1
|
Fu M, Xiao Y, Du T, Hu H, Ni F, Hu K, Hu Q. Fusion Proteins CLD and CLDmut Demonstrate Potent and Broad Neutralizing Activity against HIV-1. Viruses 2022; 14:v14071365. [PMID: 35891347 PMCID: PMC9323411 DOI: 10.3390/v14071365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
HIV-1 envelope glycoprotein (Env) interacts with cellular receptors and mediates virus entry into target cells. Blocking Env-receptor interactions represents an effective interventional strategy for developing HIV-1 entry inhibitors. We previously designed a panel of CD4-linker-DC-SIGN (CLD) constructs by fusing the extracellular CD4 and DC-SIGN domains with various linkers. Such CLDs produced by the prokaryotic system efficiently inhibited HIV-1 infection and dissemination in vitro and ex vivo. In this study, following the construction and identification of the most promising candidate with a linker of 8 Gly4Ser repeats (named CLD), we further designed an improved form (named CLDmut) by back mutating Cys to Ser at amino acid 60 of CD4. Both CLD and CLDmut were produced in mammalian (293F) cells for better protein translation and modification. The anti-HIV-1 activity of CLD and CLDmut was assessed against the infection of a range of HIV-1 isolates, including transmitted and founder (T/F) viruses. While both CLD and CLDmut efficiently neutralized the tested HIV-1 isolates, CLDmut demonstrated much higher neutralizing activity than CLD, with an IC50 up to one log lower. The neutralizing activity of CLDmut was close to or more potent than those of the highly effective HIV-1 broadly neutralizing antibodies (bNAbs) reported to date. Findings in this study indicate that mammalian cell-expressed CLDmut may have the potential to be used as prophylaxis or/and therapeutics against HIV-1 infection.
Collapse
Affiliation(s)
- Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
| | - Yingying Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
- Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
- Correspondence: ; Tel.: +86-27-8719-9992
| |
Collapse
|
2
|
Li C, Zhang M, Guan X, Hu H, Fu M, Liu Y, Hu Q. Herpes Simplex Virus Type 2 Glycoprotein D Inhibits NF-κB Activation by Interacting with p65. THE JOURNAL OF IMMUNOLOGY 2021; 206:2852-2861. [PMID: 34049972 DOI: 10.4049/jimmunol.2001336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
NF-κB plays a crucial role in regulating cell proliferation, inflammation, apoptosis, and immune responses. HSV type 2 (HSV-2) is one of the most predominant sexually transmitted pathogens worldwide, and its infection increases the risk of HIV type 1 (HIV-1) acquisition and transmission. HSV-2 glycoprotein D (gD), highly homologous to HSV-1 gD, is essential for viral adhesion, fusion, entry, and spread. It is known that HSV-1 gD can bind herpesvirus entry mediator (HVEM) to trigger NF-κB activation and thereby facilitate viral replication at the early stage of infection. In this study, we found that purified HSV-2 gD triggered NF-κB activation at the early stage of infection, whereas ectopic expression of HSV-2 gD significantly downregulated TNF-α-induced NF-κB activity as well as TNF-α-induced IL-6 and IL-8 expression. Mechanistically, HSV-2 gD inhibited NF-κB, but not IFN-regulatory factor 3 (IRF3), activation and suppressed NF-κB activation mediated by overexpression of TNFR-associated factor 2 (TRAF2), IκB kinase α (IKKα), IKKβ, or p65. Coimmunoprecipitation and binding kinetic analyses demonstrated that HSV-2 gD directly bound to the NF-κB subunit p65 and abolished the nuclear translocation of p65 upon TNF-α stimulation. Mutational analyses further revealed that HSV-2 gD interacted with the region spanning aa 19-187 of p65. Findings in this study together demonstrate that HSV-2 gD interacts with p65 to regulate p65 subcellular localization and thereby prevents NF-κB-dependent gene expression, which may contribute to HSV-2 immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Chuntian Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mudan Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; and
