory strains, regardless of their resistance profiles. We applied this method for the deletion of AdeR, a transcription factor that regulates the expression of the AdeABC efflux pump in tigecycline-resistant A. baumannii, to evaluate its function as a putative drug target. Loss of adeR reduced the MIC90 of tigecycline from 25 μg/ml in the parental strains to 3.1 μg/ml in the ΔadeR mutants, indicating its importance in the drug resistance phenotype. However, 60% of the clinical isolates remained nonsusceptible to tigecycline after adeR deletion. Evolution of artificial tigecycline resistance in two strains followed by whole-genome sequencing revealed loss-of-function mutations in trm, suggesting its role in an alternative AdeABC-independent tigecycline resistance mechanism. This finding was strengthened by the confirmation of trm disruption in the majority of the tigecycline-resistant clinical isolates. This study highlights the development and application of a powerful genome-editing platform for A. baumannii enabling future research on drug resistance and virulence pathways in clinically relevant strains.
Collapse
|
33
|
Effects of Saline, an Ambient Acidic Environment, and Sodium Salicylate on OXA-Mediated Carbapenem Resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60:3415-8. [PMID: 27001819 DOI: 10.1128/aac.03010-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/13/2016] [Indexed: 01/29/2023] Open
Abstract
Different physiological conditions, such as NaCl, low pH, and sodium salicylate, have been shown to affect antibiotic resistance determinants in Acinetobacter baumannii isolates. Therefore, the aim of this study was to investigate the effects of NaCl, sodium salicylate, and low pH on the susceptibility of A. baumannii to carbapenem. We cloned genes encoding oxacillinases (OXA) of different subclasses, with their associated promoters, from carbapenem-resistant A. baumannii isolates into the same vector and transferred them to the A. baumannii reference strains ATCC 19606 and ATCC 17978. Carbapenem MICs were determined at least in triplicate by agar dilution under standard conditions, as well as in the presence of 200 mM NaCl or 16 mM sodium salicylate, or at pH 5.8. OXA-58-like gene expression was determined by reverse transcription-quantitative PCR (qRT-PCR). Under some experimental conditions, significant MIC reductions were shown for some transformants but not for others. Only in one instance were all transformants harboring the same OXA affected by the same condition: at pH 5.8, the imipenem and meropenem MICs for strains expressing OXA-58-like enzymes decreased from a resistant level (32 to 64 mg/liter) to an intermediate-susceptible level (8 mg/liter). However, blaOXA-58-like gene expression remained the same. MICs for both wild-type reference strains were not affected by the conditions tested. Our results indicate that the effects of the experimental conditions tested on OXA in vivo are mostly strain dependent. MICs were not reduced to wild-type levels, suggesting that the conditions tested do not lead to complete OXA inhibition in the bacterial cell.
Collapse
|
34
|
Abstract
The OXA β-lactamases were among the earliest β-lactamases detected; however, these molecular class D β-lactamases were originally relatively rare and always plasmid mediated. They had a substrate profile limited to the penicillins, but some became able to confer resistance to cephalosporins. From the 1980s onwards, isolates of Acinetobacter baumannii that were resistant to the carbapenems emerged, manifested by plasmid-encoded β-lactamases (OXA-23, OXA-40, and OXA-58) categorized as OXA enzymes because of their sequence similarity to earlier OXA β-lactamases. It was soon found that every A. baumannii strain possessed a chromosomally encoded OXA β-lactamase (OXA-51-like), some of which could confer resistance to carbapenems when the genetic environment around the gene promoted its expression. Similarly, Acinetobacter species closely related to A. baumannii also possessed their own chromosomally encoded OXA β-lactamases; some could be transferred to A. baumannii, and they formed the basis of transferable carbapenem resistance in this species. In some cases, the carbapenem-resistant OXA β-lactamases (OXA-48) have migrated into the Enterobacteriaceae and are becoming a significant cause of carbapenem resistance. The emergence of OXA enzymes that can confer resistance to carbapenems, particularly in A. baumannii, has transformed these β-lactamases from a minor hindrance into a major problem set to demote the clinical efficacy of the carbapenems.
Collapse
|
35
|
Draft Genome Sequences of 11 Clinical Isolates of Acinetobacter baumannii. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00269-16. [PMID: 27081137 PMCID: PMC4832165 DOI: 10.1128/genomea.00269-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of multidrug-resistantAcinetobacter baumanniiis of serious concern in the hospital setting. Here, we report draft genome sequences of 11A. baumanniiisolates that were isolated from a single patient over a 65-day period, during which time the isolates exhibited increased antimicrobial resistance.