| | - Xinmeng Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; and
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China;
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; .,Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| |
Collapse
|
3
|
CCL19 and CCL28 Assist Herpes Simplex Virus 2 Glycoprotein D To Induce Protective Systemic Immunity against Genital Viral Challenge. mSphere 2021; 6:6/2/e00058-21. [PMID: 33910988 PMCID: PMC8092132 DOI: 10.1128/msphere.00058-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An effective HSV-2 vaccine should induce antigen (Ag)-specific immune responses against viral mucosal infection. This study reveals that chemokine CCL19 or CCL28 enhanced HSV-2 glycoprotein D ectodomain (gD-306aa)-induced immune responses against vaginal virus challenge. Potent systemic immunity is important for recalled mucosal immune responses, but in the defense against mucosal viral infections, it usually remains low at mucosal sites. Based on our previous findings that enhanced immune responses can be achieved by immunization with an immunogen in combination with a molecular adjuvant, here we designed chemokine-antigen (Ag) fusion constructs (CCL19- or CCL28-herpes simplex virus 2 glycoprotein D [HSV-2 gD]). After intramuscular (i.m.) immunization with different DNA vaccines in a prime and boost strategy, BALB/c mice were challenged with a lethal dose of HSV-2 through the genital tract. Ag-specific immune responses and chemokine receptor-specific lymphocytes were analyzed to determine the effects of CCL19 and CCL28 in strengthening humoral and cellular immunity. Both CCL19 and CCL28 were efficient in inducing long-lasting HSV-2 gD-specific systemic immunity. Compared to CCL19, less CCL28 was required to elicit HSV-2 gD-specific serum IgA responses, Th1- and Th2-like responses of immunoglobulin (Ig) subclasses and cytokines, and CCR3+ T cell enrichment (>8.5-fold) in spleens. These findings together demonstrate that CCL28 tends to assist an immunogen to induce more potently protective immunity than CCL19. This work provides information for the application potential of a promising vaccination strategy against mucosal infections caused by HSV-2 and other sexually transmitted viruses. IMPORTANCE An effective HSV-2 vaccine should induce antigen (Ag)-specific immune responses against viral mucosal infection. This study reveals that chemokine CCL19 or CCL28 enhanced HSV-2 glycoprotein D ectodomain (gD-306aa)-induced immune responses against vaginal virus challenge. In addition to eliciting robust humoral immune responses, the chemokine-Ag fusion construct also induced Th1- and Th2-like immune responses characterized by the secretion of multiple Ig subclasses and cytokines that were able to be recalled after HSV-2 challenge, while CCL28 appeared to be more effective than CCL19 in promoting gD-elicited immune responses as well as the migration of T cells to secondary lymph tissues. Of importance, both CCL19 and CCL28 significantly facilitated gD to induce protective mucosal immune responses in the genital tract. The above-described findings together highlight the potential of CCL19 or CCL28 in combination with gD as a vaccination strategy to control HSV-2 infection.
Collapse
|
4
|
Sales Pereira LH, Alves ADC, Siqueira Ferreira JM, Dos Santos LL. Soluble DC-SIGN isoforms: Ligands with unknown functions - A mini-review. Microb Pathog 2021; 150:104731. [PMID: 33429051 DOI: 10.1016/j.micpath.2021.104731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/01/2022]
Abstract
The present study aimed to perform a mini-review of the complete soluble isoforms of Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (sDC-SIGN), their functions, and their correlation with diseases. The present review reveals the lack of studies regarding these soluble isoforms and poor understanding of the importance of the topic, considering the concordant findings on the relevant influence of sDC-SIGN in the viral and bacterial infection process, in addition to its possible use as a cancer marker.