Collapse
|
36
|
Li H, Wang X, Zhang Y, Zhao C, Chen H, Jiang S, Zhang F, Wang H. The role of RND efflux pump and global regulators in tigecycline resistance in clinical Acinetobacter baumannii isolates. Future Microbiol 2016; 10:337-46. [PMID: 25812457 DOI: 10.2217/fmb.15.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To analyze the expression and regulation of resistance-nodulation-division (RND) efflux systems in clinical tigecycline-nonsusceptible (TNS) Acinetobacter baumannii. MATERIALS & METHODS Comparisons of molecular and clinical characteristics were performed between 52 TNS and 53 tigecycline-susceptible isolates. Expression of RND efflux pumps and global regulators were analyzed by real-time RT-PCR. A complementation experiment was performed to evaluate the contribution of the adeRS mutations. RESULTS Mechanical ventilation and prior use of carbapenems were more common among patients with TNS strains. The relative expression of adeB and adeJ was increased significantly in TNS isolates. Complementarity to the adeR or adeS mutations decreased tigecycline susceptibility by ≤2-fold. Decreased expression of marR and soxR was detected in TNS isolates. CONCLUSION A correlation between tigecycline MIC and expression level of adeB and adeJ was identified. The influence of adeRS mutation on adeB expression was limited. Global regulators marR and soxR may be involved in tigecycline resistance.
Collapse
Affiliation(s)
- Henan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
The Asp20-to-Asn Substitution in the Response Regulator AdeR Leads to Enhanced Efflux Activity of AdeB in Acinetobacter baumannii. Antimicrob Agents Chemother 2015; 60:1085-90. [PMID: 26643347 DOI: 10.1128/aac.02413-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/28/2015] [Indexed: 01/17/2023] Open
Abstract
Overexpression of the resistance-nodulation-cell division-type efflux pump AdeABC is often associated with multidrug resistance in Acinetobacter baumannii and has been linked to mutations in the genes encoding the AdeRS two-component system. In a previous study, we reported that the Asp20→Asn amino acid substitution in the response regulator AdeR is associated with adeB overexpression and reduced susceptibility to the antimicrobials levofloxacin, tigecycline, and trimethoprim-sulfamethoxazole. To further characterize the effect of the Asp20→Asn substitution on antimicrobial susceptibility, the expression of the efflux genes adeB, adeJ, and adeG, and substrate accumulation, four plasmid constructs [containing adeR(Asp20)S, adeR(Asn20)S, adeR(Asp20)SABC, and adeR(Asn20)SABC] were introduced into the adeRSABC-deficient A. baumannii isolate NIPH 60. Neither adeRS construct induced changes in antimicrobial susceptibility or substrate accumulation from that for the vector-only control. The adeR(Asp20)SABC transformant showed reduced susceptibility to 6 antimicrobials and accumulated 12% less ethidium than the control, whereas the Asn20 variant showed reduced susceptibility to 6 of 8 antimicrobial classes tested, and its ethidium accumulation was only 72% of that observed for the vector-only construct. adeB expression was 7-fold higher in the adeR(Asn20)SABC transformant than in its Asp20 variant. No changes in adeG or adeJ expression or in acriflavine or rhodamine 6G accumulation were detected. The antimicrobial susceptibility data suggest that AdeRS does not regulate any resistance determinants other than AdeABC. Furthermore, the characterization of the Asp20→Asn20 substitution proves that the reduced antimicrobial susceptibility previously associated with this substitution was indeed caused by enhanced efflux activity of AdeB.
Collapse
|
38
|
In vitroantimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J Antimicrob Chemother 2015; 71:670-7. [DOI: 10.1093/jac/dkv402] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/29/2015] [Indexed: 11/14/2022] Open
|
39
|
AdeR protein regulates adeABC expression by binding to a direct-repeat motif in the intercistronic spacer. Microbiol Res 2015; 183:60-7. [PMID: 26805619 DOI: 10.1016/j.micres.2015.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/19/2022]
Abstract
Overexpression of the efflux pump AdeABC is associated with tigecycline resistance of multi-drug resistant Acinetobacter baumannii (MDRAB). A two-component regulatory system, sensor AdeS and regulator AdeR proteins regulate the pump. However, the detailed mechanism of the AdeR protein to enhance the expression of adeABC operon is not well defined. We illustrated the biological characteristics of AdeR proteins by comparing a mutant AdeR protein of a tigecycline resistant MDRAB to the wild AdeR protein. By analyzing a series of deletion constructs, a minimal gene cassette of the intercistronic spacer DNA fragment specifically bound with the adeR protein and resulted in band shifting in electrophoresis mobility shifting assays (EMSA). A conserve direct repeat motif was observed in the intercistronic spacer DNA. We demonstrated the AdeR protein was a direct-repeat-binding protein. Two common residue mutations on the AdeR proteins of tigecycline resistant MDRAB isolates could reduce their binding affinity with the intercistronic spacer. The free intercistronic spacer may then more efficiently support the read-through of the adeABC operon during the co-transcriptional translation in tigecycline resistant MDRAB isolates.
Collapse
|
40
|
In Vitro Activity of Tigecycline Against Acinetobacter baumannii: Global Epidemiology and Resistance Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 897:1-14. [DOI: 10.1007/5584_2015_5001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Ramírez MS, Müller GL, Pérez JF, Golic AE, Mussi MA. More Than Just Light: Clinical Relevance of Light Perception in the Nosocomial PathogenAcinetobacter baumanniiand Other Members of the GenusAcinetobacter. Photochem Photobiol 2015; 91:1291-301. [DOI: 10.1111/php.12523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/21/2015] [Indexed: 12/31/2022]
Affiliation(s)
- María Soledad Ramírez
- Facultad de Ciencias Médicas; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET); Universidad de Buenos Aires; Buenos Aires Argentina
- Department of Biological Science; Center for Applied Biotechnology Studies; California State University Fullerton; Fullerton CA
| | - Gabriela Leticia Müller
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Rosario Argentina
| | - Jorgelina Fernanda Pérez
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | | | - María Alejandra Mussi
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Rosario Argentina
| |
Collapse
|
42
|
Genetic Variability of AdeRS Two-Component System Associated with Tigecycline Resistance in XDR-Acinetobacter baumannii Isolates. Curr Microbiol 2015; 71:76-82. [DOI: 10.1007/s00284-015-0829-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
|
43
|
Ramírez MS, Traglia GM, Pérez JF, Müller GL, Martínez MF, Golic AE, Mussi MA. White and blue light induce reduction in susceptibility to minocycline and tigecycline in Acinetobacter spp. and other bacteria of clinical importance. J Med Microbiol 2015; 64:525-537. [DOI: 10.1099/jmm.0.000048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/27/2015] [Indexed: 01/17/2023] Open
Affiliation(s)
- María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET), Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - German Matías Traglia
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET), Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorgelina Fernanda Pérez
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Gabriela Leticia Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), 2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | | | - Adrián Ezequiel Golic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), 2000 Rosario, Argentina
| | - María Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), 2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| |
Collapse
|
44
|
Nowak J, Seifert H, Higgins PG. Prevalence of eight resistance-nodulation-division efflux pump genes in epidemiologically characterized Acinetobacter baumannii of worldwide origin. J Med Microbiol 2015; 64:630-635. [PMID: 25873581 DOI: 10.1099/jmm.0.000069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The increasing emergence of multidrug-resistant Acinetobacter baumannii constitutes a worldwide threat in hospital settings. Efflux-mediated resistance, particularly the resistance-nodulation-division (RND)-type efflux pumps, contributes significantly to decreased susceptibility to multiple antibiotics when overexpressed. Using PCR-based detection, the prevalence of genes encoding the RND efflux pumps AdeB, AdeJ and AdeG was investigated amongst 144 epidemiologically characterized and geographically diverse A. baumannii isolates of worldwide origin, representing International Clones 1-8 and genotypically unique isolates. Furthermore, five putative RND-type efflux genes identified via an in silico approach were included. Five of the eight investigated efflux pump genes were present in all isolates, including adeJ and adeG; the prevalence of the others varied between 65 and 97%. No association between the presence of one or multiple pumps to a specific clonal lineage was detected. The high prevalence of the efflux pump genes supports a fixed function of each individual pump that is not yet fully understood.