Collapse
Affiliation(s)
- Lailah Horácio Sales Pereira
- Laboratório de Biologia Molecular, Universidade Federal de São João Del Rei (UFSJ), Divinopolis, Minas Gerais, Brazil; Laboratório de Virologia, Universidade Federal de São João Del Rei (UFSJ), Divinopolis, Minas Gerais, Brazil.
| | - Amanda do Carmo Alves
- Laboratório de Biologia Molecular, Universidade Federal de São João Del Rei (UFSJ), Divinopolis, Minas Gerais, Brazil.
| | | | - Luciana Lara Dos Santos
- Laboratório de Biologia Molecular, Universidade Federal de São João Del Rei (UFSJ), Divinopolis, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Zhang M, Fu M, Li M, Hu H, Gong S, Hu Q. Herpes Simplex Virus Type 2 Inhibits Type I IFN Signaling Mediated by the Novel E3 Ubiquitin Protein Ligase Activity of Viral Protein ICP22. THE JOURNAL OF IMMUNOLOGY 2020; 205:1281-1292. [PMID: 32699158 DOI: 10.4049/jimmunol.2000418] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023]
Abstract
Type I IFNs play an important role in innate immunity against viral infections by inducing the expression of IFN-stimulated genes (ISGs), which encode effectors with various antiviral functions. We and others previously reported that HSV type 2 (HSV-2) inhibits the synthesis of type I IFNs, but how HSV-2 suppresses IFN-mediated signaling is less understood. In the current study, after the demonstration of HSV-2 replication resistance to IFN-β treatment in human epithelial cells, we reveal that HSV-2 and the viral protein ICP22 significantly decrease the expression of ISG54 at both mRNA and protein levels. Likewise, us1 del HSV-2 (ICP22-deficient HSV-2) replication is more sensitive to IFN-β treatment, indicating that ICP22 is a vital viral protein responsible for the inhibition of type I IFN-mediated signaling. In addition, overexpression of HSV-2 ICP22 inhibits the expression of STAT1, STAT2, and IFN regulatory factor 9 (IRF9), resulting in the blockade of ISG factor 3 (ISGF3) nuclear translocation, and mechanistically, this is due to ICP22-induced ubiquitination of STAT1, STAT2, and IRF9. HSV-2 ICP22 appears to interact with STAT1, STAT2, IRF9, and several other ubiquitinated proteins. Following further biochemical study, we show that HSV-2 ICP22 functions as an E3 ubiquitin protein ligase to induce the formation of polyubiquitin chains. Taken together, we demonstrate that HSV-2 interferes with type I IFN-mediated signaling by degrading the proteins of ISGF3, and we identify HSV-2 ICP22 as a novel E3 ubiquitin protein ligase to induce the degradation of ISGF3. Findings in this study highlight a new mechanism by which HSV-2 circumvents the host antiviral responses through a viral E3 ubiquitin protein ligase.
Collapse
Affiliation(s)
- Mudan Zhang
- The Joint Laboratory of Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China.,The Joint Laboratory of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 440106, China; and
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; .,Institute for Infection and Immunity, St George's University of London, London SW17 0RE, United Kingdom
| |
Collapse
|
6
|
Guan X, Zhang M, Fu M, Luo S, Hu Q. Herpes Simplex Virus Type 2 Immediate Early Protein ICP27 Inhibits IFN-β Production in Mucosal Epithelial Cells by Antagonizing IRF3 Activation. Front Immunol 2019; 10:290. [PMID: 30863402 PMCID: PMC6399465 DOI: 10.3389/fimmu.2019.00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is the main cause of genital herpes and infections are common in the lower genital tract. Although neuronal and immune cells can be infected, epithelial cells, and keratinocytes are the primary HSV-2 target cells. HSV-2 establishes latency by evading the host immune system and its infection can also increase the risk of HIV-1 sexual transmission. Our pervious study found that HSV-2 immediate early protein ICP22, inhibited IFN-β production by interfering with the IRF3 pathway. However, ICP22-null HSV-2 did not completely lose the capability of suppressing IFN-β induction, suggesting the involvement of other viral components in the process. In this study, by using an ex vivo cervical explant model, we first demonstrated that HSV-2 can indeed inhibit IFN-β induction in human mucosal tissues. We further identified HSV-2 immediate early protein ICP27 as a potent IFN-β antagonist. ICP27 significantly suppresses the Sendai virus or polyinosinic-polycytidylic acid-induced IFN-β production in human mucosal epithelial cells, showing that ICP27 inhibits the IFN-β promoter activation, and IFN-β production at both mRNA and protein levels. Additional studies revealed that ICP27 directly associates with IRF3 and inhibits its phosphorylation and nuclear translocation, resulting in the inhibition of IFN-β induction. Our findings provide insights into the molecular mechanism underlying HSV-2 mucosal immune evasion, and information for the design of HSV-2 mucosal vaccines.