Collapse
Affiliation(s)
- Jennifer Nowak
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Harald Seifert
- German Centre for Infection Research, Bonn-Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| |
Collapse
|
45
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 946] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
46
|
Al-Hassan L, Opazo A, Lopes BS, Mahallawy HE, Amyes SGB. Variations in IS6 promoters alter the expression of carbapenem resistance in related strains of Acinetobacter baumannii. J Glob Antimicrob Resist 2014; 3:5-8. [PMID: 27873653 DOI: 10.1016/j.jgar.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/14/2014] [Accepted: 10/31/2014] [Indexed: 11/29/2022] Open
Abstract
The aim of this work was to investigate the role of the IS6 family of insertion sequences present upstream of blaOXA-58 in two clonally related carbapenem-resistant Acinetobacter baumannii isolates obtained from paediatric cancer patients in Egypt. To determine their relatedness, the isolates were typed by pulsed-field gel electrophoresis (PFGE), and the intrinsic blaOXA-51-like gene was amplified and sequenced. Minimum inhibitory concentrations (MICs) to imipenem and meropenem was determined according to British Society of Antimicrobial Chemotherapy (BSAC) guidelines. PCR and sequencing of blaOXA-58 and the upstream and downstream regions was performed to determine the genetic environment. The two isolates were positive for the intrinsic blaOXA-64 gene, and the MICs for isolates AB-14298 and AB-P67 were 8mg/L and 64mg/L for imipenem and 2mg/L and 16mg/L for meropenem, respectively. The blaOXA-58 gene in AB-14298 was flanked by ISAba3 interrupted with IS1006, whereas AB-P67 had ISAba3 interrupted by IS1008, both belonging to the IS6 family of insertion sequences. In conclusion, both IS1006 and IS1008 provided suitable promoter sequences for expression of the downstream blaOXA-58 gene.
Collapse
Affiliation(s)
| | - Andres Opazo
- Medical Microbiology, University of Edinburgh, Edinburgh, UK
| | - Bruno S Lopes
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
47
|
Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics (Basel) 2014; 3:398-434. [PMID: 27025753 PMCID: PMC4790369 DOI: 10.3390/antibiotics3030398] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
The Class D β-lactamases have emerged as a prominent resistance mechanism against β-lactam antibiotics that previously had efficacy against infections caused by pathogenic bacteria, especially by Acinetobacter baumannii and the Enterobacteriaceae. The phenotypic and structural characteristics of these enzymes correlate to activities that are classified either as a narrow spectrum, an extended spectrum, or a carbapenemase spectrum. We focus on Class D β-lactamases that are carried on plasmids and, thus, present particular clinical concern. Following a historical perspective, the susceptibility and kinetics patterns of the important plasmid-encoded Class D β-lactamases and the mechanisms for mobilization of the chromosomal Class D β-lactamases are discussed.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
48
|
Asai S, Umezawa K, Iwashita H, Ohshima T, Ohashi M, Sasaki M, Hayashi H, Matsui M, Shibayama K, Inokuchi S, Miyachi H. An outbreak of blaOXA-51-like- and blaOXA-66-positive Acinetobacter baumannii ST208 in the emergency intensive care unit. J Med Microbiol 2014; 63:1517-1523. [PMID: 25142965 PMCID: PMC4209737 DOI: 10.1099/jmm.0.077503-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A series of clinical isolates of drug-resistant (DR) Acinetobacter baumannii with diverse drug susceptibility was detected from eight patients in the emergency intensive care unit of Tokai University Hospital. The initial isolate was obtained in March 2010 (A. baumannii Tokai strain 1); subsequently, seven isolates were obtained from patients (A. baumannii Tokai strains 2–8) and one isolate was obtained from an air-fluidized bed used by five of the patients during the 3 months from August to November 2011. The isolates were classified into three types of antimicrobial drug resistance patterns (RRR, SRR and SSR) according to their susceptibility (S) or resistance (R) to imipenem, amikacin and ciprofloxacin, respectively. Genotyping of these isolates by multilocus sequence typing revealed one sequence type, ST208, whilst that by a DiversiLab analysis revealed two subtypes. All the isolates were positive for blaOXA-51-like and blaOXA-66, as assessed by PCR and DNA sequencing. A. baumannii Tokai strains 1–8 and 10 (RRR, SRR and SSR) had quinolone resistance-associated mutations in gyrA/parC, as revealed by DNA sequencing. The ISAba1 upstream of blaOXA-51-like and aminoglycoside resistance-associated gene, armA, were detected in A. baumannii Tokai strains 1–7 and 10 (RRR and SRR) as assessed by PCR. Among the genes encoding resistance–nodulation–division family pumps (adeB, adeG and adeJ) and outer-membrane porins (oprD and carO), overexpression of adeB and adeJ and suppression of oprD and carO were seen in isolates of A. baumannii Tokai strain 2 (RRR), as assessed by real-time PCR. Thus, the molecular characterization of a series of isolates of DR A. baumannii revealed the outbreak of ST208 and diverse antimicrobial drug susceptibilities, which almost correlated with differential gene alterations responsible for each type of drug resistance.