Collapse
Affiliation(s)
- Xinmeng Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mudan Zhang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sukun Luo
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| |
Collapse
|
7
|
Falkenhagen A, Joshi S. HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:347-364. [PMID: 30340139 PMCID: PMC6197789 DOI: 10.1016/j.omtn.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
HIV entry is a highly specific and time-sensitive process that can be divided into receptor binding, coreceptor binding, and membrane fusion. Bifunctional antiviral proteins (bAVPs) exploit the multi-step nature of the HIV entry process by binding to two different extracellular targets. They are generated by expressing a fusion protein containing two entry inhibitors with a flexible linker. The resulting fusion proteins exhibit exceptional neutralization potency and broad cross-clade inhibition. In this review, we summarize the HIV entry process and provide an overview of the design, antiviral potency, and methods of delivery of bAVPs. Additionally, we discuss the advantages and limitations of bAVPs for HIV prevention and treatment.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
8
|
Hu K, Fu M, Guan X, Zhang D, Deng X, Xiao Y, Chen R, Liu H, Hu Q. Penton base induces better protective immune responses than fiber and hexon as a subunit vaccine candidate against adenoviruses. Vaccine 2018; 36:4287-4297. [DOI: 10.1016/j.vaccine.2018.05.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
|
9
|
Bispecific chimeric antigen receptors targeting the CD4 binding site and high-mannose Glycans of gp120 optimized for anti-human immunodeficiency virus potency and breadth with minimal immunogenicity. Cytotherapy 2018; 20:407-419. [PMID: 29306566 DOI: 10.1016/j.jcyt.2017.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptors (CARs) offer great potential toward a functional cure of human immunodeficiency virus (HIV) infection. To achieve the necessary long-term virus suppression, we believe that CARs must be designed for optimal potency and anti-HIV specificity, and also for minimal probability of virus escape and CAR immunogenicity. CARs containing antibody-based motifs are problematic in the latter regard due to epitope mutation and anti-idiotypic immune responses against the variable regions. METHODS We designed bispecific CARs, each containing a segment of human CD4 linked to the carbohydrate recognition domain of a human C-type lectin. These CARs target two independent regions on HIV-1 gp120 that presumably must be conserved on clinically significant virus variants (i.e., the primary receptor binding site and the dense oligomannose patch). Functionality and specificity of these bispecific CARs were analyzed in assays of CAR-T cell activation and spreading HIV-1 suppression. RESULTS T cells expressing a CD4-dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DCSIGN) CAR displayed robust stimulation upon encounter with Env-expressing targets, but negligible activity against intercellular adhesion molecule (ICAM)-2 and ICAM-3, the natural dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin ligands. Moreover, the presence of the lectin moiety prevented the CD4 from acting as an entry receptor on CCR5-expressing cells, including CD8+ T cells. However, in HIV suppression assays, the CD4-DCSIGN CAR and the related CD4-liver/lymph node-specific intercellular adhesion molecule-3-grabbing non-integrin CAR displayed only minimally increased potency compared with the CD4 CAR against some HIV-1 isolates and reduced potency against others. By contrast, the CD4-langerin and CD4-mannose binding lectin (MBL) CARs uniformly displayed enhanced potency compared with the CD4 CAR against all the genetically diverse HIV-1 isolates examined. Further experimental data, coupled with known biological features, suggest particular advantages of the CD4-MBL CAR. DISCUSSION These studies highlight features of bispecific CD4-lectin CARs that achieve potency enhancement by targeting two distinct highly conserved Env determinants while lacking immunogenicity-prone antibody-based motifs.
Collapse
|
10
|
Hu K, He S, Xiao J, Li M, Luo S, Zhang M, Hu Q. Interaction between herpesvirus entry mediator and HSV-2 glycoproteins mediates HIV-1 entry of HSV-2-infected epithelial cells. J Gen Virol 2017; 98:2351-2361. [PMID: 28809154 DOI: 10.1099/jgv.0.000895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) increases human immunodeficiency virus type 1 (HIV-1) acquisition and transmission via unclear mechanisms. Herpesvirus entry mediator (HVEM), an HSV-2 entry receptor, is highly expressed on HIV-1 target cells (CD4+ T cells) and may be incorporated into HIV-1 virions, while HSV-2 glycoproteins can be present on the infected cell surface. Since HVEM-gD interaction together with gB/gH/gL is essential for HSV-2 entry, HVEM-bearing HIV-1 (HIV-1/HVEM) may enter HSV-2-infected cells through such interactions. To test this hypothesis, we first confirmed the presence of HVEM on HIV-1 virions and glycoproteins on the HSV-2-infected cell surface. Additional studies showed that HIV-1/HVEM bound to the HSV-2-infected cell surface in an HSV-2 infection-time-dependent manner via HVEM-gD interaction. HIV-1/HVEM entry of HSV-2-infected cells was dependent on HVEM-gD interaction and the presence of gB/gH/gL, and was inhibited by azidothymidine. Furthermore, peripheral blood mononuclear cell-derived HIV-1 infected HSV-2-infected primary foreskin epithelial cells and the infection was inhibited by anti-HVEM/gD antibodies. Together, our results indicate that HIV-1 produced from CD4+ T cells bears HSV-2 receptor HVEM and can bind to and enter HSV-2-infected epithelial cells depending on HVEM-gD interaction and the presence of gB/gH/gL. Our findings provide a potential new mechanism underlying HSV-2 infection-enhanced HIV-1 mucosal transmission and may shed light on HIV-1 prevention.
Collapse
Affiliation(s)
- Kai Hu
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Siyi He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330006, PR China
| | - Mei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Sukun Luo
- Clinical Research Center, Wuhan Medical and Healthcare Center for Women and Children, Wuhan 430016, PR China
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
11
|
Development and evaluation of a double antibody sandwich ELISA for the detection of human sDC-SIGN. J Immunol Methods 2016; 436:16-21. [PMID: 27262264 DOI: 10.1016/j.jim.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022]
Abstract
sDC-SIGN is the soluble form of dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN, CD209), which is a molecule involved with pathogen recognition and immune regulation. However, there is no commercially available ELISA kit for detecting human sDC-SIGN, and the normal range of this molecule is unknown. Here, we describe an ELISA for detecting human sDC-SIGN with high specificity. First, sDC-SIGN protein was expressed and purified. Monoclonal and polyclonal antibodies were then raised against the purified protein and subsequently characterized. A sandwich ELISA was developed using polyclonal antibodies specific for sDC-SIGN for capture and a biotin-labeled monoclonal antibody specific for sDC-SIGN for detection of protein. This method has sensitivity up to 0.2 ng/ml. Using this ELISA, we found that the concentration of sDC-SIGN in sera of healthy volunteers ranges from 0-319 ng/ml with a mean concentration of 27.14 ng/ml. Interestingly, the concentration of sDC-SIGN in sera from patients with cancer or chronic hepatitis B virus (CHB) infection was lower than that of health controls. The mean concentrations of sDC-SIGN in cancer patients and chronic hepatitis B virus infection patients were 3.2 ng/ml and 3.8 ng/ml, respectively. We developed a sandwich ELISA for detecting human sDC-SIGN and demonstrated its use by assessing sera concentrations of sDC-SIGN in patients with cancer and chronic CHB infection compared to that of healthy controls.