Collapse
Affiliation(s)
- Satomi Asai
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan.,Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Kazuo Umezawa
- Department of Critical Care and Emergency Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hideo Iwashita
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Toshio Ohshima
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Maya Ohashi
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Mika Sasaki
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Mari Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sadaki Inokuchi
- Department of Critical Care and Emergency Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hayato Miyachi
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan.,Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
49
|
Bonnin RA, Nordmann P, Poirel L. Screening and deciphering antibiotic resistance inAcinetobacter baumannii: a state of the art. Expert Rev Anti Infect Ther 2014; 11:571-83. [DOI: 10.1586/eri.13.38] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Leonard DA, Bonomo RA, Powers RA. Class D β-lactamases: a reappraisal after five decades. Acc Chem Res 2013; 46:2407-15. [PMID: 23902256 DOI: 10.1021/ar300327a] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite 70 years of clinical use, β-lactam antibiotics still remain at the forefront of antimicrobial chemotherapy. The major challenge to these life-saving therapeutics is the presence of bacterial enzymes (i.e., β-lactamases) that can hydrolyze the β-lactam bond and inactivate the antibiotic. These enzymes can be grouped into four classes (A-D). Among the most genetically diverse are the class D β-lactamases. In this class are β-lactamases that can inactivate the entire spectrum of β-lactam antibiotics (penicillins, cephalosporins, and carbapenems). Class D β-lactamases are mostly found in Gram-negative bacteria such as Pseudomonas aeruginosa , Escherichia coli , Proteus mirabilis , and Acinetobacter baumannii . The active-sites of class D β-lactamases contain an unusual N-carboxylated lysine post-translational modification. A strongly hydrophobic active-site helps create the conditions that allow the lysine to combine with CO2, and the resulting carbamate is stabilized by a number of hydrogen bonds. The carboxy-lysine plays a symmetric role in the reaction, serving as a general base to activate the serine nucleophile in the acylation reaction, and the deacylating water in the second step. There are more than 250 class D β-lactamases described, and the full set of variants shows remarkable diversity with regard to substrate binding and turnover. Narrow-spectrum variants are most effective against the earliest generation penicillins and cephalosporins such as ampicillin and cephalothin. Extended-spectrum variants (also known as extended-spectrum β-lactamases, ESBLs) pose a more dangerous clinical threat as they possess a small number of substitutions that allow them to bind and hydrolyze later generation cephalosporins that contain bulkier side-chain constituents (e.g., cefotaxime, ceftazidime, and cefepime). Mutations that permit this versatility seem to cluster in the area surrounding an active-site tryptophan resulting in a widened active-site to accommodate the oxyimino side-chains of these cephalosporins. More concerning are the class D β-lactamases that hydrolyze clinically important carbapenem β-lactam drugs (e.g., imipenem). Whereas carbapenems irreversibly acylate and inhibit narrow-spectrum β-lactamases, class D carbapenemases are able to recruit and activate a deacylating water. The rotational orientation of the C6 hydroxyethyl group found on all carbapenem antibiotics likely plays a role in whether the deacylating water is effective or not. Inhibition of class D β-lactamases is a current challenge. Commercially available inhibitors that are active against other classes of β-lactamases are ineffective against class D enzymes. On the horizon are several compounds, consisting of both β-lactam derivatives and non-β-lactams, that have the potential of providing novel leads to design new mechanism-based inactivators that are effective against the class D enzymes. Several act synergistically when given in combination with a β-lactam antibiotic, and others show a unique mechanism of inhibition that is distinct from the traditional β-lactamase inhibitors. These studies will bolster structure-based inhibitor design efforts to facilitate the optimization and development of these compounds as class D inactivators.
Collapse
Affiliation(s)
- David A. Leonard
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and Department of Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Rachel A. Powers
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States
| |
Collapse
|