Collapse
|
12
|
DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein. Virology 2015; 488:108-19. [PMID: 26629951 DOI: 10.1016/j.virol.2015.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
The skin-resident dendritic cells (DCs) are thought to be the first defender to encounter incoming viruses and likely play a role in Japanese encephalitis virus (JEV) early infection. In the current study, following the demonstration of JEV productive infection in DCs, we revealed that the interaction between JEV envelope glycoprotein (E glycoprotein) and DC-SIGN was important for such infection as evidenced by antibody neutralization and siRNA knockdown experiments. Moreover, the high-mannose N-linked glycan at N154 of E glycoprotein was shown to be crucial for JEV binding to DC-SIGN and subsequent internalization, while mutation of DC-SIGN internalization motif did not affect JEV uptake and internalization. These data together suggest that DC-SIGN functions as an attachment factor rather than an entry receptor for JEV. Our findings highlight the potential significance of DC-SIGN in JEV early infection, providing a basis for further understanding how JEV exploits DC-SIGN to gain access to dendritic cells.
Collapse
|
13
|
Yan Y, Hu K, Deng X, Guan X, Luo S, Tong L, Du T, Fu M, Zhang M, Liu Y, Hu Q. Immunization with HSV-2 gB-CCL19 Fusion Constructs Protects Mice against Lethal Vaginal Challenge. THE JOURNAL OF IMMUNOLOGY 2015; 195:329-38. [PMID: 25994965 DOI: 10.4049/jimmunol.1500198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/20/2015] [Indexed: 12/31/2022]
Abstract
There is a lack of an HSV-2 vaccine, in part as the result of various factors that limit robust and long-term memory immune responses at the mucosal portals of viral entry. We previously demonstrated that chemokine CCL19 augmented mucosal and systemic immune responses to HIV-1 envelope glycoprotein. Whether such enhanced immunity can protect animals against virus infection remains to be addressed. We hypothesized that using CCL19 in a fusion form to direct an immunogen to responsive immunocytes might have an advantage over CCL19 being used in combination with an immunogen. We designed two fusion constructs, plasmid (p)gBIZCCL19 and pCCL19IZgB, by fusing CCL19 to the C- or N-terminal end of the extracellular HSV-2 glycoprotein B (gB) with a linker containing two (Gly4Ser)2 repeats and a GCN4-based isoleucine zipper motif for self-oligomerization. Following immunization in mice, pgBIZCCL19 and pCCL19IZgB induced strong gB-specific IgG and IgA in sera and vaginal fluids. The enhanced systemic and mucosal Abs showed increased neutralizing activity against HSV-2 in vitro. Measurement of gB-specific cytokines demonstrated that gB-CCL19 fusion constructs induced balanced Th1 and Th2 cellular immune responses. Moreover, mice vaccinated with fusion constructs were well protected from intravaginal lethal challenge with HSV-2. Compared with pgB and pCCL19 coimmunization, fusion constructs increased mucosal surface IgA(+) cells, as well as CCL19-responsive immunocytes in spleen and mesenteric lymph nodes. Our findings indicate that enhanced humoral and cellular immune responses can be achieved by immunization with an immunogen fused to a chemokine, providing information for the design of vaccines against mucosal infection by HSV-2 and other sexually transmitted viruses.
Collapse
Affiliation(s)
- Yan Yan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Xinmeng Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Sukun Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Lina Tong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, United Kingdom
| |
Collapse
|
14
|
Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. ACTA ACUST UNITED AC 2014; 2014. [PMID: 27099867 DOI: 10.1155/2014/157895] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization-mechanism, stoichiometry, kinetics, and efficacy-from surprising new angles.
Collapse
|
15
|
Jin W, Li C, Du T, Hu K, Huang X, Hu Q. DC-SIGN plays a stronger role than DCIR in mediating HIV-1 capture and transfer. Virology 2014; 458-459:83-92. [PMID: 24928041 DOI: 10.1016/j.virol.2014.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/11/2014] [Accepted: 04/12/2014] [Indexed: 10/25/2022]
Abstract
The C-type lectin receptors (CLRs) expressed on dendritic cells (DCs), in particular DC-SIGN and DCIR, likely play an important role in HIV-1 early infection. Here, we systematically compared the capture and transfer capability of DC-SIGN and DCIR using a wide range of HIV-1 isolates. Our results indicated that DC-SIGN plays a stronger role than DCIR in DC-mediated HIV-1 capture and transfer. This was further strengthened by the data from transient and stable transfectants, showing that DC-SIGN had better capability, compared with DCIR in HIV-1 capture and transfer. Following constructing and analyzing a series of soluble DC-SIGN and DCIR truncates and chimeras, we demonstrated that the neck domain, but not the CRD, renders DC-SIGN higher binding affinity to gp120 likely via the formation of tetramerization. Our findings provide insights into CLR-mediated HIV-1 capture and transfer, highlighting potential targets for intervention strategies against gp120-CLR interactions.
Collapse
Affiliation(s)
- Wei Jin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China
| | - Xin Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; Center for Infection and Immunity, St George׳s University of London, London SW17 0RE, UK.
| |
Collapse
|
16
|
Hu K, Luo S, Tong L, Huang X, Jin W, Huang W, Du T, Yan Y, He S, Griffin GE, Shattock RJ, Hu Q. CCL19 and CCL28 Augment Mucosal and Systemic Immune Responses to HIV-1 gp140 by Mobilizing Responsive Immunocytes into Secondary Lymph Nodes and Mucosal Tissue. THE JOURNAL OF IMMUNOLOGY 2013; 191:1935-47. [DOI: 10.4049/jimmunol.1300120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
18
|
Dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin mediates HIV-1 infection of and transmission by M2a-polarized macrophages in vitro. AIDS 2013; 27:707-16. [PMID: 23211775 DOI: 10.1097/qad.0b013e32835cfc82] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To assess in-vitro effects of monocyte-derived macrophage (MDM) polarization into M1 and M2a cells on HIV-1 replication and transmission and obtain new insights into the potential importance of macrophage polarization in vivo. DESIGN Human peripheral blood monocytes were differentiated into MDM for 7 days. Control and MDM polarized into M1 or M2a cells were exposed to different strains of HIV-1 and assessed for their ability to bind and transmit virus to CD4 T lymphocytes. METHODS MDM were incubated with either tumour necrosis factor-alpha (TNF-α) along with interferon-gamma (IFN-γ) or with interleukin-4 (IL-4) for 18 h to obtain M1 or M2a cells, respectively. Expression of cell surface antigens, including CD4 and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN), was evaluated by flow cytometry. C-C chemokine receptor type 5 (CCR5)-dependent (R5) HIV-1 binding, DNA synthesis and viral replication were assessed in the presence or absence of anti-DC-SIGN blocking mAbs. Transmission of C-X-C chemokine receptor type 4 (CXCR4)-dependent (X4) and R5 HIV-1 from MDM to IL-2 activated CD4 T cells was also investigated. RESULTS DC-SIGN was strongly upregulated on M2a-MDM and downregulated on M1-MDM compared with control MDM. DC-SIGN facilitated HIV-1 entry and DNA synthesis in M2a-MDM, compensating for their low levels of CD4 cell expression. M2a-MDM efficiently transmitted both R5 and X4 HIV-1 to CD4 T cells in a DC-SIGN-dependent manner. CONCLUSION DC-SIGN facilitates HIV-1 infection of M2a-MDM, and HIV-1 transfer from M2a-MDM to CD4 T cells. M2a-polarized tissue macrophages may play an important role in the capture and spread of HIV-1 in mucosal tissues and placenta.
Collapse
|